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Abstract

We prove the existence of £P functions satisfying a kind of self-

similarity condition. This is achieved solving a functional equation by
means of the construction of a contractive operator on an appropriate
functional space. The solution, a fixed point of the operator, can be
obtained by an iterative process, making this model very suitable to
use in applications such as fractal image and signal compression.
On the other hand, this “generalized self-similarity equation” includes
matrix refinement equations of the type f(z) = > cxf(Az — k) which
are central in the construction of wavelets and multiwavelets. The re-
sults of this paper will therefore yield conditions for the existence of
LP-refinable functions in a very general setting.
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1 Introduction

Self-Similar objects are those that can be constructed out of smaller copies
of itself. When we deal with sets, this concept can be formulated using the
notion of Iterated Function Schemes (IFS) ([24], [4]): If (X,d) is a metric
space and ® = {wy,...,wp} (w; : X = X, {w; }i=1,.. ~) is a set of maps,
then A C X is self-similar with respect to ® if A = Uw;(A). It can be
shown, that if X is complete, and the maps are contractive, then there exists
a unique compact self-similar set with respect to .

This concept can be extended in different ways to different kind of objects:
self-similar measures can also be defined using IF'S (see [24], [4]) and recently
have been studied by Strichartz using Fourier and Wavelet analysis ([26],
[28]).

Aiming to recover self-similarity parameters of physical signals, Hwang and
Mallat study the self-similarity of the wavelet transform ([25]).

One way to extend the notion of self-similarity to functions, is to require
that the graph of the function should be a self-similar set.

If the function is defined on a self-similar set, then we could require that the
function share the self-similarity of the domain, i.e.: if X = U ;w;(X), then

Fwi(e) = f@), i=15on, (1.1)
For this definition we require the w; to be disjoint (i.e. w;(X) N w;(X) =

0, i#35).

From IFS-theory it can be shown that if f is a continuous function satisfying
the self-similarity condition (1.1), f has to be constant.

In order to consider more general solutions, we relax the condition of self-
similarity (1.1), introducing a set of functions 1, ..., ¢, and requiring that
f satisfy

pi(f(wi (@) = f(z) zew(X) i=1...n (1.2)

Finally, to allow overlapping maps in the IFS, we introduce a function O
that combines the values of p; o f o w;l(ac) for i =1,...,n for the same z.

In this paper we will study the existence of self-similar functions in different
contexts and relax even more the self-similarity condition (1.2) allowing
space-dependent ;’s and O.



The problem of finding a function u that satisfies a self-similarity equation
of the type:

u(z) =0 (z,(uogy)(z),...,(ucg)(x)), (1.3)

has been studied by Bajraktarevic in 1957 ([2]). In the same year, a similar
equation was considered by de Rahm ([13]), and conditions for continuous
solutions were found.

In [24] Hutchinson, extending the concept of self-similarity to parametric
curves, considered a particular case of this equation.

More recently, related functional equations were studied in fractal interpo-
lation, in order to show the existence and construction of continuous fractal
functions (3], [6], [15], [16], [17], [21], [22]) .

Cabrelli et al. in [9] constructed an operator of the type (1.3) introducing a
novelty to it: they added a set of grey-level functions (;, such that the result-
ing fixed point of their operator would no longer be strictly self-similar, but
-self-similar. They worked in a particular setting, in which the functions
v; had to satisfy very restrictive conditions to guarantee convergence

In this paper we broaden the class of functions and look at different func-
tional spaces and are able to remove most of the previous restrictive con-
ditions making this model much more versatile and therefore more suitable
for applications.

We study the more general equation

u(z) = O(z, p1(z, (wo g1)(2)), ..., pr(z, (wog,)(z))) ,  (1.4)

that encloses most of the cases mentioned before and generalizes the concept
of self-similar function (1.1). We find conditions on the components in order
to assure the existence of solutions.

We construct an operator on a suitable function space and the solution of our
equation will be a fixed point of this operator. This not only yields a solution
of the equation, but also shows that this solution can be computationally
efficiently calculated: we obtain it by iterating the operator.

This functional equation and the easy computation of its solution makes it
suitable for many applications. For example it models two situations which



are of general interest: using fractal compression in image or signal analysis
and the construction of wavelets and multiwavelets.

In the first case, in signal processing, in particular in image representation, a
well known problem is the design of an adaptive code for a given target. This
has been studied in particular using fractals and self-similar models (see [1],
[5], [7], [9], [12], [14], [20]). Some of the advantages of this approach are the
compression rates achieved, and the complexity of the images that can be
represented. Generally the strategy consists in finding an operator 7', whose
fixed point is the given target. In [12], it was shown that the previously
introduced model ([9]) had the property of being “dense”, meaning that for
any function and any € one can construct an operator whose fixed point is
closer than ¢ to the function. However, due to the restrictions on the grey-
level maps ¢;, this result was not enough for practical implementations. The
functional equation considered in this paper, represents a generalization of
the concept of self-similar function extending the applicability of the model
to a wider class of images and allowing more flexibility in the choice of the
parameters. This should in turn lead to a better compression rate. For work
in this direction we refer the reader to [8].

In the second case, in the application to the construction of wavelets and
multiwavelets, one wants to find solutions to a refinement equation of the

type
$x) = Y crd(Az — k), (1.5)

kezd

in order to then construct a wavelet decomposition of £2(R?). Suitably
defining ¢;, g; and O in (1.4) will yield (1.5). In the particular case that all
the ¢ are equal, one yields the equation studied by Grochenig and Madych
in [19] and Strichartz in [27]. Currently there is a growing interest in “mul-
tiwavelets”, which can be constructed using refinement equations in which
the coefficients are matrices and the solutions vector-valued functions ([18],
[23]). These matrix refinement equations are particular cases of our func-
tional equation, and solutions to these equations, using generalized self-
similar functions are studied in a joined work with C. Heil ([10], [11]). In
particular the existence of solutions to this equation in a suitable setting,
lead to the construction of the first known example of non-separable orthog-
onal multiwavelets in R? ([11]).

We will analyze two different situations: in section 2 we study the case
of bounded solutions with the uniform metric. In section 3 we study LP



solutions for 1 < p < +oo. In both cases we give sufficient conditions for
the existence of solutions.

2 B(X,E)-case

Let (X, d) be a compact metric space and (E,¢) a metric space where E is
a closed subset of R™ (in particular (E could be R™) and /¢ a distance in
FE induced by some norm of R™. Let us also consider a point ¢y € E that
will remain fixed throughout the whole section.

We consider the functional space
B(X,E) ={u: X — E, u bounded},
with

D(u,v) = sg)( L(u(z),v(z)), VYu,v,e B(X,E). (2.1)

It is well-known that (B(X, E), D) is a complete metric space.

Let us now define the functions O, w;, ;,7 = 1,...,r in order to construct

an operator T on B(X, E).

Let O: Xx E" — FE be non-expansive for each z € X, i.e. :

(O (2, 11),0 (2, 12)) < sup L(K,KD) VELE cE'.  (2.2)

! R
1<i<r

Let w; : X — X, i =1,...,r be r injective maps, which are not necessarily
contractive, and let ¢; : Xx E — E, i =1,...r be r functions that for each
x € X satisfy the Lipschitz condition:

f((pi(m,kl),goi(m,kg)) < Cie(kl,kg), Vkl,kg - E, 1= 1, oo, T (2.3)
where ¢; > 0 does not depend on z.

In order to be able to define an operator on B(X, E) , we need some stability
conditions. We define a function f to be stable, if f(A) is bounded, whenever



A is a bounded set. Hence we shall assume that O and ¢;,i = 1,...,r are
stable.

Now we define an operator 7 on B(X, E) in the following way:
(Tu)(z) = O (z, p1(z, 01(2)), - .., or(2,0r(2))) 5 (2.4)

where w;(z) = {u(wi_l(ac)) if o € Img(wi) 1<i<r. (2.5)

to otherwise

We shall use O (z, p;(z,;(z))) for the right hand side of (2.4). We can
prove the following

Theorem 2.1 With the above notation, if ¢ = maxi<i<, ¢; > 0 is the Lips-
chitz constant for the ¢;’s, then

T :B(X,E) — B(X,E), and

D(Tu, Tv) <cD(u,v).

In particular, if ¢ < 1, T is contractive and therefore there exists a unique
u* in B(X, E) such that Tu* = u*.

Proof : If u € B(X, E) then it is easy to verify that Tu € B(X, E). Now
if u,v € B(X, E) then

(T (), (TV)(@) = £(O (&, ¢i(z, 0(2))), O (2, gs(z, %:(2)))

< lilzl_gre(‘Pi(“’ﬁi(m))v‘ﬁ(m"?i(m)))

< sup ¢ (u;(z),v(x))
1<i<r

< ¢ supf(u(y),v(y))
yeX
= C D(u, V).
Therefore

D(Tu,Tv) <c D(u,v).

We then have the following



Corollary 2.2 If ¢ < 1, the functional equation

u=0(z,p1(z,01(x)),... ,or(z,0r(x))) (2.6)

where the @; are as in (2.5), has a unique solution in B(X, E).

Proof :
The fixed point of the operator T is the solution of the equation. [ |

Note that (2.6) is a generalization of the original functional equation given
in (1.3).

In what follows, we will study the operator (2.4) in the LPspaces.

3 LP-case

Let now X C R"™ compact, with p the n-dimensional Lebesgue measure
and let E = R™ with some norm |.||. (Note: E could be chosen to be
any Banach space.) We consider the functions u : X — E such that the
real-valued function ||u(.)|| is Lebesgue-measurable, and, as usual, functions
that are equal almost everywhere are identified.

If1<p<+oo,let

LP(X,E)={u: X—> E: /X |u(z)|Pdu(z) < +oo}

with [Jull, = ([ [u(@)[Pdu(z))"""; and

LP(X,E)={u: X— E: |u(.)]] essentially bounded}
with ||ul|e = ess.sup.||u(.)]|-
It is well known, that LP(X, F), 1 < p < +oo is a Banach space.
Let as before O : X x E" — E" be non-expansive, i.e.

r 1/p
|0z, k) = Oz, k2)]| < (Z I —k?|P> . (3.1)

=1



For measurable u: X — E we define as before the operator (2.4),

(Tu)(m) =0 (:E, ¥1 ($7 ﬁl(m))v cee aSDT(wv ﬁr(w))a

where the wis and ¢}s are as in the previous section, with the following
additional conditions:

1. The maps {w;} satisfy a Lipschitz condition, i.e. there exist s; >
0, such that d(w;(x),w;(y)) < s;d(z,y) where d is the Euclidean dis-
tance in R"™.

2. The functions ¢;, ¢ =1,...,r and O are Borel measurable.

These additional conditions are required in order to guarantee the measur-
ability of Tu.

We have the following

Proposition 3.1 Let T be defined as above, then Tu: X — E is measur-
able for each measurable function u: X — E and also if u, v are measurable
and uw=v a.e. then Tu="TV a.e.

Proof: The measurability of 7 u for measurable u is a consequence of the
stability and the Borel-measurability of O and the ¢;’s and the fact that
the w;’s are Lipschitz. Now if Z = {z : u(z) # v(z) }, then {z : Tu(z) #
Tv(z)} C U_jw;i(Z). The Lipschitz condition of the w;’s implies that
w(w;(Z)) = 01if u(Z) = 0 and therefore the result follows. [ |

Now we consider first the space £ defined before. The case LP 1 <p <
400 will be treated later.

Theorem 3.2 Let T be the operator of proposition 8.1. Then, T : L —
L>® and

[Tu—TV|[x <cllu—v]xw, YuveLl™.

Proof: If u e L™ then let Z C X, u(Z) =0 and u bounded in X — Z. If
we define v: X — EF by v=uXx_gz, then v = u a.e. and v is bounded.

Then T v is bounded and using the preceding proposition, 7u = TV a.e.
and therefore Tu € L.



From the proof of Theorem 2.1 we see that for u and v € L* we have
[(Ta)(z) = (Tv)(@)|| < clu—v|e ae onX,
which implies that

Tu—TV|[w < cllu—v|oo- [
We will now analyze the case LP 1 < p < co. We have the following

Theorem 3.3 Let T be the operator of proposition 8.1. Then, if u,v €
LP(X,E), then (Tu—Tv) € LP(X,E) and

T 1/p
[Ta=Tv|, < <Zs?cf> u—vlp,
i=1

where s; and c; are the Lipschitz constants of w; and ¢; respectively, and n
1s the dimension of X.
Furthermore the finiteness of u(X) yields

T : LP(X,E) — LP(X, E).

Proof : 1If u,v € LP, then by Proposition 3.1, Tu — T v is measurable
and

[T Tvlp = [ 1T - (Tv)(@)P duto)
= [ 106 e m@)) - 0w @) [Pdue)
< [ It — pie i) Pdx) by 1)
<3 [ Vo) = 5i(a) Pauta) - (by 23)
<Tc’.’ w N (x)) = v(w D)) ||P du(zx
<X z/wi(x)nu( (@) — v @) P du(a)
<Y s / lu(t) = v(#) [P du(t) (by the Lipschitz property of w;)
i=1 X

T
= st u- vk
i=1



From this inequality we see that if u,v € LP, then

r 1/p
[Tvllp <[ Tv—"Tulp+ [Tul, < <Z si Cf> a— vl + [Tl ;
=1

what says that if there exists a function u € LP such that Tu € LP then
T sends LP into LP, 1 < p < +oo. Now, since u(X) < 4oo then L* C
LP 1 < p < oo and since, by Theorem 3.2 T : L® — L™, we get the
desired result. ]

Corollary 3.4 If, with the above notation, (3.7_, s? £)Y/P < 1 for some p,

=11
1 < p < oo, then T is a contraction map on LP and the functional equation
given by 2.6:

u= O(x, Sol(x, ﬁ-l(w))’ cee 7‘107(1"&7“(1:)) )’

has a unique solution in LP.

If the w; : X — X are differentiable and Dw;(z) denotes the differential
matrix of w; at the point z, the proof of the last Theorem shows that
we can improve the Lipschitz property of the operator T, replacing s]' by
¢; = sup,¢ x| det Dw;(x)| < |s;|™. We then have the following Theorem.

Theorem 3.5 Let T be as defined by 3.1. Then, if u,v € LP(X, E), then
T :LP(X,E) — LP(X,E),

and

T 1/p
[Tu—Tvlp < (chp> lu—vlp,
i=1

where £; = sup,¢cx | det Dw;(z)| and ¢; are the Lipschitz constants of ¢; .

Note that the solution to the functional equation 2.6 presented here can
be obtained as the limit of the iteration of the operator 7T at any starting
function.

Remark In [11] we show that using the same techniques than in this paper,
Theorem 3.5 can in some cases be slightly improved weakening the conditions
on the .
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