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This paper is devoted to the study of the dimension functions of (multi)wavelets,
which was introduced and investigated by P. Auscher in 1995 (J. Geom. Anal.
5, 181–236). Our main result provides a characterization of functions which are
dimension functions of a (multi)wavelet. As a corollary, we obtain that for every
functionD that is the dimension function of a (multi)wavelet, there is a minimally
supported frequency (multi)wavelet whose dimension function isD. In addition, we
show that if a dimension function of a wavelet not associated with a multiresolution
analysis (MRA) attains the valueK , then it attains all integer values from 0 toK .
Moreover, we prove that every expansive matrix which preservesZN admits an
MRA structure with an analytic (multi)wavelet.  2001 Academic Press
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1. INTRODUCTION

Thedimension functionof an orthonormal waveletψ ∈ L2(R) is defined as

Dψ(ξ)=
∞∑
j=1

∑
k∈Z
|ψ̂(2j (ξ + k))|2.
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The importance of the dimension function was discovered by Lemarié, who used it to
prove that certain wavelets are associated with a multiresolution analysis (MRA); see [15,
16]. After that Gripenberg [11] and Wang [22] independently characterized all wavelets
associated with an MRA. The well-known characterization establishes that a wavelet is an
MRA wavelet if and only ifDψ(ξ) = 1 for almost everyξ ∈ R. However, Auscher [1]
proved something more. His deep theorem shows that the dimension function of a wavelet
describes dimensions of certain subspaces of`2(Z); in particular, it is integer valued.
Recently, Baggett, Medina, and Merrill [2, 3] observed that the dimension function has
one more property, i.e., it satisfies the followingconsistency equation:

Dψ(ξ)+Dψ(ξ + 1/2)=Dψ(2ξ)+ 1 a.e. (1.1)

We shall prove that a third condition is always satisfied, namely,∑
k∈Z

11(ξ + k)≥Dψ(ξ) a.e., (1.2)

where1 = {ξ ∈ R :Dψ(2−j ξ) ≥ 1 for j ∈ N ∪ {0}} and 11 denotes the characteristic
function of 1. It turns out that the three properties together with three obvious ones
— thatDψ is 1-periodic, lim infn→∞Dψ(2−nξ) ≥ 1, and

∫ 1/2
−1/2Dψ(ξ) dξ = 1 — fully

characterize dimension functions. Baggett and Merrill [4] used the condition (1.2) found
in the preliminary version of this paper, which only dealt with the one-dimensional case,
to prove a similar characterization for the multiplicity function.

In Section 5 we give a brief study of the collection of all dimension functions. Included
are examples of a construction of MSF (minimally supported frequency) wavelets using
the MRA dimension function and the Journé dimension function. In Example 5.8 we use
an idea due to Madych [17] to prove that for any expansive matrixA which preserves
ZN there exists an analytic (multi)wavelet associated with an MRA. In Theorem 5.11 we
prove that there are no skips in the range of a non-MRA dimension function; that is, if a
dimension function not associated with an MRA attains the valueK, then it attains all of
the integer values from zero toK.

2. PRELIMINARIES

Since our main result holds in greater generality than described in the Introduction, let us
review the necessary terminology. For this paper, adilation matrixA will be an expansive
matrix which preservesZN , i.e., all eigenvaluesλ of A satisfy |λ| > 1 andAZN ⊂ ZN .
The transpose ofA is denoted byB = AT. A finite set9 = {ψ1, . . . ,ψL} ⊂ L2(RN) is
called anorthonormal multiwaveletif the system{ψlj,k : j ∈ Z, k ∈ ZN , l = 1, . . . ,L} is
an orthonormal basis forL2(RN), where forψ ∈L2(RN) we use the convention

ψj,k = |detA|j/2ψ(Ajx − k) for all j ∈ Z, k ∈ ZN .

If a multiwavelet9 consists of a single elementψ then we say thatψ is a wavelet.
The following result establishes a characterization of orthonormal multiwavelets (see [6,
7, 10, 11]).
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THEOREM 2.1. A subset9 = {ψ1, . . . ,ψL} is an orthonormal multiwavelet if and
only if

L∑
l=1

∑
j∈Z
|ψ̂l(Bj ξ)|2= 1 a.e.ξ ∈RN , (2.1)

ts (ξ)≡
L∑
l=1

∞∑
j=0

ψ̂l (Bj ξ)ψ̂l (Bj (ξ + s))= 0 a.e.ξ ∈RN , s ∈ ZN\BZN , (2.2)

and‖ψl‖ = 1 for l = 1, . . . ,L, whereB =AT.

In the theorem above and throughout the paper the Fourier transform is defined as

f̂ (ξ)=
∫
RN
f (x)e−2πi〈x,ξ 〉 dx.

DenoteTN = RN/ZN , which we identify with the set(−1/2,1/2]N . The ZN -peri-
odization of a setE ⊂ RN is defined byEP =⋃k∈ZN (E + k). Thetranslation projection
τ is defined onRN by τ (ξ)= ξ ′, whereξ ′ ∈ TN andξ ′ − ξ = k for somek ∈ ZN . In our
convention the set of natural numbersN does not contain zero. The Lebesgue measure of
a setE ∈RN is denoted by|E|.

An easy to justify property of the mappingτ is the following.

LEMMA 2.2. Let Ẽ be a measurable subset ofRN . Then there exists a measurable set
E ⊂ Ẽ such thatτ (E)= τ (Ẽ) andτ |E is injective.

DEFINITION 2.3. AnMSF (minimally supported frequency) multiwavelet(of orderL)
is an orthonormal multiwavelet9 = {ψ1, . . . ,ψL} such that|ψ̂l | = 1Wl for some measur-
able setsWl ⊂RN , l = 1, . . . ,L. An MSF multiwavelet of order 1 is simply referred to as
anMSF wavelet.

The following theorem characterizes all MSF multiwavelets (see [9] for a similar
characterization of MSF wavelets). Note that Theorems 2.4 and 2.6 hold without the
assumption that the dilationA preserves the latticeZN .

THEOREM 2.4. A set9 = {ψ1, . . . ,ψL} ⊂ L2(RN) such that|ψ̂l | = 1Wl for l =
1, . . . ,L is an orthonormal multiwavelet associated with the dilationA if and only if

∑
k∈ZN

1Wl (ξ + k)1Wl′ (ξ + k)= δl,l′ a.e.ξ ∈RN , l, l′ = 1, . . . ,L, (2.3)

∑
j∈Z

L∑
l=1

1Wl (B
j ξ)= 1 a.e.ξ ∈RN , (2.4)

whereB =AT.

Proof. Supposeψ ∈ L2(RN) with |ψ̂ | = 1W , for some measurable setW . The
set {ψ0,k : k ∈ ZN } is an orthonormal family if and only if

∑
k∈ZN |ψ̂(ξ + k)|2 =∑

k∈ZN 1W(ξ + k)= 1 for a.e.ξ . In this case

span{ψ0,k : k ∈ ZN } = {f ∈ L2(RN) : suppf̂ ⊂W },
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where supp̂f := {ξ ∈ RN : f̂ (ξ) 6= 0}. Therefore{ψl0,k : k ∈ ZN, l = 1, . . . ,L} is an
orthonormal family if and only if∑

k∈ZN
1Wl (ξ + k)= 1 for l = 1, . . . ,L, a.e.ξ ∈RN ,

and theWl ’s are pairwise disjoint (modulo sets of measure zero), i.e., (2.3). In this case

W0 := span{ψl0,k : k ∈ ZN, l = 1, . . . ,L} =
{
f ∈L2(RN) : suppf̂ ⊂

L⋃
l=1

Wl

}
,

and by scaling for anyj ∈ Z,

Wj := span{ψlj,k : k ∈ ZN, l = 1, . . . ,L} =
{
f ∈ L2(RN) : suppf̂ ⊂ Bj

(
L⋃
l=1

Wl

)}
.

Therefore,9 is a multiwavelet if and only if (2.3) is true and
⊕

j∈ZWj = L2(RN) if

and only if (2.3) is true and{Bj(⋃L
l=1Wl) : j ∈ Z} partitionsRN (modulo sets of measure

zero), i.e., (2.4) holds.

DEFINITION 2.5. A setW ⊂ RN is a multiwavelet set(of orderL) if W =⋃L
l=1Wl

for someW1, . . . ,WL satisfying (2.3) and (2.4). A multiwavelet set of order 1 is called a
wavelet set.

The following theorem characterizes all multiwavelet sets.

THEOREM 2.6. A measurable setW ⊂RN is a multiwavelet set of orderL if and only
if ∑

k∈ZN
1W(ξ + k)= L a.e.ξ ∈RN, (2.5)

∑
j∈Z

1W(Bj ξ)= 1 a.e.ξ ∈RN . (2.6)

Proof. SupposeW is a multiwavelet set of orderL. Since1W =∑L
l=1 1Wl , Theo-

rem 2.4 implies (2.5) and (2.6). Conversely, supposeW satisfies (2.5) and (2.6). We
proceed to define{Wl}Ll=1 inductively. LetW1 be a subset ofW such thatτ (W1) = TN
(modulo sets of measure zero) andτ |W1 is injective; the existence ofW1 is guaran-
teed by Lemma 2.2. Suppose that for some 1≤ n < L we have defined disjoint sets
W1, . . . ,Wn ⊂W such thatτ (Wi)= TN andτ |Wi is injective fori = 1, . . . , n. Therefore∑
k∈ZN 1R(ξ + k)= L−n a.e.ξ , whereR =W\⋃n

i=1Wi , and by Lemma 2.2 we can find
Wn+1⊂R, such thatτ (Wn+1)= TN andτ |Wn+1 is injective. Therefore, we have a disjoint
partition ofW =⋃L

l=1Wl such that∑
k∈ZN

1Wl (ξ + k)= 1 a.e.ξ , for l = 1, . . . ,L. (2.7)

Thus, (2.3) holds. Equation (2.4) is an immediate consequence of (2.6) and the pairwise
disjointness of theWl ’s.
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For a finite subset subsetF = {f 1, . . . , f L} ⊂ L2(RN) and a dilationA, define the
ZN -periodic functionDF by

DF (ξ)=
L∑
l=1

∞∑
j=1

∑
k∈ZN
|f̂ l(Bj (ξ + k))|2, (2.8)

whereB =AT. The following fact implies thatDF is finite for a.e.ξ ∈RN .

PROPOSITION 2.7. If F ⊂ L2(RN) is finite, then

‖DF ‖L1(TN) =
1

q − 1

L∑
l=1

‖f l‖2
L2(RN),

whereq = |detB|.
Proof. We have∫
TN
DF (ξ) dξ =

L∑
l=1

∞∑
j=1

∑
k∈ZN

∫
TN
|f̂ l(Bj (ξ + k))|2dξ =

L∑
l=1

∞∑
j=1

∫
RN
|f̂ l(Bj ξ)|2dξ

=
L∑
l=1

‖f̂ l‖22
∞∑
j=1

|detB|−j = 1

q − 1

L∑
l=1

‖f̂ l‖22=
1

q − 1

L∑
l=1

‖f l‖22.

DEFINITION 2.8. The dimension functionof a multiwavelet9 = {ψ1, . . . ,ψL}
associated with a dilationA is the functionD9 given by (2.8); that is,

D9(ξ)=
L∑
l=1

∞∑
j=1

∑
k∈ZN
|ψ̂l (Bj (ξ + k))|2,

whereB =AT.

A priori, it is not obvious from the definition thatD9 has integer values. It is also not
immediate whyD9 is referred to as a dimension function.

THEOREM 2.9. Suppose9 = {ψ1, . . . ,ψL} is a multiwavelet. ThenD9(ξ) is a
nonnegative integer for a.e.ξ ∈RN .

This result was proved by Auscher [1] for wavelets inL2(R). It is not a surprise that it
holds in a much more general setting. In the following argument it also becomes clear why
D9 is called a dimension function.

Proof. For l = 1, . . . ,L, j ≥ 1, and a.e.ξ ∈ TN we define a vector

9l,j (ξ)= (ψ̂l (Bj (ξ + k)))k∈ZN

which belongs tol2(ZN). The key observation is that the vectors9k,p(ξ) satisfy the
reproducing formula (see [7, Lemma 4.2] or [13, Chap. 7, Eq. (3.5)] for the case of wavelets
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in L2(R))

9k,p(ξ)=
L∑
l=1

∑
j≥1

〈9k,p(ξ),9l,j (ξ)〉l2(ZN)9l,j (ξ) a.e.ξ ∈ TN ,

for k = 1, . . . ,L, p ≥ 1. As we pointed out before, Proposition 2.7 implies thatD9(ξ) is fi-
nite a.e. Moreover, a simple calculation shows thatD9(ξ)=∑L

l=1
∑
j≥1‖9l,j (ξ)‖2l2(ZN ),

which allows us to apply Auscher’s geometrical lemma [13, Chap. 7, Lemma 3.7] to get

D9(ξ)=
L∑
l=1

∑
j≥1

‖9l,j (ξ)‖2= dimspan{9l,j (ξ) : j ≥ 1, l = 1, . . . ,L}

for a.e.ξ ∈ TN .

In [23] Weber proved that the multiplicity function introduced in [3] is equal to the
dimension function in the case of single wavelets onR. It is reasonable to suspect that this
result can be extended to the case of the dimension function of multiwavelets onRN .

Before we present our main result, let us develop a notion of a generalized scaling set
which we use to characterize dimension functions.

3. GENERALIZED SCALING SETS

One of the main features in the theory of (multi)wavelets is the idea of multiresolution
analysis introduced by Mallat [18]. We say that a multiwavelet9 ⊂ L2(RN) is anMRA
multiwaveletif there exists a functionϕ ∈ L2(RN) such that its integer translations form
an orthonormal basis of the spaceV0 :=⊕j<0Wj , whereWj := span{ψlj,k : k ∈ ZN, l =
1, . . . ,L}. The functionϕ is called ascaling function. It is easy to check that if9 is an
MSF multiwavelet which comes from a multiresolution analysis, then its scaling function
ϕ satisfies|ϕ̂| = 1S for some measurable setS ⊂RN . Conversely, ifϕ is a scaling function
of some MRA, such that|ϕ̂| = 1S , then there is an MSF multiwavelet associated with this
MRA. Such a setS is called ascaling set.

In [7] Calogero extended Gripenberg’s result by showing that a multiwavelet9 comes
from an MRA if and only ifD9(ξ) = 1 a.e. This implies that the multiwavelets with
nontrivial dimension function cannot be constructed by means of multiresolution analysis.
One importance of a multiresolution structure is based on the fact that a MRA multiwavelet
can be easily recovered from its scaling function. It turns out that a similar property is true
for all MSF multiwavelets. In fact, in this caseW0 = {f ∈ L2(RN) : suppf̂ ⊂W }, where
W is a multiwavelet set, andV0 = {f ∈ L2(RN) : suppf̂ ⊂⋃∞j=1B

−jW }. Therefore the
role of a scaling function can be played by1S ∈ V0, whereS =⋃∞j=1B

−jW , because then
the setW can be easily obtained fromS, that is,W = BS\S. These ideas can be formulated
precisely as follows.

DEFINITION 3.1. For fixedL ∈N, a setS ⊂RN is called ageneralized scaling set(of
orderL) associated with a dilationA if |S| = L/(q − 1) andBS\S is a multiwavelet set
(of orderL) associated with the dilationA, whereB =AT andq = |detA|.

An equivalent definition can be stated as follows.
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PROPOSITION 3.2. A setS ⊂ RN is a generalized scaling set (of orderL) if and only
if S =⋃∞j=1B

−jW for some multiwavelet setW (of orderL).

Proof. Let us assume thatS =⋃∞j=1B
−jW for some multiwavelet setW . From (2.6)

it follows that the union is disjoint; therefore,BS\S = W . Moreover, (2.5) implies that
|W | = L; hence,|S| = L/(q − 1).

To prove the other implication, denoteBS\S byW and observe that since|W | = L we
must haveS ⊂ BS. From this it easily follows that

⋃∞
j=1B

−jW ⊂ S, but since both these
sets have the same measure they must be equal.

In [19] a simple characterization of scaling sets inR is given. Theorem 2.1 of [3] can be
viewed as a similar characterization of generalized scaling sets of order 1 inRN . The proof
presented there uses methods of abstract harmonic analysis (in particular, the multiplicity
function of projection valued measures). Let us present an elementary proof of this theorem
extended to the case of generalized scaling sets of orderL.

THEOREM 3.3. A measurable setS ⊂ RN is a generalized scaling set(of orderL) if
and only if

(i) |S| = L/(q − 1),
(ii) S ⊂ BS,
(iii) lim n→∞ 1S(B−nξ)= 1 for a.e.ξ ∈RN ,
(iv)

∑
d∈DD(ξ + B−1d) = D(Bξ) + L a.e., whereD(ξ) =∑k∈ZN 1S(ξ + k) and

D is the set ofq representatives of distinct cosets ofZN/BZN .

Proof. Let us prove that conditions (i)–(iv) are necessary. The first one is guaranteed
by definition; the second one follows easily from Proposition 3.2. Moreover, since
S =⋃∞j=1B

−jW for some multiwavelet setW and the union is disjoint, we can write
1S(B−nξ) =∑∞j=−n+1 1W(Bjξ) and use (2.6) to obtain that the limit asn→∞ is 1,
which establishes (iii). A simple calculation shows that∑

d∈D
D(ξ +B−1d)=

∑
d∈D

∑
k∈ZN

∞∑
j=1

1W(Bj (ξ +B−1d + k))

=
∑
k∈ZN

∞∑
j=0

1W(Bj (Bξ + k))=D(Bξ)+
∑
k∈ZN

1W(Bξ + k), (3.1)

therefore (iv) follows from (2.5).
To prove sufficiency defineW asBS\S. It is easy to see thatW andBjW are disjoint

for every j ∈ N. In fact, BjW = Bj+1S\BjS and, by (ii),W ⊂ BjS, which together
imply W ∩ BjW = ∅. In this way we obtain thatBjW ∩ BkW = ∅ for j, k ∈ Z, j 6= k.
This allows us to check thatS =⋃∞j=1B

−jW . Indeed, by (ii) we have
⋃∞
j=1B

−jW ⊂ S,
but both these sets have the same measure; therefore, they are equal. This shows that
1S(ξ) =∑∞j=1 1W(Bj ξ), so (iii) implies thatW satisfies (2.6). Using (iv) together with
(3.1), we obtain that (2.5) is fulfilled as well; therefore,W is a multiwavelet set.

Remark. Suppose that a measurable setS satisfies conditions (i)–(iv) of Theorem 3.3.
Then, as we have shown,W = BS\S is a multiwavelet set andS decomposes into a disjoint
sumS =⋃∞j=1B

−jW . By Definition 2.5 we can find disjoint setsWl , l = 1, . . . ,L, such

thatW =⋃L
l=1Wl and9 = {1W1, . . . ,1WL} is an MSF multiwavelet. Hence we conclude
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that

D9(ξ)=
L∑
l=1

∞∑
j=1

∑
k∈ZN

1Wl (B
j (ξ + k))=

∑
k∈ZN

1S(ξ + k) for a.e.ξ ∈RN . (3.2)

As we have mentioned before, a multiwavelet9 can be associated with an MRA if and
only if D9(ξ) = 1 a.e. Therefore, it follows that if9 is an MSF multiwavelet, then it
comes from an MRA if and only if

∑
k∈ZN 1S(ξ + k) = 1 a.e. In this way we obtain the

following.

COROLLARY 3.4. A measurable setS ⊂ RN is a scaling set if and only if it is a
generalized scaling set of orderq − 1 and

∑
k∈ZN 1S(ξ + k)= 1 a.e.

4. MAIN RESULT

Our key contribution to the study of the dimension function of a multiwavelet9

associated with a dilationA was noticing that its support must be big enough in the sense
of condition (1.2) (that is,∑

k∈ZN
11(ξ + k)≥D9(ξ) for a.e.ξ ∈RN ,

where1= {ξ ∈RN :D9(B−j ξ)≥ 1 for j ∈N∪ {0}},B =AT) and proving that, together
with already known conditions, this condition characterizes dimension functions. Before
we proceed further let us prove a technical lemma which converts this condition into a
statement which is more convenient for the proof of our main result.

LEMMA 4.1. LetB be a dilation andD: RN →N∪{0} be a measurableZN -periodic
function which satisfies∑

k∈ZN
11(ξ + k)≥D(ξ) for a.e.ξ ∈RN , (4.1)

where1 = {ξ ∈ RN :D(B−j ξ) ≥ 1 for j ∈ N ∪ {0}}. LetAj = {ξ ∈ TN :D(ξ) ≥ j } for
j ∈ N, and let{Si}ni=1, wheren ∈ N is fixed, be a collection of measurable sets such that
τ (Si)=Ai andτ |Si is injective fori = 1, . . . , n. Then

(a) there exists a measurable setG such thatτ (G)=A1 andD(B−j ξ)≥ 1 for ξ ∈G
andj ≥ 0,

(b) there exists a measurable setH disjoint from
⋃n
i=1Si such thatτ (H) = An+1

andD(B−j ξ)≥ 1 for ξ ∈H andj ≥ 0,

Proof. (a) Recall that1 = {ξ ∈ RN :D(B−j ξ) ≥ 1 for all j ≥ 0}. DefineG = 1.
All we have to prove is thatτ (G) = A1. Since the inclusionτ (G) ⊂ A1 is obvious,
it is enough to check that the opposite inclusion holds. By condition (4.1) we have∑
k∈ZN 1G(ξ + k)≥D(ξ)≥ 1A1(ξ), which implies thatA1⊂GP , i.e.,A1⊂ τ (G).
(b) DefineH = (1\⋃n

i=1Si)∩APn+1. SinceH ∩⋃n
i=1Si = ∅ andτ (H)⊂An+1, we can

see that all we have to do is prove thatAn+1⊂HP . By condition (4.1) and our assumption
about{Si}ni=1, we have
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∑
k∈ZN

11(ξ + k)≥D(ξ) ≥
∑
k∈ZN

n+1∑
i=1

1Ai (ξ + k)

=
∑
k∈ZN

n∑
i=1

1Si (ξ + k)+
∑
k∈ZN

1An+1(ξ + k)

≥
∑
k∈ZN

1⋃n
i=1 Si

(ξ + k)+ 1An+1(ξ).

In this way we obtain∑
k∈ZN

11\⋃n
i=1 Si

(ξ + k)≥
∑
k∈ZN

11(ξ + k)−
∑
k∈ZN

1⋃n
i=1 Si

(ξ + k)≥ 1An+1(ξ),

which implies thatAn+1⊂ (1\⋃n
i=1Si)

P , i.e.,An+1⊂HP .

As beforeA denotes some fixed dilation,B =AT, andq = |detA| = |detB| is the order
of the quotient groupZN/BZN . Let D = {d1, . . . , dq}, whered1 = 0, be representatives
of different cosets ofZN/BZN . The following theorem gives a full characterization of the
dimension functions of a multiwavelet.

THEOREM 4.2. LetD: RN → N ∪ {0} be a measurableZN -periodic function. Then,
D is the dimension function of some multiwavelet9 = {ψ1, . . . ,ψL} associated with a
dilationA if and only if the following conditions are satisfied:

(D1)
∫
TN D(ξ) dξ = L/(q − 1),

(D2) lim infn→∞D(B−nξ)≥ 1,
(D3)

∑
d∈DD(ξ +B−1d)=D(Bξ)+L a.e.,

(D4)
∑
k∈ZN 11(ξ + k) ≥ D(ξ) a.e., where1 = {ξ ∈ RN :D(B−j ξ) ≥ 1 for j ∈

N∪ {0}} andB =AT.

Proof. Let us begin by proving that the conditions (D1)–(D4) are necessary. To do so
we assume thatD is the dimension function of some multiwavelet9 , i.e.,

D(ξ)=
L∑
l=1

∞∑
j=1

∑
k∈ZN
|ψ̂l(Bj (ξ + k))|2.

Then, by Proposition 2.7 we obtain
∫
TN D(ξ) dξ = 1/(q−1)

∑L
l=1‖ψl‖2= L/(q−1), so

(D1) is proven. To see that (D2) is true, let us observe thatD(ξ)≥∑L
l=1

∑∞
j=1 |ψ̂l (Bj ξ)|2.

Thus, (D2) follows from (2.1). An easy computation similar to (3.1) shows that

∑
d∈D

D(ξ +B−1d)=D(Bξ)+
L∑
l=1

∑
k∈ZN
|ψ̂l(Bξ + k)|2,

so since
∑
k∈ZN |ψ̂l(ξ + k)|2 = 1 a.e. we obtain (D3). To prove the last condition, let

us denotes(ξ) =∑L
l=1

∑∞
j=1 |ψ̂l (Bj ξ)|2. By (2.1) it is clear thats(ξ) ≤ 1; moreover,

we haves(ξ) ≥ s(Bξ) andD(ξ) =∑k∈ZN s(ξ + k). Therefore all we have to prove is
s(ξ) ≤ 11(ξ) a.e. This is true forξ ∈1. On the other hand, ifξ /∈1 thenD(B−j ξ) = 0
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for somej ≥ 0, therefores(B−j ξ) = 0, buts(B−j ξ) ≥ s(ξ), so we obtain thats(ξ) = 0;
i.e.,s ≤ 11 holds almost everywhere.

We turn now to proving the sufficiency of the conditions (D1)–(D4). By Theorem 3.3
and the remark following it, it suffices to find a measurable setS such that

(a) |S| = L/(q − 1),
(b) S ⊂ BS,
(c) limn→∞ 1S(B−nξ)= 1 for a.e.ξ ∈RN , and
(d) D(ξ)=∑k∈ZN 1S(ξ + k).

DenoteAk = {ξ ∈ TN :D(ξ) ≥ k} and fix any measurable setQ ⊂ RN such that
Q⊂ BQ, τ |Q is injective, limn→∞ 1Q(B−nξ)= 1 a.e, andD(ξ) ≥ 1 for ξ ∈Q. Condition
(D2) and the fact thatB is a dilation imply thatQ=1 ∩⋂∞j=0B

jTN is an example of a
set which satisfies these properties.

CLAIM 1. There is a measurable setS1⊂RN such that

(i) Q⊂ S1,
(ii) S1⊂ BS1,
(iii) τ |S1 is injective, and
(iv) τ (S1)=A1.

Proof of Claim 1. Let us denoteE1=Q. Forn ∈N, define

Ẽn+1=
(
BEn

∖ n⋃
i=1

EPi

)
∩AP1

and letEn+1⊂ Ẽn+1 be the set guaranteed to exist by Lemma 2.2.
DefineS1 =⋃∞i=1Ei . We submit thatS1 satisfies the conditions (i)–(iv) above. Indeed,

(i) is obvious from the definition. To see (ii), note that by the constructionE1⊂ BE1 and
En ⊂ BEn−1 for all n≥ 2. Therefore,BS1=⋃∞i=1BEi ⊃

⋃∞
i=1Ei = S1.

To see (iii), if ξ1, ξ2 ∈ S1 andτ (ξ1)= τ (ξ2), then there existj, k ∈ N such thatξ1 ∈ Ej
andξ2 ∈ Ek . Without loss of generality,j ≤ k. If j < k, thenξ2 /∈ EPj , which contradicts
τ (ξ1)= τ (ξ2). Therefore,j = k; however,τ |Ej is injective, soξ1= ξ2.

We now turn to proving (iv). By the definition ofS1 we haveτ (S1)⊂ A1. It remains to
show thatA1⊂ τ (S1). By the condition (D4) and Lemma 4.1 there is a setG⊂ RN such
thatτ (G)=A1, andD(B−j ξ)≥ 1 for everyj ≥ 0 and everyξ ∈G.

SUBCLAIM . For j ≥ 1 we haveG∩BjSP1 ⊂ Bj−1SP1 .

Proof of Subclaim. Let ξ ∈ G ∩ BjSP1 . SinceB−j ξ + l ∈ S1 for somel ∈ ZN , it
follows thatB−j ξ + l ∈Em for somem ∈N. Thenξ ′ := B−j+1ξ +Bl ∈ BEm, and by the
definition ofG, D(ξ ′) ≥ 1, soξ ′ ∈ BEm ∩ AP1 . Recall thatẼm+1 = (BEm\⋃m

i=1E
P
i ) ∪

AP1 . Therefore, ifξ ′ /∈⋃m
i=1E

P
i , thenξ ′ ∈ Ẽm+1 ⊂ SP1 , i.e., ξ ∈ Bj−1SP1 . On the other

hand, ifξ ′ ∈EPi for somei = 1, . . . ,m, then againξ ′ ∈ SP1 , soξ ∈ Bj−1SP1 and the proof
of the subclaim is completed.

To finish the proof of Claim 1, note that from the assumptions we made aboutQ it
follows that

⋃∞
j=1B

jQ = RN . Therefore,G =⋃∞j=1(G ∩ BjQ) ⊂
⋃∞
j=1(G ∩ BjSP1 ).

By iterating the subclaim, we obtain thatG ∩ BjSP1 ⊂ SP1 for j ≥ 1. So,G ⊂ SP1 , i.e.,
τ (G)⊂ τ (S1), and sinceτ (G)= A1 the proof of Claim 1 is finished.
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We continue defining the setS. Suppose that there exist setsS1, . . . , Sn such that if we
definePi =⋃i

j=1Sj for i ≤ n, then the collections{Si}ni=1 and{Pi}ni=1 satisfyQ ⊂ P1,
and

(1) Pi ⊂ BPi for i = 1, . . . , n,
(2) τ |Si is injective fori = 1, . . . , n,
(3) Si ∩ Sj = ∅ for all i, j = 1, . . . , n, wherei 6= j , and
(4) τ (Si)=Ai for i = 1, . . . , n.

Then, we will constructSn+1 such thatS1, . . . , Sn+1 andP1, . . . ,Pn+1 satisfy (1)–(4).
Recall thatAn+1= {ξ ∈ TN :D(ξ)≥ n+ 1}.

DefineF̃1 = (BPn\Pn) ∩ APn+1. By Lemma 2.2, there is a measurable subsetF1 ⊂ F̃1

such thatτ |F1 is injective andτ (F1)= τ (F̃1).
Form ∈N define

F̃m+1=
(
BFm

∖ m⋃
i=1

FPi

)
∩APn+1,

and letFm+1 be the subset of̃Fm+1 guaranteed to exist by Lemma 2.2.
LetSn+1=⋃∞m=1Fm. We claim that the collections{Si}n+1

i=1 and{Pi}n+1
i=1 satisfy the four

conditions above. For the condition (1) it suffices to show thatSn+1⊂ BPn+1. This follows
from the fact thatF1⊂ BPn, whileFm ⊂ BFm−1 ⊂ BPn+1 for m≥ 2.

For Condition (2) we must show thatτ |Sn+1 is injective. Suppose thatξ1, ξ2 ∈ Sn+1 and
τ (ξ1) = τ (ξ2); then, without loss of generality, for somej ≤ k, ξ1 ∈ Fj andξ2 ∈ Fk . If
j < k, thenξ2 /∈ FPj , which contradictsτ (ξ1)= τ (ξ2). Therefore,j = k; however,τ |Fk is
injective, soξ1= ξ2.

To see (3) it is enough to prove thatSn+1 ∩ Pn = ∅. As we noted before, for
m ≥ 2 we haveFm ⊂ BFm−1. But sinceF1 ⊂ BPn\Pn, by induction we obtainFm ⊂
BmPn\Bm−1Pn for m ≥ 1. From (1) withi = n, it follows thatPn ⊂ Bm−1Pn for m ≥ 1.
Therefore, for suchm we obtainFm ∩ Pn = ∅, i.e.,Sn+1 ∩ Pn = ∅.

The proof of (4) is more difficult. First note that sinceτ (Fm) ⊂ An+1, we have
τ (Sn+1)⊂An+1. For the reverse inclusion, we will find it useful to prove the following.

CLAIM 2. We haveAPn+1 ∩BSPn+1⊂ SPn+1.

Proof of Claim 2. If ξ ∈ APn+1 ∩ BSPn+1, then B−1ξ + k ∈ Fm for somem ∈ N
and k ∈ ZN . Therefore,ξ ′ := ξ + Bk ∈ BFm; moreover, sinceξ ∈ APn+1, we obtain
ξ ′ ∈ BFm ∩ APn+1. Now, if ξ ′ /∈⋃m

i=1F
P
i thenξ ′ ∈ F̃m+1 ⊂ SPn+1, i.e., ξ ∈ SPn+1. On the

contrary, if ξ ′ ∈ FPi for somei = 1, . . . ,m, thenξ ′ ∈ SPn+1 as well, soξ ∈ SPn+1, which
ends the proof of Claim 2.

Continuing with the proof of Condition (4), we need to show thatAn+1 ⊂ τ (Sn+1).
By Condition (D4) and Lemma 4.1, there is a setH ⊂ RN such thatH ∩ Pn = ∅,
τ (H) = An+1, andD(B−j ξ) ≥ 1 for everyj ≥ 0 andξ ∈ H . Therefore all we have to
prove is thatτ (H)⊂ τ (Sn+1), i.e.,H ⊂ SPn+1.

We split into two cases; first, we consider allξ ∈ H such that, for everyj ≥ 0,
D(B−j ξ)≥ n+ 1, i.e., the setR :=H ∩⋂∞j=1B

jAPn+1. We will show thatR ⊂ SPn+1. Let
ξ ∈ R. As we mentioned before,

⋃∞
j=1B

jQ= RN ; therefore,B−j ξ ∈Q for somej ≥ 1.
Condition (1) implies thatQ⊂ Pn; hence, we can considerj0=min{j ∈N :B−j ξ ∈ Pn}.
SinceH ∩ Pn = ∅, it follows thatB−j0+1ξ ∈ BPn\Pn. Moreover, sinceB−j0+1ξ ∈APn+1,
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we obtainB−j0+1ξ ∈ (BPn\Pn) ∩ APn+1 = F̃1 ⊂ SPn+1. In this way we prove thatR ⊂⋃∞
k=0B

kSPn+1. Therefore,

R =
∞⋃
k=0

(R ∩BkSPn+1)⊂
∞⋃
k=0

(
H ∩

k⋂
j=0

BjAPn+1 ∩BkSPn+1

)
.

But Claim 2 implies that fork ≥ 0,

k⋂
j=0

BjAPn+1 ∩BkSPn+1⊂ SPn+1, (4.2)

henceR ⊂ SPn+1.
The second case deals with the setC :=H\⋂∞j=0B

jAPn+1. We still wish to show that

C ⊂ SPn+1. If ξ ∈C thenξ ∈H ⊂APn+1, so we can findj0≥ 0 such thatξ ∈⋂j0
j=0B

jAPn+1
and ξ /∈ Bj0+1APn+1. To prove thatξ ∈ SPn+1, it is enough to show thatξ ∈ Bj0SPn+1
and then to use the formula (4.2) withk = j0. To see whyξ ∈ Bj0SPn+1 observe that
D(B−j0ξ)≥ n+1. Therefore, by the consistency equation, i.e., Condition (D3), we obtain

n+L+ 1≤ L+D(B−j0ξ)=
∑
d∈D

D(B−j0−1ξ +B−1d). (4.3)

For eachd ∈D setK(d)=D(B−j0−1ξ +B−1d), thenτ (B−j0−1ξ +B−1d) ∈⋂K(d)
k=1 Ak.

Moreover, sinced = 0 ∈ D, τ (B−j0−1ξ) ∈ AK(0), and ξ /∈ Bj0+1APn+1, we obtain
K(0)≤ n. Since ξ ∈ H , it follows that D(B−j0−1ξ) ≥ 1, and we obtainK(0) ≥ 1.
By (4) we haveB−j0−1ξ ∈ ⋂K(0)

k=1 S
P
k , i.e., B−j0−1ξ + p0

k ∈ Sk , wherep0
k ∈ ZN for

k = 1, . . . ,K(0) are distinct by (3). For eachd ∈ D\{0} such thatK(d) 6= 0, by using
(4) again we can find distinctpdk ∈ ZN such thatB−j0−1ξ + pdk + B−1d ∈ Sk , where
k = 1, . . . ,min(K(d), n).

In this way for eachd ∈D such thatK(d) 6= 0 we obtain

B−j0ξ +Bpdk + d ∈BSk ⊂ BPn for k = 1, . . . ,min(K(d), n). (4.4)

We claim that this gives us at leastn + 1 distinct elements ofBPn. If Bpdk + d =
Bpd

′
k′ + d ′ for somek = 1, . . . ,min(K(d), n), k′ = 1, . . . ,min(K(d ′), n), thend − d ′ ∈

BZN , henced = d ′. Also, for fixed d ∈ D, pdk 6= pdk′ , for k 6= k′. What remains to
check is that

∑
d∈Dmin(K(d), n) ≥ n + 1. Since 1≤ K(0) ≤ n, Formula (4.3) yields

K(0)+∑d∈D\{0}min(K(d), n)≥ n+ 1.
By Property (2) of the induction hypothesis, at least one of the elements given in (4.4)

must lie in the complement ofPn. So, for somek ∈ ZN ,B−j0ξ + k ∈BPn\Pn. In addition,
sinceB−j0ξ ∈APn+1, we haveB−j0ξ + k ∈APn+1. Therefore,B−j0ξ + k ∈ F̃1⊂ SPn+1, i.e.,
ξ ∈B−j0SPn+1, which completes the proof of condition (4).

To recap, we have defined sets{Si}∞i=1 such that if we setPi = ⋃i
j=1Sj then the

following conditions hold:

(0) Q⊂ P1,
(1) Pi ⊂ BPi for i ∈N,
(2) τ |Si is injective fori ∈N,
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(3) Si ∩ Sj = ∅ wheneveri 6= j , and
(4) τ (Si)=Ai for i ∈N.

DefineS =⋃∞i=1Si . We claim that S satisfies properties (a)–(d) listed above. To show
thatS ⊂ BS, it suffices to show thatSi ⊂ BS for everyi ∈ N, but this is immediate from
Condition (1).

To show that limn→∞ 1S(B−nξ)= 1 almost everywhere, we note thatQ⊂ S, and since
limn→∞ 1Q(B−nξ)= 1 we obtain limn→∞ 1S(B−nξ)= 1 .

To prove thatD(ξ)=∑k∈ZN 1S(ξ + k) it suffices to show that the equality holds for all
ξ ∈ TN . By Condition (3) we have1S =∑∞i=1 1Si , therefore

D′(ξ) :=
∑
k∈ZN

1S(ξ + k)=
∑
k∈ZN

∞∑
i=1

1Si (ξ + k).

It follows from (2) that
∑
k∈ZN 1Si (ξ + k)= 1τ (Si)(ξ) for ξ ∈ TN . Therefore, using (4) we

obtain (forξ ∈ TN )

D′(ξ)=
∞∑
i=1

1τ (Si)(ξ)=
∞∑
i=1

1Ai (ξ)=D(ξ).

Finally, we show that|S| = L/(q − 1). By Condition (D1) we have

|S| =
∫
RN

1S(ξ) dξ =
∫
TN

∑
k∈ZN

1S(ξ + k) dξ =
∫
TN
D(ξ) dξ = L/(q − 1),

which completes the proof of the theorem.

An immediate implication of the proof of Theorem 4.2 is the following,

COROLLARY 4.3. If D is a dimension function of some multiwavelet then there exists
an MSF multiwavelet9 of the same order such thatD9 =D.

Theorem 4.2 gives us an algorithm for constructing multiwavelet sets if the dimension
function is given.

ALGORITHM 4.4. Assume thatD is a function given which satisfies the assumptions
of Theorem 4.2 for someL ∈N. DenoteAk = {ξ ∈ TN :D(ξ)≥ k}.

1. Fix a measurable setQ ⊂ RN such thatQ ⊂ BQ, limn→∞ 1Q(B−nξ) = 1 a.e.,
τ |Q is injective, andD(ξ)≥ 1 for ξ ∈Q.

2. LetE1 =Q. Form ∈ N defineẼm+1 = (BEm\⋃m
i=1E

P
i ) ∩ AP1 and choose any

measurableEm+1 ⊂ Ẽm+1 such thatτ (Em+1) = τ (Ẽm+1) and τ |Em+1 is injective. Let
S1=⋃∞m=1Em.

3. If Si are constructed for 1≤ i ≤ n, let Pn =⋃n
i=1Si . DefineF̃1 = (BPn\Pn) ∩

APn+1 and F̃m+1 = (BFm\⋃m
i=1F

P
i ) ∩ APn+1, where againFm+1 ⊂ F̃m+1 is such that

τ (Fm+1)= τ (F̃m+1) andτ |Fm+1 is injective. LetSn+1=⋃∞m=1Fm.
4. Let S = ⋃∞n=1Sn, thenW = BS\S is a multiwavelet set (of orderL) with

dimension function equal toD.

If the functionD is bounded byn thenSi = ∅ for i > n. In particular, if we wish to
construct MRA multiwavelet sets (i.e.,D ≡ 1) the algorithm is much simpler.
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5. EXAMPLES AND REMARKS

In the first part of this section we will restrict our attention to dimension functions
of a single wavelet inR. Let us denote byD the set of all functions which are
dimension functions of some wavelet associated with dilationA= 2 in dimensionN = 1.
Theorem 4.2 provides some information aboutD, but we are not aware of a general
constructive procedure which would allow us to produce all dimension functions. As a
result, further investigation ofD relies on other techniques and in studying examples.
Below, we present several dimension functions and provide examples which illustrate the
construction of wavelet sets via Algorithm 4.4.

EXAMPLE 5.1. Wavelet Sets with Dimension Function Equal to 1. In the MRA case,
the dimension function is identically 1. We illustrate how to construct MSF wavelets with
this dimension function using Algorithm 4.4. If we chooseQ= [−1/2,1/2], thenQ= S1,
and the MSF wavelet we obtain is the Shannon wavelet,1̌[−1,−1/2)∪[1/2,1) (1̌S is denotes
the inverse Fourier transform of1S). If we chooseQ= [−a,1− a] (for 0< a < 1), then
we obtainS1=Q and the MSF waveleť1[−2a,−a)∪[1−a,2−2a).

A nontrivial example of our construction is obtained by takingQ = [−1
8,

1
4] ∪ [38, 1

2].
Then, we can chooseS1 =Q ∪ [14, 3

8] ∪ [34, 7
8] ∪ [32, 7

4]. The MSF wavelet we obtain has
supportW = [−1

4,−1
8] ∪ [12, 3

4] ∪ [78,1] ∪ [3, 7
2].

EXAMPLE 5.2. Wavelet Sets with the Journé Dimension Function. A nontrivial
example of a dimension function is given by the Journé wavelet

Dψ(ξ)=


2 for ξ ∈ [−1

7,
1
7]

1 for ξ ∈ [−1
2,−3

7] ∪ [−1
7,−2

7] ∪ [17, 2
7] ∪ [37, 1

2]
0 for ξ ∈ [−2

7,−3
7] ∪ [27, 3

7],

whereψ̂ = 1[−16/7,−2]∪[−1/2,−2/7]∪[2/7,1/2]∪[2,16/7] (see Fig. 1).

FIG. 1. Journé dimension function.
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We proceed to construct an MSF wavelet with the dimension function above via
Algorithm 4.4. We can chooseQ= [−2

7,
2
7], andS1 can be chosen to beQ∪ [−1

2,−3
7] ∪

[37, 1
2]. ThenS2 can be chosen to be[−1,−6

7] ∪ [67,1]. These choices lead to the MSF
wavelet with support

W1=
[−2,−12

7

]∪ [−4
7,−1

2

]∪ [−3
7,−2

7

]∪ [2
7,

3
7

]∪ [1
2,

4
7

]∪ [12
7 ,2

]
.

We also could have chosenS1=Q∪ [−4
7,−1

2] ∪ [12, 4
7] andS2= 2(S1\Q), which would

have yielded the usual Journé wavelet.
For the choice ofQ= [−1

7,
2
7] we can getS1 =Q ∪ [−2

7,
1
7] ∪ [37, 4

7] andS2 = [67, 8
7].

In this case, we obtain the wavelet set

W2=
[−4

7,−2
7

]∪ [2
7,

3
7

]∪ [12
7 ,

16
7

]
.

EXAMPLE 5.3. A Nonsymmetric Dimension Function. Another nontrivial example
of a dimension function which is bounded by two can be obtained by computing the
dimension function of an MSF wavelet with supportW = [−4

3,−1]∪ [−1
2,−1

3]∪ [15, 1
3]∪

[43, 3
2] ∪ [3, 16

5 ] (this wavelet set is considered by Dai and Larson in [8]). Then forψ̂ = 1W
we have

Dψ(ξ)=


2 for ξ ∈ [−1

3,−1
5] ∪ [13, 2

5]
1 for ξ ∈ [−1

2,−2
5] ∪ [−1

5,
1
5] ∪ [25, 1

2]
0 for ξ ∈ [−2

5,−1
3] ∪ [15, 1

3],
which yields a nonsymmetric dimension function.

Before proceeding to the next example, we mention a fact that simplifies checking
whether a given function satisfies the consistency equation.

FACT 5.4. LetD be a one-periodic function such thatD(ξ)+D(ξ +1/2)=D(2ξ)+1
for all ξ ∈ [−1

4,
1
4]. ThenD satisfies the consistency equation for allξ ∈ R. Moreover, if

D is symmetric, then it suffices to check the consistency equation on[0, 1
4].

Proof. It suffices to show that wheneverξ satisfiesD(ξ)+D(ξ + 1/2)=D(2ξ)+ 1
so doesξ + 1/2 andξ − 1/2. However, this is obvious sinceD(ξ + 1/2)+D((ξ + 1/2)+
1/2) = D(ξ + 1/2) + D(ξ) = D(2ξ) + 1= D(2ξ + 1) + 1= D(2(ξ + 1/2)) + 1, and
analogous reasoning works forξ − 1/2.

To see the moreover statement, ifD is symmetric and the consistency equation is
satisfied on[0, 1

4], then forξ ∈ [−1
4,0] we haveD(ξ) + D(ξ + 1/2) = D(ξ) + D(ξ −

1/2)=D(−ξ)+D(−ξ + 1/2)=D(2(−ξ))+ 1=D(2ξ)+ 1.

In the following example we present an interesting family of dimension functions which
appears also in [5].

EXAMPLE 5.5. Dimension Functions with Arbitrarily Large Supremums. Letn be
a positive integer. We show that there is a dimension functionDn with ‖Dn‖∞ = n.
Let ε = 1/(2n+2 − 2). Define T1 = [−2ε,2ε], and for i = 2, . . . , n define Ti =
[−2iε,2i−1ε] ∪ [2i−1ε,2i ε]. Finally, defineU = [−1/2+ ε,−2nε] ∪ [2nε,1/2− ε] and



86 BOWNIK, RZESZOTNIK, AND SPEEGLE

FIG. 2. The functionD4.

V = [−1/2,−1/2+ ε] ∪ [1/2− ε,1/2]. Then, we define (see Fig. 2)

Dn(ξ)=

n− i + 1 for ξ ∈ Ti , 1≤ i ≤ n
0 for ξ ∈ U
1 for ξ ∈ V ,

and extend 1-periodically.
Note that whenn = 1 we obtain the MRA dimension function, and whenn = 2 we

obtain the Journé dimension function. We turn to showing thatDn satisfies the consistency
equation. Forξ ∈ [0, ε], we have thatDn(ξ)+Dn(ξ + 1/2)= n+ 1, whileDn(2ξ)= n,
so the consistency equation is satisfied for thoseξ . For ξ ∈ [ε, (2n − 1)ε] ∩ Ti , we have
that−1/2+ ε ≤ ξ − 1/2≤ −1/2+ (2n − 1)ε = −2nε and that 2ξ ∈ Ti+1. Therefore,
Dn(ξ) + Dn(ξ + 1/2) = Dn(ξ) = n − i + 1 = Dn(2ξ) + 1. It remains to check that
the consistency equation is satisfied forξ ∈ [(2n − 1)ε,1/4]. In this case, 2ξ ∈ V and
ξ − 1/2∈ Tn. Therefore,Dn(ξ)+Dn(ξ + 1/2)= 2=Dn(2ξ)+ 1, as desired.

We now show that the functionDn satisfies the condition (D4) of Theorem 4.2. Since
A1 ⊂ 1 we only need to check forξ ∈ A2, i.e., ξ ∈ Ti , i ≤ n − 1. (Here, as before,
Aj = {ξ ∈ TN :Dn(ξ) ≥ j }.) For suchξ , we have thatξ + 2j−1 ∈ 1 for all j ≥ n − 1.
Indeed,ξ+2j−1 ∈ [2j−1,2j−1+2n−1ε] ⊂1. Hence,

∑
k∈Z 11(ξ+k)=∞ for all ξ ∈A2,

as desired.
We note here that forn = 3, an MSF wavelet, the construction in Theorem 4.2 yields

Q= [− 4
15,

4
15], S1 =Q∪ [−1

2,− 7
15] ∪ [ 7

15,
1
2], S2= [−29

15,−28
15] ∪ [−1,−14

15] ∪ [14
15,1] ∪

[28
15,

29
15], S3= [−2,−29

15] ∪ [29
15,2], and the MSF wavelet has support

W3=
[−4,−56

15

]∪ [− 8
15,−1

2

]∪ [− 7
15,− 4

15

]∪ [ 4
15,

7
15

]∪ [1
2,

8
15

]∪ [56
15,4

]
.



DIMENSION FUNCTIONS OF WAVELETS 87

One might think that lettingn go to∞ in the above example would yield an unbounded
dimension function. However, this is not the case. Indeed, the limit function would be
D∞(ξ)= i for all ξ ∈ [−1/2i+1,−1/2i+2] ∪ [1/2i+2,1/2i+1]. In this limit, the zero set of
D∞ contains[−1

2,−1
4] ∪ [14, 1

2], so1= [−1
4,

1
4], and Condition (D4) of Theorem 4.2 is

not satisfied. The functionD∞ also is an example of a function which satisfies Conditions
(D1)–(D3) of Theorem 4.2, but not Condition (D4). In particular, Condition (D4) is
independent of the other conditions, at least for unbounded dimension functions.

The following example shows that, in spite of the setback above, unbounded dimension
functions do exist.

EXAMPLE 5.6. An MSF Wavelet with Unbounded Dimension Function. Recall that
for a functionf ∈ L2(R) we definedDf (ξ) =∑∞j=1

∑
k∈Z |f̂ (2j (ξ + k))|2. If f is a

wavelet, then this is just the usual dimension function. It is clear that wheneverf̂ ≤ ĝ, then
Df (ξ)≤Dg(ξ) almost everywhere.

We will proceed by constructing a setS such thatD1̌S
is unbounded and then by showing

that S is a subset of some wavelet setW . Since we will have1S ≤ 1W this will be
enough to conclude thatD1̌W

is unbounded. SetSk = [2k−1 + 1/2k+2,2k−1 + 1/2k+1)

andS =⋃∞k=1Sk . We show thatD1̌S
is unbounded.

CLAIM . D1̌S
(ξ)≥m/2− 1 for evenm ∈N andξ ∈ [1/2m+2,1/2m+1).

Proof of Claim. If 1/2m+2≤ ξ < 1/2m+1, then for alll ∈N,

1

2m+2 + 2l−1≤ ξ + 2l−1<
1

2m+1 + 2l−1,

from which it follows that

1

2(m+l)/2+2
+ 2(m+l)/2−1≤ 2(m−l)/2(ξ + 2l−1) <

1

2(m+l)/2+1
+ 2(m+l)/2−1.

That is, 2(m−l)/2(ξ + 2l−1) ∈ S(m+l)/2 whenever(m+ l)/2∈N, i.e., wheneverl is even.
We conclude that for evenm≥ 4 andξ ∈ [1/2m+2,1/2m+1),

D1̌S
(ξ)=

∞∑
j=1

∑
k∈Z
|1S(2j (ξ + k))| ≥

m/2−1∑
j=1

|1S(2(m−2j)/2(ξ + 22j−1))| =m/2− 1.

From the claim, it immediately follows thatD1̌S
is unbounded. We now turn to showing

that there is a wavelet setW ⊃ S. The dilation projection d is defined onR\{0} by
d(ξ)= ξ ′, whereξ ′ ∈ [−1

2,
1
4) ∪ [14, 1

2) andξ ′/ξ = 2k for somek ∈ Z. It is easy to check
that the translation projectionτ and the dilation projectiond satisfy the properties thatτ |S
andd|S are injections,τ (S)⊂ [0, 1

4], andd(S)⊂ [14, 1
2).

SetT = [14, 1
2)\d(S) and note thatτ |S∪T andd|S∪T are injections and thatd(S ∪ T )=

[14, 1
2), while τ (S ∪ T ) = [0, 1

2). We will use the following theorem, due to Ionascu and
Pearcy, withS ∪ T =U .

THEOREM [14]. A measurable setU ⊂ R is a subset of a wavelet set if and only if the
following two conditions hold:
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(i) There is a setA⊃U such thatτ |A andd|A are injective andd(A)= [−1
2,−1

4)∪
[14, 1

2).
(ii) There is a setB ⊃ U such thatτ |B andd|B are injective andτ (B) = [−1

2,
1
2).

Moreover, in this case, there is a wavelet setW satisfyingU ⊂W ⊂A∪B.

Indeed, it is clear thatA = [−1
2,−1

4) ∪ U satisfies Condition (i). Also, if we set
V = [−1

2,
1
2)\τ (U), we will show thatB = V − 3 satisfies Condition (ii). First, note

that V − 3 ⊂ [−7
2,−5

2), so d(V − 3) ⊂ [−1
2,−1

4) and d|V is injective. Therefore,
d|(V−3)∪U is also injective. Finally, note thatτ (V − 3)= V , soτ |(V−3)∪U is injective and
τ ((V −3)∪U)= [−1

2,
1
2). Therefore, by Ionascu and Pearcy’s result mentioned above,U

(and henceS) is contained in a wavelet set, as desired.
The last fact concerning single wavelets inR which we are going to present implies

that there are “many” dimension functions, enough to connect all of the examples we have
included so far.

FACT 5.7. The setD is arcwise connected in theL1(T) topology.

Proof. Let D,D′ ∈ D. By Corollary 4.3 we can find MSF waveletsψ,ψ ′ with
corresponding wavelet setsW,W ′ such thatDψ = D andDψ ′ = D′. It is easy to justify
that‖D −D′‖L1(T) ≤ ‖1W − 1W ′‖2L2(R). In fact,

‖D −D′‖L1(T) =
∫ 1/2

−1/2

∣∣∣∣∣
∞∑
j=1

∑
k∈Z

(
1W(2j (ξ + k))− 1W ′(2

j (ξ + k)))∣∣∣∣∣dξ
≤
∫ 1/2

−1/2

∞∑
j=1

∑
k∈Z

∣∣1W(2j (ξ + k))− 1W ′(2
j (ξ + k))∣∣dξ

= ‖1W − 1W ′ ‖2L2(R).

The arcwise connectivity ofD follows from [20], where it was shown that the set of all
characteristic functions of wavelet sets is arcwise connected in theL2(R) norm.

We can also consider
√
D= {√D :D ∈D} with theL2(T) norm. The advantage of this

comes from the fact that forf,g ∈ L2(R) we have‖√Df −√Dg‖L2(T) ≤ ‖f − g‖L2(R),
whereDf andDg are defined as in formula (2.8). In particular, ifψn→ ψ in L2(R), where
ψn andψ are orthonormal wavelets, then

√
Dψn →

√
Dψ in L2(T). The connectivity of√

D in theL2(T) norm follows again from [20, Corollary 4.3].
In the final part of our paper we consider the multidimensional case. Of course, a detailed

study of dimension functions requires fixing a dilation and an order number; this, however,
goes beyond the scope of our paper. We offer instead some examples and facts which hold
for any dilation.

The following example is devoted to the construction of an analytic MRA multiwavelet
for any dilationA. In [17] Madych defined a set�, which can be thought of as a scaling
set, and showed how to use it to obtain an analytic scaling function. However, the problem
of constructing such a set was not considered in his paper. We present here a detailed
treatment of this problem using Algorithm 4.4.

EXAMPLE 5.8. An Analytic Multiwavelet. Consider the functionD ≡ 1, which clearly
satisfies (D1)–(D4) of Theorem 4.2 withL= q −1, whereq = |detA|,A is some dilation,
andB =AT. Algorithm 4.4 yields then a generalized scaling setS of orderq−1 satisfying
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∑
k∈ZN 1S(ξ + k)= 1 for a.e.ξ ∈ RN ; therefore, by Corollary 3.4,S is a scaling set. To

start Algorithm 4.4 we must choose a setQ. Note thatQ = TN will not work for every
dilation, since in general we do not have the inclusionTN ⊂ BTN . Nevertheless, choose
asQ the set

⋂∞
j=0B

jTN which is bounded and contains some neighborhood of the origin.
We claim that such a choice ofQ yields a bounded scaling setS.

Indeed, the setsEm from Algorithm 4.4 satisfyE1=Q and, form ∈N,

EPm+1= (BEm)P
∖ m⋃

i=1

EPi . (5.1)

Hence

EPm+1⊂ (BEm)P ⊂EP1 ∪ · · · ∪EPm+1. (5.2)

We claim that for anym ∈N,

(BmE1)
P ⊂EP1 ∪ · · · ∪EPm+1. (5.3)

Indeed, (5.3) is true form= 1 by (5.2). Assume, by induction, that (5.3) holds for somem,
then

(Bm+1E1)
P = (B(BmE1))

P ⊂ (B(EP1 ∪ · · · ∪EPm+1))
P = (B(E1 ∪ · · · ∪Em+1))

P

= (BE1)
P ∪ · · · ∪ (BEm+1)

P ⊂EP1 ∪ · · · ∪EPm+2,

therefore (5.3) is true form+ 1, and hence for allm ∈ N. The setE1=Q contains some
neighborhood of the origin, therefore(BME1)

P = RN for sufficiently largeM ∈ N. Thus
by (5.3)EP1 ∪ · · · ∪EPM+1 = RN , and by (5.1)En = ∅ for n ≥M + 2. Since eachEm is
bounded so isS =⋃M+1

m=1 Em.
By the remark following Theorem 3.3 we conclude that the bounded setW = BS\S

is a multiwavelet set of orderq − 1. Definition 2.5 allows us to partitionW into sets
W1, . . . ,Wq−1 so that9 = {ψ1, . . . ,ψq−1} is an MSF multiwavelet, wherêψl = 1Wl . The
functionsψl areC∞ (even analytic) in the space domain and are associated with an MRA
with a smooth scaling functionϕ, whereϕ̂ = 1S . Naturally,ϕ andψl do not have good
decay properties.

In the above example we can consider a special case of a dilation matrixA such that
|detA| = 2. This leads to a multiwavelet of order 1; that is, we obtain a single wavelet. The
fact that the condition|detA| = 2 is sufficient for obtaining MRA wavelets was already
noted by Gu and Han in [12]. It is not clear whether the techniques in [12] can be used to
obtain analytic wavelets.

The following example shows the existence of nontrivial dimension functions onRN .

EXAMPLE 5.9. The “Stairway to Heaven” Dimension Function. SupposeA is a
dilation,B = AT, andq = |detA| = |detB|. Consider a scaling setS associated with the
dilationA; that is, a set satisfying the conditions of Theorem 3.3 withL= q − 1 and∑

k∈ZN
1S(ξ + k)= 1 a.e.ξ ∈RN . (5.4)
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Example 5.8 guarantees the existence of such a setS. Fix J ∈N and define the functionD
by

D(ξ)= 1+ jJ if ξ ∈ (B−j S\B−j−1S)P for somej ≥ 0. (5.5)

D is defined for a.e.ξ ∈ RN because the sets{B−j S\B−j−1S}j≥0 form a partition ofS,
and{S+ k}k∈ZN partitionsRN modulo sets of measure zero. We will show thatD satisfies
Conditions (D1)–(D4) of Theorem 4.2 withL= J + (q − 1).

The first condition is fulfilled because∫
TN
D(ξ) dξ =

∫
S

D(ξ) dξ =
∞∑
j=0

∫
B−j S\B−j−1S

D(ξ) dξ

=
∞∑
j=0

(1+ jJ )(q−j − q−j−1)= 1+
∞∑
j=1

q−jJ = 1+ J/(q − 1).

SinceD(ξ) ≥ 1 a.e., Conditions (D2) and (D4) are automatically satisfied. To check the
consistency equation we shall show that{(B−1S)P + B−1d}d∈D partitionsRN , whereD
denotes the set ofq representatives of different cosets ofZN/BZN . In fact, by (5.4) we
have ∑

d∈D
1(B−1S)P (ξ +B−1d)=

∑
d∈D

∑
k∈ZN

1B−1S(ξ +B−1d + k)

=
∑
k∈ZN

1B−1S(ξ +B−1k)=
∑
k∈ZN

1S(Bξ + k)= 1.

SinceRN =⋃∞j=0(B
−j S\B−j−1S)P it is enough to prove that (D3) holds on(B−j S\

B−j−1S)P for everyj ≥ 0. First, let us considerξ ∈ (B−j S\B−j−1S)P , wherej ≥ 1. It
is easy to see that then we must haveBξ ∈ (B−j+1S\B−j S)P . Moreover, sinceS ⊂ BS,
we haveξ ∈ (B−1S)P which together with the fact that{(B−1S)P +B−1d}d∈D partitions
RN andSP = RN , allows us to conclude thatξ + B−1d ∈ (S\B−1S)P for d ∈ D\{0}.
Therefore, by (5.5),∑
d∈D

D(ξ +B−1d)= 1+ jJ + (q − 1)= 1+ (j − 1)J + J + (q − 1)=D(Bξ)+L.

If j = 0 andξ ∈ S\B−1S, we can choosed ∈ D such thatξ + B−1d ∈ (B−1S)P , since
{(B−1S)P +B−1d}d∈D partitionsRN . Replacingξ by ξ +B−1d does not affect values of
the expressions in (D3), so we can assume thatξ ∈ (B−1S)P , which corresponds exactly
to the casej ≥ 1. Thus the consistency equation is satisfied a.e., andD is a dimension
function of a multiwavelet of orderL= J + (q − 1).

The dimension function we constructed above is clearly unbounded (note, however, that
for q = 2 the orderL must be at least 2, therefore we cannot use this construction to
produce anything similar to Example 5.6). The following fact shows that band limited
wavelets have a bounded dimension function.

FACT 5.10. Suppose9 = {ψl, . . . ,ψL} is a multiwavelet andsuppψl is bounded for
eachl = 1, . . . ,L. Then there is ann ∈N such thatD9 ≤ n.
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Proof. Let s(ξ)=∑L
l=1

∑∞
j=1 |ψ̂l (Bj ξ)|2. By the support condition on̂ψl we see that

supps is bounded. Therefore (2.1) implies thats ≤ 1supps , and we obtain

D9(ξ)=
∑
k∈ZN

s(ξ + k)≤
∑
k∈ZN

1supps (ξ + k)=
∑
k∈ZN

1k+supps(ξ)≤ n,

wheren denotes the number of distinctk’s such thatTN ∩ (k + supps) 6= ∅.
As we saw, every dimension function presented in Example 5.5 attains all integer values

between zero and its supremum. The following fact shows that the skips in the range of a
dimension function of a multiwavelet of orderL are at most of the sizeL. In particular, if
a dimension function of a single wavelet not associated with an MRA attains the valueM,
then it attains all values from zero toM.

THEOREM 5.11. Let9 be an orthonormal multiwavelet (of orderL) with dimension
functionD9 , and letM be an integerM >L/(q − 1). If there is a setC ⊂ RN such that
its Lebesgue measure|C|> 0 andD9(ξ) ≥M for all ξ ∈ C, then there is a setR ⊂ RN
such that|R|> 0 andM >D9(ξ)≥M −L for all ξ ∈R.

Proof. By the consistency equation (see Theorem 4.2(D3))

D9(Bξ)=
∑
d∈D

D9(ξ +B−1d)−L,

it follows that D9(Bξ) ≥ D9(ξ) − L a.e. Suppose that|{ξ ∈ RN :M > D9(ξ) ≥
M − L}| = 0. Then, the inequality implies that for almost everyξ ∈ BC, D9(ξ) ≥M.
Repeating this argument, we obtainD9(ξ) ≥M for all ξ ∈ BjC and all j ≥ 1. So, by
the ZN -periodicity of D9 , we have that for everyj ≥ 1 and ξ ∈ τ (BjC), D9(ξ) ≥
M; that is,D9(ξ) ≥ M for ξ ∈ ⋃∞j=1 τ (B

jC). From the claim below, it follows that
|⋃∞j=1 τ (B

jC)| = 1, hence

∫
TN
D9(ξ) dξ ≥M

∣∣∣∣∣
∞⋃
j=1

τ (BjC)

∣∣∣∣∣=M >L/(q − 1),

which contradicts the fact that
∫
TN D9(ξ) dξ = L/(q − 1) (see Theorem 4.2(D1)).

CLAIM . If C ⊂RN is a set of positive Lebesgue measure, then|⋃∞j=1 τ (B
jC)| = 1.

Proof. Since the matrixB: RN → RN preserves the latticeZN , it induces a measure
preserving endomorphism̃B: TN → TN . Moreover, B̃ is ergodic by [21, Corollary
1.10.1] becauseB is expansive. SinceZ =⋃∞j=1 τ (B

jC)=⋃∞j=1 B̃
j τ (C), it follows that

B̃Z ⊂ Z. We haveZ ⊂ B̃−1B̃Z ⊂ B̃−1Z, and sinceB̃ is measure preservingZ = B̃−1Z

(modulo sets of measure zero). By the ergodicity ofB̃ we have that either|Z| = 0 or
|Z| = 1. SinceC is of positive measure we must have that|τ (Z)|> 0, hence|Z| = 1.
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