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This paper is devoted to the study of the dimension functions of (multi)wavelets,
which was introduced and investigated by P. Auscher in 19955€om. Anal.
5, 181-236). Our main result provides a characterization of functions which are
dimension functions of a (multi)wavelet. As a corollary, we obtain that for every
function D that is the dimension function of a (multi)wavelet, there is a minimally
supported frequency (multi)wavelet whose dimension functidn.ik addition, we
show that if a dimension function of a wavelet not associated with a multiresolution
analysis (MRA) attains the valug, then it attains all integer values from 0 &.
Moreover, we prove that every expansive matrix which preseAf&sadmits an
MRA structure with an analytic (multi)wavelet. o 2001 Academic Press
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1. INTRODUCTION
Thedimension functionf an orthonormal wavelet € L2(R) is defined as

DyE) =) W@ E+ 0P

Jj=1keZ
71
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The importance of the dimension function was discovered by Lemarié, who used it to
prove that certain wavelets are associated with a multiresolution analysis (MRA); see [15,
16]. After that Gripenberg [11] and Wang [22] independently characterized all wavelets
associated with an MRA. The well-known characterization establishes that a wavelet is an
MRA wavelet if and only if Dy (§) = 1 for almost every§ € R. However, Auscher [1]
proved something more. His deep theorem shows that the dimension function of a wavelet
describes dimensions of certain subspaceg?df); in particular, it is integer valued.
Recently, Baggett, Medina, and Merrill [2, 3] observed that the dimension function has
one more property, i.e., it satisfies the followiognsistency equation

Dy(E)+Dy(E+1/2)=Dy(26)+1  ae. (1.1)

We shall prove that a third condition is always satisfied, namely,

DY IE+k=DyE)  ae, (1.2)

keZ

where A = (£ € R:D¢(2‘f§) > 1 for j e NU {0}} and 15 denotes the characteristic
function of A. It turns out that the three properties together with three obvious ones
— that Dy, is 1-periodic, liminf,_ o Dy (27"§) > 1, andf_lﬁ2 Dy (§)dé =1 — fully
characterize dimension functions. Baggett and Merrill [4] used the condition (1.2) found
in the preliminary version of this paper, which only dealt with the one-dimensional case,
to prove a similar characterization for the multiplicity function.

In Section 5 we give a brief study of the collection of all dimension functions. Included
are examples of a construction of MSF (minimally supported frequency) wavelets using
the MRA dimension function and the Journé dimension function. In Example 5.8 we use
an idea due to Madych [17] to prove that for any expansive matrixhich preserves
ZN there exists an analytic (multi)wavelet associated with an MRA. In Theorem 5.11 we
prove that there are no skips in the range of a non-MRA dimension function; that is, if a
dimension function not associated with an MRA attains the valuéhen it attains all of
the integer values from zero 1.

2. PRELIMINARIES

Since our main result holds in greater generality than described in the Introduction, let us
review the necessary terminology. For this papelijaion matrix A will be an expansive
matrix which preserveg”, i.e., all eigenvalues of A satisfy|r| > 1 andAZN c ZV.

The transpose ofi is denoted byB = AT. A finite setw = {y1, ..., vt} c L2R"N) is
called anorthonormal multiwaveleif the system{gb}k jEeZ, keZN, 1=1,...,L}is
an orthonormal basis fat2(R"), where fory: € L2(R") we use the convention

Vi =|detAl//2y(Alx —k)  forall jeZ, keZVN.
If a multiwaveletW consists of a single elememt then we say thaiy is a wavelet

The following result establishes a characterization of orthonormal multiwavelets (see [6,
7,10, 11)).
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THEOREM 2.1. A subsetw = {y1,..., ¥~} is an orthonormal multivavelet if and
only if

L
Y Y IWBEP=1 aegeRY, (2.1)

=1 jeZ

L oo
@& =YY P BEYIBIE+s)=0 aeseRY sezZM\BZY, (22)

=1 =0
and|y!||=1fori=1,...,L,whereB = AT.

In the theorem above and throughout the paper the Fourier transform is defined as
f& = / fl)e 28 g
RN

DenoteTV = RV /Z", which we identify with the set—1/2,1/2]". The Z" -peri-
odization of a seE C R" is defined byE? = | J, .~ (E + k). Thetranslation projection
7 is defined orRYN by (&) = &', whereg’ € TV and&’ — & = k for somek € ZV . In our
convention the set of natural numbéfsioes not contain zero. The Lebesgue measure of
asetkE e RY is denoted byE|.

An easy to justify property of the mappingis the following.

LEMMA 2.2. LetE be a measurable subset &Y. Then there exists a measurable set
E C E such thatr (E) = t(E) andt|g is injective.

DEFINITION 2.3. AnMSF (minimally supported frequency) multiwavelatorderL)
is an orthonormal multivavelet = {y1, ..., v’} such thauz}’| = 1y, for some measur-
able setsv; c RV, 1 =1, ..., L. An MSF multiwavelet of order 1 is simply referred to as
anMSF wavelet

The following theorem characterizes all MSF multiwavelets (see [9] for a similar
characterization of MSF wavelets). Note that Theorems 2.4 and 2.6 hold without the
assumption that the dilatioA preserves the latticg" .

THEOREM 2.4. A setW = {y1,..., ¥} € L2(RY) such that|J/| = 1y, for [ =
1, ..., L is an orthonormal multiwavelet associated with the dilatibif and only if

Y lwE+blw, E+h =8, aefeRNLI'=1.. L, (2.3)
keZN
L
ZZ 1w, (B'e)=1 aeteRV, (2.4)
jezZ =1

whereB = AT.

Proof. Supposey € LZRY) with |/| = 1y, for some measurable s&v. The
set {Yox:k € ZN} is an orthonormal family if and only ify, . v [V (& + k)% =
Y kezny lw(€ +k)=1fora.e&. Inthis case

spaniyox:k € ZV} = {f e L*R") :suppf c W},
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where supp := {§ € RV : f(¢) # 0}. Therefore{y),:k € Z¥.1=1,...,L} is an
orthonormal family if and only if

Y iy +k=1 fori=1....L,aeseRY,
keZN

and theW,’s are pairwise disjoint (modulo sets of measure zero), i.e., (2.3). In this case

L
Wo :=Sparyy -k € ZV, 1=1,...,L}={feLZ(RN):suppchW,},
=1

and by scaling for any € Z,

L
W =spay!, kezV, 1=1,... L} = {feLZ(RN):Suppr BJ'(UW,)}.

=1

Therefore, ¥ is a multiwavelet if and only if (2.3) is true ar‘@jGZ Wj = L3@RN) if
and only if (2.3) is true an({:IB/'(UlL:l W;): j € Z} partitionsRY (modulo sets of measure
zero), i.e., (2.4) holdsH

DEFINITION 2.5. A setWw c RY is amultiwavelet sefof orderL) if W = U,L:l W,
for someWs, ..., W, satisfying (2.3) and (2.4). A multiwavelet set of order 1 is called a
wavelet set

The following theorem characterizes all multiwavelet sets.

THEOREM 2.6. A measurable se¥ c RY is a multiwavelet set of ordet if and only
if

Z ly(E+kh=L aeteRY, (2.5)
keZN

Y 1wBie)=1 aegeRV (2.6)
JjeZ

Proof. SupposeW is a multiwavelet set of ordek. Sincely = Zle lw,, Theo-
rem 2.4 implies (2.5) and (2.6). Conversely, supp&gesatisfies (2.5) and (2.6). We
proceed to definéW,}lL:l inductively. LetW; be a subset o such thatr (W) = TV
(modulo sets of measure zero) amfly, is injective; the existence oWy is guaran-
teed by Lemma 2.2. Suppose that for someg & < L we have defined disjoint sets
W1, ..., W, C W such thatr (W;) = TV andz|yw, is injective fori =1, ..., n. Therefore
Y wezny 1r(E+k) =L —n a.ek, whereR = W\ [ J!_; W;, and by Lemma 2.2 we can find
Wyi1 C R, such that (W,;1) =TV andr|w,, isinjective. Therefore, we have a disjoint
partition of W = | J/_; W; such that

Z lw(E+k=1 aegfori=1,..., L. (2.7)
keZN

Thus, (2.3) holds. Equation (2.4) is an immediate consequence of (2.6) and the pairwise
disjointness of théV;’s. B
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For a finite subset subsét = {f1,..., f£} c L3(R") and a dilationA, define the
ZN -periodic functionD by

L oo
Dr@& =) > Y If'(BIE+R)P (2.8)

1=1 j=1kezN

whereB = AT. The following fact implies thaDr is finite for a.e£ e RV.

PROPOSITION 2.7. If F c L2(RY) is finite, then

L
1
1Dl aeryy = == D 1/ 13 2
9-13
whereg = |detB|.
Proof. We have

L oo L oo
[ ored=>"% % [ 1/ @iermia=3% [ 17wk

I=1 j=lkezN =1 j=1
L R 00 ' 1 L R 1 L

=Y WY idetB) ™ = =3 T fME=—— > IS m
=1 j=1 1=+ 9=+

DEFINITION 2.8. The dimension functionof a multiwaveletw = {y1,..., yL}
associated with a dilatioA is the functionDy given by (2.8); that is,

L oo
Dy =) > > WBE+K

I=1 j=1kezN
whereB = AT.

A priori, it is not obvious from the definition tha®y has integer values. It is also not
immediate whyDy, is referred to as a dimension function.

THEOREM 2.9. SupposeV¥ = {y1,... ¥} is a multiwavelet. TherDy (£) is a
nonnegative integer for a.e.c RV.

This result was proved by Auscher [1] for waveletslif(R). It is not a surprise that it
holds in a much more general setting. In the following argument it also becomes clear why
Dy is called a dimension function.

Proof. Forl=1,...,L,j>1,anda.e e TV we define a vector

Wy (&) = (b (B (€ +K)))eny

which belongs tol?(Z"). The key observation is that the vectobg ,(§) satisfy the
reproducing formula (see [7, Lemma 4.2] or [13, Chap. 7, Eq. (3.5)] for the case of wavelets
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in L2(R))

L
Wi p(E) =D (W p(E), Wi j(E))pn) W1, (6)  aefeTV,

=1 j>1

fork=1,...,L, p>1. Aswe pointed out before, Proposition 2.7 implies that(&) is fi-
nite a.e. Moreover, a simple calculation shows that(¢) = Zle ijl 19, (&) ||122(ZN),
which allows us to apply Auscher’s geometrical lemma [13, Chap. 7, Lemma 3.7] to get

L
Dy(§) =) > W ;®I? =dimspaiw, ;(§):j>1,1=1,...,L}

I=1j>1

foraet&ecTV. B

In [23] Weber proved that the multiplicity function introduced in [3] is equal to the
dimension function in the case of single waveletsRorit is reasonable to suspect that this
result can be extended to the case of the dimension function of multiwavel&% .on

Before we present our main result, let us develop a notion of a generalized scaling set
which we use to characterize dimension functions.

3. GENERALIZED SCALING SETS

One of the main features in the theory of (multi)wavelets is the idea of multiresolution
analysis introduced by Mallat [18]. We say that a multivavalet L2(RY) is anMRA
multiwaveletif there exists a functiop € L2(R") such that its integer translations form
an orthonormal basis of the spatg:= B ;_o W;, whereW; := s,p—ar{wj.k keZN, 1=
1,...,L}. The functiong is called ascaling functionlt is easy to check that i is an
MSF multiwavelet which comes from a multiresolution analysis, then its scaling function
¢ satisfiegp| = 15 for some measurable s&tc R". Conversely, ifp is a scaling function
of some MRA, such tha®| = 1g, then there is an MSF multiwavelet associated with this
MRA. Such a sef is called ascaling set

In [7] Calogero extended Gripenberg’s result by showing that a multivadelames
from an MRA if and only if Dy (§) = 1 a.e. This implies that the multiwavelets with
nontrivial dimension function cannot be constructed by means of multiresolution analysis.
One importance of a multiresolution structure is based on the fact that a MRA multiwavelet
can be easily recovered from its scaling function. It turns out that a similar property is true
for all MSF multiwavelets. In fact, in this caséy = { f € L2(R"):suppf c W}, where
W is a multivavelet set, antly = {f € L2(RN) : suppf C USZ, B~/ W}. Therefore the
role of a scaling function can be played by Vo, whereS = U‘]?‘;l B~/ W, because then
the setW can be easily obtained frof) that is,W = BS\S. These ideas can be formulated
precisely as follows.

DEFINITION 3.1. For fixedL € N, a setS ¢ R is called ageneralized scaling s¢bf
order L) associated with a dilatiod if |S| = L/(g — 1) and BS\S is a multiwavelet set
(of orderL) associated with the dilation, whereB = AT andg = |detA].

An equivalent definition can be stated as follows.
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PROPOSITION 3.2. A setS ¢ RY is a generalized scaling set (of ord&) if and only
if $= U?ozl B~/ W for some multiwavelet s (of orderL).

Proof. Letus assume that= U‘;Ozl B~/ W for some multiwavelet se¥ . From (2.6)
it follows that the union is disjoint; therefor&S\S = W. Moreover, (2.5) implies that
|W|=L; hence|S|=L/(g —1).

To prove the other implication, denoBsS\ S by W and observe that sing®'| = L we
must haves C BS. From this it easily follows thatJ7Z, B~/W C S, but since both these
sets have the same measure they must be elual.

In [19] a simple characterization of scaling set&iis given. Theorem 2.1 of [3] can be
viewed as a similar characterization of generalized scaling sets of ord&™. ifihe proof
presented there uses methods of abstract harmonic analysis (in particular, the multiplicity
function of projection valued measures). Let us present an elementary proof of this theorem
extended to the case of generalized scaling sets of drder

THEOREM 3.3. A measurable sef ¢ RV is ageneralized scaling séof order L) if
and only if

(i) ISI=L/(g—-D),

(i) Sc BS,

(iii) lim o0 15(B™"&) = 1fora.e.£ e RV,

(iv) > gep D(E + B~ld) = D(B&) + L a.e., whereD(§) = > rezn Ls(E + k) and
D is the set of; representatives of distinct cosetsZsf / BZN .

Proof. Let us prove that conditions (i)—(iv) are necessary. The first one is guaranteed
by definition; the second one follows easily from Proposition 3.2. Moreover, since
S = U?ole‘fW for some multiwavelet se and the union is disjoint, we can write
1s(B7"&) = Z?‘;_HH 1w (B/&) and use (2.6) to obtain that the limit as— oo is 1,
which establishes (iii). A simple calculation shows that

Y DE+BID) =) Y > lw(B/E+Bd +h)

deD deDkezN j=1

o0
=D > Lw(B/(BE+k)=D(BE) + Y lw(Bs +k)., (3.1)
kezN j=0 kezN
therefore (iv) follows from (2.5).

To prove sufficiency defin® asBS\S. It is easy to see tha¥ andB/ W are disjoint
for every j e N. In fact, B/ W = B/*1§\B/S and, by (ii), W c B/S, which together
imply W N B/W = ¢. In this way we obtain thaB/ W N B¥W = ¢ for j, k € Z, j #k.
This allows us to check that=J7Z, B~/ W. Indeed, by (i) we have J7Z B~/W CS,
but both these sets have the same measure; therefore, they are equal. This shows that
15(&) = Z?‘;l 1w (B’ &), so (iii) implies thatW satisfies (2.6). Using (iv) together with
(3.1), we obtain that (2.5) is fulfilled as well; therefoig,is a multiwvavelet setll

Remark. Suppose that a measurable Sedatisfies conditions (i)—(iv) of Theorem 3.3.
Then, as we have showW, = BS\S is a multiwavelet set ansl decomposes into a disjoint
sumsS = U‘J’ilB‘/W. By Definition 2.5 we can find disjoint set&;, / =1, ..., L, such
thatw = UIL:1 Wy andW¥ = {1y,, ..., 1w, } is an MSF multiwavelet. Hence we conclude
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that

L oo
Dy =) > 1wBiE+k)= ) 1s¢+k foraeteR¥. (3.2)

I=1 j=1kezZN kezZN

As we have mentioned before, a multiwaveletan be associated with an MRA if and
only if Dy (¢) =1 a.e. Therefore, it follows that i is an MSF multiwavelet, then it
comes from an MRA if and only i, .~ 15(§€ + k) =1 a.e. In this way we obtain the
following.

COROLLARY 3.4. A measurable sef ¢ RY is a scaling set if and only if it is a
generalized scaling set of ordgr—1and) ", _,~ 15(¢§ + k) =1a.e.

4. MAIN RESULT

Our key contribution to the study of the dimension function of a multiwavdlet
associated with a dilatioA was noticing that its support must be big enough in the sense
of condition (1.2) (that is,

> 1A +k) = Dy€) foraeseRV,
keZN

whereA = {€ e RV : Dy (B~/&) > 1 for j e NU{0}}, B = AT) and proving that, together
with already known conditions, this condition characterizes dimension functions. Before
we proceed further let us prove a technical lemma which converts this condition into a
statement which is more convenient for the proof of our main result.

LEMMA 4.1. LetB be adilation andD: RY — NU {0} be a measurabl&" -periodic
function which satisfies

Y LE+kh=DE  foraekeRY, (4.1)
keZN

whereA = {£ e RN :D(B7/¢) > 1for j e NU{0}}. LetA; = {£ € TV : D(£) > j} for
j €N, and let{S;}?_,, wheren € N is fixed, be a collection of measurable sets such that
7(S;) = A; andt|g, is injective fori =1,...,n. Then

(a) there exists a measurable €gtsuch thatr (G) = A;andD(B—/&) > 1foré e G
and;j >0,

(b) there exists a measurable sgt disjoint from(J;_; S; such thatr (H) = A,41
andD(B~/¢)>1for& e H andj > 0,

Proof. (a) Recall thatA = {¢ e RN :D(B~/£) > 1 forall j > 0}. Define G = A.
All we have to prove is that (G) = A1. Since the inclusiort (G) C Aj is obvious,
it is enough to check that the opposite inclusion holds. By condition (4.1) we have
Y wezn L6 (E +k) = D(§) = 14,(§), which implies thatd; C GFP,i.e.,A1 Ct(G).
(b) DefineH = (A\ U7, Sl-)ﬂA,fH. SinceH NJ;_; Si =¥ andt(H) C Ap41, we can
see that all we have to do is prove thigt, 1 ¢ H. By condition (4.1) and our assumption

about{s;}?_;, we have
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n+1
DIE+=DE = Y Y 1aE+k)
kezZN kezZN i=1
=D D L5E++ Y La,E+E)
kezZN i=1 kezZN
> Y Ly, s EHER) + 14,40,
kezZN

In this way we obtain

DIy, sEFHRD= D IaE+ - Y L s Gk = 14,06,

keZN keZN keZN

which implies thatd,,+1 € (A\ U/, S)7,i.e, Aprac HY . B

As beforeA denotes some fixed dilatio®, = AT, andg = |detA| = |detB| is the order
of the quotient groufZ" /BZ" . Let D = {dx, ..., d,}, whered; = 0, be representatives
of different cosets of." /BZ" . The following theorem gives a full characterization of the
dimension functions of a multiwavelet.

THEOREM 4.2. Let D: RY — N U {0} be a measurabl&" -periodic function. Then,
D is the dimension function of some multiwavelet= {1, ..., v} associated with a
dilation A if and only if the following conditions are satisfied

(D1) fow DE)dE=L/(g - 1),

(D2) liminf,_.oc D(B™"&) > 1,

(D3) Y yep D(E +B~td)=D(BE) + L ae,

(D4) Y ezv 1aE + k) = D(§) a.e., whereA = {§ e RV :D(B™/&) = 1for j e
NU{0}}andB =AT.

Proof. Let us begin by proving that the conditions (D1)—(D4) are necessary. To do so
we assume thab is the dimension function of some multiwvavelgt i.e.,

L oo
DE =Y > Y W B E+0P

=1 j=lkezN

Then, by Proposition 2.7 we obtajny D(§)dé =1/(q —1) Zlel lv2=L/(g —1),s0
(D1)is proven. To see that (D2) is true, let us observe gy > > - | POy | (B/€)|2.
Thus, (D2) follows from (2.1). An easy computation similar to (3.1) shows that

L
Y DE+B ) =DBE+ Y D [ BE+h)A

deD =1 kezN

S0 since) ;v 1Wl(& + k)2 =1 a.e. we obtain (D3). To prove the last condition, let
us denotes(§) = Y/~ 352, [¥/(B/£)[2. By (2.1) it is clear thats(¢) < 1; moreover,
we haves(§) > s(B&) and D(§) = Y ;v s(§€ + k). Therefore all we have to prove is
s(€) <1a(%) a.e. This is true fof € A. On the other hand, § ¢ A thenD(B=/£) =0
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for some;j > 0, therefores(B—/&) =0, buts(B~/£) > s(&), so we obtain that(£) = 0;
i.e.,s <1, holds almost everywhere.

We turn now to proving the sufficiency of the conditions (D1)—(D4). By Theorem 3.3
and the remark following it, it suffices to find a measurableSsgtich that

(@ ISI=L/(g—-D),

(b) Sc BS,

() lim,_ o 15(B7"&) =1 for a.e.£ e RY, and
(d) DE) =2 kezn LsE +K).

Denote Ay = {§ € TV :D(¢) > k} and fix any measurable sg2 c RY such that
Q C BQ, t|g isinjective, lim,—.o 1p(B™"&) =1 a.e,and(¢) > 1 for& € Q. Condition
(D2) and the fact thaB is a dilation imply thatQ = A N (32, B/T" is an example of a
set which satisfies these properties.

CLAIM 1. Thereis a measurable st c RY such that

() 0cCS,

(i) S1C BSy,

(i) t|s, isinjective, and
(iv) t(S1) = A1.

Proof of Claim 1. Letus denoté&; = Q. Forn € N, define
5 n
Eni1= (BEn\ U Ef) nar
i=1

and letE, 1 C E,.1 be the set guaranteed to exist by Lemma 2.2.

Define$1 = (2, Ei. We submit thatS; satisfies the conditions (i)—(iv) above. Indeed,
(i) is obvious from the definition. To see (ii), note that by the construciierc BE; and
E, C BE,_1foralln > 2. ThereforeBS1 = J;2; BE; D | Jieq Ei = S1.

To see (iii), if&1, &, € S1 andt(§1) = t(§2), then there exisf, k € N such that; € E;
andé&; € Ey. Without loss of generality; < k. If j <k, thené; ¢ E;), which contradicts
7(&1) = t(&2). Thereforej =k; however,r|Ej is injective, s&1 = &».

We now turn to proving (iv). By the definition &f; we haver (S1) C A1. It remains to
show thatA; c 7(S1). By the condition (D4) and Lemma 4.1 there is a&et RV such
thatt(G) = A1, andD(B~/£) > 1 for everyj > 0 and every € G.

SUBCLAIM. For j > 1we haveG N B/SF c B/~1sF.

Proof of Subclaim. Let & € G N B/SY. Since B~/¢ + 1 € S1 for somel € ZV, it
follows thatB~/& +1 € E,, for somem € N. Then¢’ := B_;,1& + Bl € BE,,, and by the
definition of G, D(§') > 1, s0&’ € BE,, N AY. Recall thatE,,+1 = (BE,\U!1 EF) U
AF . Therefore, ife" ¢ (J/_, EF, then&’ € E,1 C ST, ie., & € B/71SF. On the other
hand, ifé" € EF for somei =1,...,m, then agairg’ € S¥', so¢ € B/~15F and the proof
of the subclaim is completed.

To finish the proof of Claim 1, note that from the assumptions we made aBatit
follows that(J3Z2, B/Q =RN. Therefore,G = UG n B/ Q) C UG n B/SP).
By iterating the subclaim, we obtain th&tn B/SY ¢ Sf for j > 1. So,G C 57, i.e,
7(G) C 7(81), and sincer (G) = A1 the proof of Claim 1 is finished.
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We continue defining the sét Suppose that there exist s&ts .. ., S, such that if we
defineP; = UJ 18; fori < n, then the collectionss;}!_; and{P} _, satisfy Q C Py,
and

(1) ,cBP;fori=1,...,n

(2) |, isinjectivefori =1,...,n,

3) SinS;=¢foralli, j=1,...,n, wherei # j, and
(4) T(S;) =A; fori=1,....n

Then, we will construcs,+1 such thatSs, ..., S,+1 and Py, ..., P,4+1 satisfy (1)—(4).
Recall thatd, .1 = {§ e TV : D(&) > n + 1}.

Define F1 = (BP,\P,) N A?, ;. By Lemma 2.2, there is a measurable sulidet F;
such thatr|, is injective andr (F1) = t(F1).

Form € N define

Fm+1: ( \UFP> ﬂA,H_l,

and letF,,,1 be the subset of;, 1 guaranteed to exist by Lemma 2.2.

Let Syt1 = U2, Fn. We claim that the collection(ss; )" and{ P, )71} satisfy the four

conditions above. For the condition (1) it suffices to show shat C B P,+1. This follows
from the fact thatF, c B P,, while F,,, C BF,;,—1 C BP,4+1 form > 2.
For Condition (2) we must show thats, ., is injective. Suppose that, &2 € S,+1 and
1(£1) = t(&2); then, without loss of generality, for somje< k, &1 € F; andé; € F. If
Jj <k, thené; ¢ FJP, which contradicts (§1) = t(§2). Thereforej = k; howevert|g, is
injective, so&1 = &».

To see (3) it is enough to prove th&t 1 N P, = #. As we noted before, for
m > 2 we haveF,, C BF,,_1. But sinceF; C BP,\P,, by induction we obtainF,, C
B™ P,\B"~1P, for m > 1. From (1) withi = n, it follows that P, ¢ B"~1P, for m > 1.
Therefore, for sucln we obtainF,, N P, =@, i.e.,S,+1N P, =0.

The proof of (4) is more difficult. First note that sinagF,,) C A,+1, we have
7(S,+1) C Ap+1. For the reverse inclusion, we will find it useful to prove the following.

nBsE , csrk

P
CLAIM 2. We haved 1

n+1

Proof of Claim 2. If ¢ € AP 41N BS n+1, then B~1¢ + k € F,, for somem € N
and k € ZV. Therefore,¢’ := E + Bk € BF,,; moreover, since& € A” n410 WeE obtain
£ e BFy N AL . Now, if & ¢ U/ FF then&’ € Fp1 C S, e, gesl’l On the
contrary, if¢’ € FlP for somei = 1,...,m, theng’ € ¥, as well, so& € S”, ;, which
ends the proof of Claim 2.

nt1

Continuing with the proof of Condition (4), we need to show thgt,1 C 7(S,+1).
By Condition (D4) and Lemma 4.1, there is a gétc RY such thatH N P, = ¢,
T(H) = An41, and D(B=/&) > 1 for every j > 0 and¢ € H. Therefore all we have to
prove is thatr (H) C 7(S,41), i.e, H C SF;

We split into two cases; first, we consider glle H such that, for everyj > 0,
D(B7/§)>n+1,ie., theseR:= HN(;2; B/ Al ;. We will show thatk C S ;. Let
£ € R. As we mentioned beforg,)? B/ Q =RV therefore, B¢ € Q for some;j > 1.
Condition (1) implies thapD C P,; hence, we can considgs =min{j e N: B~/& € P,}.
SinceH N P, = ¢, it follows that B—/o+1¢ € BP,\ P,. Moreover, sinceB—/ot1¢ ¢ AP,



82 BOWNIK, RZESZOTNIK, AND SPEEGLE

we obtainB‘f°+1£5 € (BP,\Py) N AP ;= F1 c S ,. In this way we prove thaR C
Urzo B*SF, ;. Therefore,

0 0 k
R=JwnB*s! ncl (Hﬂ N BjA,fHﬂBkS,fH).

k=0 k=0 j=0

But Claim 2 implies that fok > 0,
mBJA 1ﬂBk n+1CS+1a (42)

hencer c SF ;.

The second case deals with the 6et= H\ (2, B/ A/, ;. We still wish to show that
CcCSF,.If&eCthens e HC AL, sowe canfingp > 0 such that € ﬂ’o BJAf+l
and¢ ¢ BT1AP . To prove thatt € SP ,, it is enough to show thag € Boosl
and then to use the formula (4.2) with= jo. To see whyé € B/0SF | observe that

D(B~ /&) > n+ 1. Therefore, by the consistency equation, i.e., Condition (D3), we obtain

n+L+1<L+DB )= DB %+ B ). (4.3)
deD

For eachl € D setk (d) = D(B~~1 + B~1d), thent (B0~ 1 + B~1d) e KD Ay
Moreover, sinced = 0 € D, t(B7%) € Ak, and & ¢ BOTIAL = we obtain
K(0)<n. Since¢ € H, it follows that D(B—/0~1¢) > 1 and we obtaink (0) > 1.

By (4) we haveB—/o~1¢ e KD 5P ie., B—o~1s + pQ € S, where pQ € ZN for
k=1,...,K(0) are distinct by (3). For eacli € D\{0} such thatK (d) # 0, by using
(4) again we can find distingt! € Z" such thatB=0~1& + p¢ + B~1d € Sy, where
k=1,...,min(K(d),n).

In this way for eachi € D such thatk (d) # 0 we obtain

B ¢ + Bp! +de BSy c BP,  fork=1,...,min(K(d),n). (4.4)

We claim that this gives us at least+ 1 distinct elements oB P,. If BpZ +d=
Bp{, +d' for somek = 1,...,min(K (d),n), k' = 1,....min(K (d"),n), thend — d' €
BZY, henced = d'. Also, for fixedd € D, p{ # p{, for k # k’. What remains to
check is that)_,.p min(K (d),n) = n + 1. Since 1< K(0) < n, Formula (4.3) yields
K(©) +Y_yep\ o MN(K (d), n) = n + 1.

By Property (2) of the induction hypothesis, at least one of the elements given in (4.4)
must lie in the Complementdf So, for somé € Z", B0 +k € BP,\P,. In addition
sinceB~0¢ € AP |, we haveB~/¢ + k € A? . ThereforeB=/o& + ke F1 C S”
Ee B‘/OSP+1, which completes the proof of condition (4).

To recap, we have defined s€§;}7°; such that if we setP; = U;Zl S; then the
following conditions hold:

0) oc Py,
(1) Pc BP; fori e N,
(2) t|s, is injective fori e N,

i1
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(3) Si NS; =¥ whenevei # j, and
(4) T(S;) = A, fori e N.

Define S = [ J2, Si. We claim that S satisfies properties (a)—(d) listed above. To show
thatS c BS, it suffices to show thas; ¢ BS for everyi € N, but this is immediate from
Condition (1).

To show that lim_, o 15(B~"&) = 1 almost everywhere, we note thatc S, and since
liMm,— o0 1o(B7"€) =1 we obtain lim_ 1s(B™"&) =1.

To prove thatD (&) =) ", .~ 1s(& + k) it suffices to show that the equality holds for all
g € TV. By Condition (3) we havéds = Y"°, 1,, therefore

D'E) =) 1sE+k= Y Y 15 +k.

keZN keZN i=1

It follows from (2) thatd ", ;v 15, (§ + k) = 15, (&) for & € TN . Therefore, using (4) we
obtain (forg € TV)

D'E) =) L@ =) 14, =DE).

i=1 i=1

Finally, we show thatS| = L /(¢ — 1). By Condition (D1) we have

Si= [ s@as= [ ¥ s +nde= [ D@ ae=1/G -0,

keZN

which completes the proof of the theoreil.
An immediate implication of the proof of Theorem 4.2 is the following,

COROLLARY 4.3. If D is a dimension function of some multiwavelet then there exists
an MSF multiwavele® of the same order such théty = D.

Theorem 4.2 gives us an algorithm for constructing multiwavelet sets if the dimension
function is given.

ALGORITHM 4.4, Assume thab is a function given which satisfies the assumptions
of Theorem 4.2 for somé € N. DenoteA; = {£ € TV : D(§) > k}.

1. Fix a measurable s&@ c R" such thatQ c BQ, lim,_. 1o(B™"¢) =1 a.e,,
7| is injective, andD(§) > 1 for& € Q.

2. LetEy = Q. Form € N defineE, 11 = (BE,\U/_, EF') N AY and choose any
measurableE,,+1 C E,;;+1 such thatt (E,,+1) = 1(Epn+1) andt|g is injective. Let
S1=Umz1 En- ~

3. If S; are constructed for £ i <n, let P, = J;_; S;. Define F1 = (BP,\P,) N
AP and Fp1 = (BF,\U/L, FP) N AP |, where againF,,;1 C Fy1 is such that
T(Fpnt1) = T(Fpy1) andz| g, ., is injective. LetS,+1 = (o ; Fn.

4. Let S = ;2,1 Sy, then W = BS\S is a multivavelet set (of ordeL) with

dimension function equal tD.

m+1

If the function D is bounded by: thenS; = ¢ for i > n. In particular, if we wish to
construct MRA multiwavelet sets (i.eD = 1) the algorithm is much simpler.
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5. EXAMPLES AND REMARKS

In the first part of this section we will restrict our attention to dimension functions
of a single wavelet inR. Let us denote hyD the set of all functions which are
dimension functions of some wavelet associated with dilatiea 2 in dimensiornvV = 1.
Theorem 4.2 provides some information ab@ytbut we are not aware of a general
constructive procedure which would allow us to produce all dimension functions. As a
result, further investigation o) relies on other techniques and in studying examples.
Below, we present several dimension functions and provide examples which illustrate the
construction of wavelet sets via Algorithm 4.4.

ExamMPLE 5.1. Wavelet Sets with Dimension Function Equal to 1. In the MRA case,
the dimension function is identically 1. We illustrate how to construct MSF wavelets with
this dimension function using Algorithm 4.4. If we choa8e=[—1/2, 1/2], thenQ = 1,
and the MSF wavelet we obtain is the Shannon Wavé[eﬁ,,_l/z)u[l/z,l) (ig is denotes
the inverse Fourier transform @f). If we chooseQ =[—a, 1 — a] (for 0 < a < 1), then
we obtains; = Q and the MSF wavelel; 24, _)ui1—a.2-24)-

A nontrivial example of our construction is obtained by takiig= [—3, 31U [3, 31.
Then, we can chooss = Q U[5, 31U (3, §1U[3, 7]. The MSF wavelet we obtain has
supportW = [—%, —31U[3, 21U, 11U[3, 1.

EXAMPLE 5.2. Wavelet Sets with the Journé Dimension Function. A nontrivial
example of a dimension function is given by the Journé wavelet

2 forge[-3.3]

Dy()=q1 forsel-3 -31Ul-3.-31U[3, F1UI3, 3]
0 forge[-2 31Ul 3,
wherey = 1j_16/7,—21u[-1/2.—2/71012/7.1/21ui2.16/7] (See Fig. 1).
e . - 1 2 31
2 17 7 7 7 7 7 2

FIG. 1. Journé dimension function.
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We proceed to construct an MSF wavelet with the dimension function above via
Algorithm 4.4. We can choos@ = [—Z, 2], andS; can be chosen to b@ U[—3, —3]U
[3, 31. Then S can be chosen to be-1, —$1 U [$, 1]. These choices lead to the MSF
wavelet with support

We also could have choseh = Q U[—3, —31U[3. 3] andS, = 2(S1\ ), which would
have yielded the usual Journé wavelet.

For the choice o2 =[—1, 2] we can getsy = QU[-3, 31U [3, 4] andS, =[5, &].
In this case, we obtain the wavelet set

ExampLE 5.3. A Nonsymmetric Dimension Function. Another nontrivial example
of a dimension function which is bounded by two can be obtained by computing the
dimension function of an MSF wavelet with suppbft= [— 3, —1]U[—3, —3]U[£, 3]U
[2. 31U(3, 28] (this wavelet set is considered by Dai and Larson in [8]). Themjfer 1y

we have

2 forée[—3. —21U[3, 2]
DyE)=41 forée[-3 —21U[-% 21U[E 3]
0 forée[—2 —31UI%, 31,

which yields a nonsymmetric dimension function.

Before proceeding to the next example, we mention a fact that simplifies checking
whether a given function satisfies the consistency equation.

FACT 5.4. Let D be a one-periodic function such thBi&) + D(§ +1/2) = D(2§)+1
forall £ [—711, %1]. ThenD satisfies the consistency equation for@k R. Moreover, if

D is symmetric, then it suffices to check the consistency equatifi éh

Proof. It suffices to show that wheneversatisfiesD(&) + D(E +1/2) = D(28) +1
so doeg + 1/2 andé — 1/2. However, this is obvious sinde(¢ + 1/2) + D((§ +1/2) +
1/2)=DE +1/2)+ D) =D(28) +1=D(2 +1) +1=D(2(§ +1/2)) + 1, and
analogous reasoning works for 1/2.

To see the moreover statement,Zif is symmetric and the consistency equation is
satisfied on[0, 71, then foré € [—3,0] we haveD(¢) + D(¢ + 1/2) = D(¢) + D(§ —
1/2)=D(-§)+ D(-§ +1/2)=D(2(-§))+1=D(2¢)+1. &

In the following example we present an interesting family of dimension functions which
appears also in [5].

ExAMPLE 5.5. Dimension Functions with Arbitrarily Large Supremums. kebe
a positive integer. We show that there is a dimension functignwith || D;,||c = 7.
Let € = 1/(2"*t2 — 2). Define T1 = [—2¢,2¢], and fori = 2,...,n define T} =
[—2€, 207 1e] U [20~ e, 2i€]. Finally, definelU = [—1/2+ ¢, —2"€] U [2"%¢,1/2 — €] and
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FIG. 2. The functionDyg.

V=[-1/2,-1/24+€]U[1/2—¢,1/2]. Then, we define (see Fig. 2)

n—i+1 forceT;,1<i<n
D,&)=40 fore cU
1 forg eV,

and extend 1-periodically.

Note that whem = 1 we obtain the MRA dimension function, and when= 2 we
obtain the Journé dimension function. We turn to showing ihasatisfies the consistency
equation. Fog € [0, €], we have thaD,, (&) + D, (& + 1/2) =n + 1, while D, (2¢) = n,
so the consistency equation is satisfied for thpsEor ¢ € [, (2" — 1)e] N T;, we have
that —1/2 4+ € <& —1/2< —-1/2+ (2" — 1)e = —2"¢ and that 2 € T;;1. Therefore,
D, (&) + Dy +1/2) = Dy(§) =n —i + 1= D,(2¢) + 1. It remains to check that
the consistency equation is satisfied foe [(2" — 1)¢, 1/4]. In this case, 2 € V and
& —1/2€T,. Therefore D, (§) + D, (§ +1/2) =2= D,(2¢) + 1, as desired.

We now show that the functiof, satisfies the condition (D4) of Theorem 4.2. Since
A1 C A we only need to check fof € Ap, i.e.,& € T;, i <n — 1. (Here, as before,

={& e TVN:D, (&) > j}.) For suchg, we have that +2/~1 e A forall j >n — 1.
Indeedg +2/~1 e [2/71, 27714 27"1e] € A.Hence ., 1a (£ +k) = coforall £ € Ay,
as desired.

We note here that fot = 3 an MSF wavelet, the construction in Theorem 4.2 yields
0=I- 5 151 S1=QUIl- % BV 31, S2 =[-8, 281U [-1, -] U[3, LU
[28, 2], S3=[-2, — 2] U[Z2, 2], and the MSF wavelet has support

Wa=[-4 —38] U [~15 —3] U [ 15 —15] U [15. 18] U [5: 18] U 354

(6)1
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One might think that letting go tooo in the above example would yield an unbounded
dimension function. However, this is not the case. Indeed, the limit function would be
Doo(€) =i forall & e [—1/2/11, —1/2/+2]U[1/2/+2, 1/2!*1]. In this limit, the zero set of
Do contains/—3, —3]U[3, 3], soA =[—2, 1], and Condition (D4) of Theorem 4.2 is
not satisfied. The functioP, also is an example of a function which satisfies Conditions
(D1)—(D3) of Theorem 4.2, but not Condition (D4). In particular, Condition (D4) is

independent of the other conditions, at least for unbounded dimension functions.

The following example shows that, in spite of the setback above, unbounded dimension
functions do exist.

ExampPLE 5.6. An MSF Wavelet with Unbounded Dimension Function. Recall that
for a function f € L*(R) we definedD(§) = Y5213 s | f2IE+ k)2 If fisa
wavelet, then this is just the usual dimension function. It is clear that Whegfe\_;tqﬁ, then
Dy (&) < Dg(§) almost everywhere.

We will proceed by constructing a s€such thatDis is unbounded and then by showing
that S is a subset of some wavelet sit. Since we will havelg < 1y this will be
enough to conclude thad; is unbounded. Sefy = [2k=1 4 1/2k+2 k=1 4 7 0k+1)
ands = ;2.1 Sk. We show thatD; is unbounded.

CLAIM. Dj (§) =m/2— 1forevern e N and¢ e [1/2m+2 1/2m+D),

Proof of Claim. If 1/2"+2 <& < 1/2"+1 thenforalll € N,

+21_l§§+21_1< +21—1’

om+2 om+1

from which it follows that

1

(m+1)/2—-1
2(m~+1)/2+2 +2 )

(m+1)/2—1 (m—1)/2 [—1
+2 = E+270) < Gy

Thatis, 2"=D/2(& 4 2=1) € S(u44)/2 Wheneverm +1)/2 € N, i.e., whenever is even.
We conclude that for evem > 4 andg e [1/2712, 1/2"+1),

oo m/2—1
Dy (&)=Y Y L@ E+k)l= Y 115"/ 2E + 25 )| =m/2 -1
j=1keZ j=1

From the claim, itimmediately follows thaﬂis is unbounded. We now turn to showing
that there is a wavelet sév > S. The dilation projectiond is defined onR\{0} by
d(&) =&, whereg’ e [-3, ) U[3, 3) andg’/& = 2k for somek € Z. Itis easy to check
that the translation projectionand the dilation projectiod satisfy the properties that s
andd|s are injectionsz (S) C [0, 51, andd(S) C [3, 3)-

SetT = [%, %)\d(S) and note that|sur andd|sur are injections and that(SU T) =
[7.3), while 7(SUT) = [0, 3). We will use the following theorem, due to lonascu and
Pearcy, withSUT = U.

THEOREM[14]. A measurable sdf/ C R is a subset of a wavelet set if and only if the
following two conditions hold:
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(i) Thereisasett > U such thatr|4 andd| are injective andi/(A) = [-3, —3) U
[3. 3)-

(i) Thereis a seB > U such thatr|s andd|s are injective andr (B) = [—3. 3).
Moreover, in this case, there is a wavelet 8ésatisfyingl ¢ W C AU B.

Indeed, it is clear tha#t = [-3, —3) U U satisfies Condition (i). Also, if we set
V = [—3. H\r(U), we will show thatB = V — 3 satisfies Condition (ii). First, note
that V. — 3 C [-4,-3), sod(V — 3) C [-3,—3) and d|y is injective. Therefore,
d|(v—3)uu is also injective. Finally, note that(V — 3) =V, sot|y_3yuy is injective and
t(V-=-3)UlU) = [—%, %). Therefore, by lonascu and Pearcy’s result mentioned alabve,
(and hences) is contained in a wavelet set, as desired.

The last fact concerning single waveletsiinwhich we are going to present implies
that there are “many” dimension functions, enough to connect all of the examples we have
included so far.

FACT 5.7. The setD is arcwise connected in thel(T) topology.

Proof. Let D, D’ € D. By Corollary 4.3 we can find MSF waveletg, v with
corresponding wavelet se®, W’ such thatD, = D and Dy, = D'. It is easy to justify
that||D — D'l| 1y < 11w — 1|2 In fact,

LZ(R).

1/2 > . .
5/ DD 1w @ E +k) — Ly @& +h)lds

Y2 gkez

o]

DY (W@ E +h) — 1y (2 (5 +k))) |dk

j=1keZ

= 11w — Lwl7 2,

The arcwise connectivity db follows from [20], where it was shown that the set of all
characteristic functions of wavelet sets is arcwise connected ih4tie) norm.

We can also considefD = {~/D: D € D} with the L2(T) norm. The advantage of this
comes from the fact that fof, g € L%(R) we havel|/Dy — /Dy ll 21y < Il f — gll 2(w):
whereD ; andD, are defined as in formula (2.8). In particularjif —  in L2(R), where
¥, andy are orthonormal wavelets, thefiDy, — /Dy in L?(T). The connectivity of
VD in the L?(T) norm follows again from [20, Corollary 4.3].

In the final part of our paper we consider the multidimensional case. Of course, a detailed
study of dimension functions requires fixing a dilation and an order number; this, however,
goes beyond the scope of our paper. We offer instead some examples and facts which hold
for any dilation.

The following example is devoted to the construction of an analytic MRA multiwavelet
for any dilationA. In [17] Madych defined a s&2, which can be thought of as a scaling
set, and showed how to use it to obtain an analytic scaling function. However, the problem
of constructing such a set was not considered in his paper. We present here a detailed
treatment of this problem using Algorithm 4.4,

ExampPLE 5.8. An Analytic Multiwavelet. Consider the functidh= 1, which clearly
satisfies (D1)—(D4) of Theorem 4.2 with= g — 1, whereg = |detA|, A is some dilation,
andB = AT. Algorithm 4.4 yields then a generalized scaling$ef orderg — 1 satisfying
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Y okezny s +k)y=1foraef e RV therefore, by Corollary 3.4S is a scaling set. To
start Algorithm 4.4 we must choose a g2t Note thatQ = TV will not work for every
dilation, since in general we do not have the inclusibhc BTV . Nevertheless, choose
asQ the selﬂ‘;ozo B/ TN which is bounded and contains some neighborhood of the origin.
We claim that such a choice @ yields a bounded scaling s&t

Indeed, the setg,, from Algorithm 4.4 satisfyE1 = Q and, form € N,

Efi=BED"\ UEP (5.1)
Hence
EL  CBE)"cEfU---UEEL, . (5.2)
We claim that for anyn € N,
(B"E)' CEfU---UEL_ ;. (5.3)

Indeed, (5.3) is true fann = 1 by (5.2). Assume, by induction, that (5.3) holds for some
then

(B"E)? = (B(B"E1)" C (B(Ef U---UEF l))P =(B(E1U--UEy41)"

=(BED"U---UBEu0)" CEf U---UE}

therefore (5.3) is true fon + 1, and hence for alh € N. The setE1 = Q contains some
nelghborhood of the origin, therefo(8™ E1)” =R for sufficiently largeM e N. Thus
by (5.3)EX U-..U Eﬁﬂ =RM, and by (5.1)E, = ¢ for n > M + 2. Since eaclE,, is
bounded so is = | Y E

By the remark foIIowmg Theorem 3.3 we conclude that the boundediset BS\S
is a multiwavelet set of ordey — 1. Definition 2.5 allows us to partitiofV into sets
Wi, ..., Wy_1 sothat = {y1, ..., ¢~} is an MSF multiwavelet, wherg’ = 1y,. The
functionsy! areC™ (even analytic) in the space domain and are associated with an MRA
with a smooth scaling functiop, whereg = 15. Naturally,¢ and+’ do not have good
decay properties.

In the above example we can consider a special case of a dilation rastich that
|detA| = 2. This leads to a multiwavelet of order 1; that is, we obtain a single wavelet. The
fact that the conditionidetA| = 2 is sufficient for obtaining MRA wavelets was already
noted by Gu and Han in [12]. It is not clear whether the techniques in [12] can be used to
obtain analytic wavelets.

The following example shows the existence of nontrivial dimension functiof&“an

ExAMPLE 5.9. The “Stairway to Heaven” Dimension Function. Suppdses a
dilation, B = AT, andg = |detA| = |detB|. Consider a scaling se&t associated with the
dilation A; that is, a set satisfying the conditions of Theorem 3.3 Witk ¢ — 1 and

Y 1s¢é+k=1 aeseRV. (5.4)
keZN
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Example 5.8 guarantees the existence of such &.96k J € N and define the functio®
by

DE) =1+jJ if £ e (B~/S\B~/~15)" for somej > 0. (5.5)

D is defined for a.e5 € RY because the sef8~/S\B~/~1S} -0 form a partition ofs,
and(S +k};.zv partitionsRY modulo sets of measure zero. We will show thesatisfies
Conditions (D1)—(D4) of Theorem 4.2 with=J + (¢ — 1).

The first condition is fulfilled because

[, p@de=[peras=Y [ b
™ N =0 B=IS\B—i-1§

0 0
=Y A+jNq 7 —q 7 H=1+) ¢ TI=14+17/(g-D.
j=0 j=1
SinceD(¢) > 1 a.e., Conditions (D2) and (D4) are automatically satisfied. To check the
consistency equation we shall show thég—15)” + B~1d},cp partitionsRY, whereD
denotes the set of representatives of different cosets@¥ /BZ" . In fact, by (5.4) we
have

Y lpagrE+B )= Y 1pagE+Bld+k)

deD deD ke7ZN
=Y lpagE+B =) 1s(BE+k) =1
keZN keZN

SinceR"N = [J32o(B~/S\B~/~15)" it is enough to prove that (D3) holds aB~/ 5\
B~7=18)P for everyj > 0. First, let us considey € (B~/S\B~/~1$)”, wherej > 1. It
is easy to see that then we must ha#gee (B~—/T15\B~7 $)”. Moreover, sinceS C BS,
we havet e (B~15)” which together with the fact th&tB—15)" + B~1d},<p partitions
RN and S* =R, allows us to conclude thdt+ B~1d € (S\B~18)” for d € D\{0}.
Therefore, by (5.5),

Y DE+B M) =14jI+(@q-D=1+(G—-DJ+J+(q-1=D(BE+L.
deD

If j =0 and& € S\B~1S, we can choosé e D such thatt + B~1d € (B~15)”, since
{(B~18)? + B~1d},p partitionsR" . Replacing: by & + B—1d does not affect values of
the expressions in (D3), so we can assumeghai(B~15)”, which corresponds exactly
to the casej > 1. Thus the consistency equation is satisfied a.e.,/ans a dimension
function of a multiwavelet of ordet = J + (g — 1).

The dimension function we constructed above is clearly unbounded (note, however, that
for ¢ = 2 the orderL must be at least 2, therefore we cannot use this construction to
produce anything similar to Example 5.6). The following fact shows that band limited
wavelets have a bounded dimension function.

FACT 5.10. Supposel = {y/, ..., ¥} is a multiwavelet anguppy’ is bounded for
eachl =1, ..., L. Thenthereis am € N such thatDy <n.



DIMENSION FUNCTIONS OF WAVELETS 91

Proof. Lets(£)=YF, % 1W!(B/&)|2. By the support condition oft! we see that
supps is bounded. Therefore (2.1) implies that 1sypp, and we obtain

Dy =) sE+ <Y louppE+k =D Litsupp(€) <n,

keZN keZN keZN

wheren denotes the number of distingt such thafl™™ N (k 4 supps) #@. W

As we saw, every dimension function presented in Example 5.5 attains all integer values
between zero and its supremum. The following fact shows that the skips in the range of a
dimension function of a multiwavelet of ordérare at most of the sizE. In particular, if
a dimension function of a single wavelet not associated with an MRA attains the Malue
then it attains all values from zero 4.

THEOREM 5.11. Let W be an orthonormal multiwavelet (of ordér) with dimension
function Dy, and letM be an integeM > L/(qg — 1). If there is a seC c R" such that
its Lebesgue measuf€| > 0 and Dy (£) > M for all & € C, then there is a seR c RV
suchthatR| >0andM > Dy (§) > M — L forall £ € R.

Proof. By the consistency equation (see Theorem 4.2(D3))

Dy(B&) =Y Dy +B 'd)—L,
deD

it follows that Dy (B&) > Dy(§) — L a.e. Suppose thafé € RN: M > Dy (§) >
M — L}| = 0. Then, the inequality implies that for almost evérg BC, Dy (§) > M.
Repeating this argument, we obtalin, (£) > M for all £ € B/C and all j > 1. So, by
the Z" -periodicity of Dy, we have that for every > 1 and& € t(B/C), Dy (§) >
M; that is, Dy (&) > M for & € U?‘;lr(BfC). From the claim below, it follows that
| Ujilz(chn =1, hence

o0

JzBio)

j=1

/TNDus)dszM —M>L/g-D,

which contradicts the fact thgt,y Dy (&) dé = L /(¢ — 1) (see Theorem 4.2(D1)
CLAIM. If C c RV is a set of positive Lebesgue measure, ﬂr@jil T(B/C)| =1

Proof. Since the matrixg: RY — RY preserves the lattic&", it induces a measure
preserving endomorphis®: TV — TV. Moreover, B is ergodic by [21, Corollary
1.10.1] becauss is expansive. Sinc& = Uj‘;lr(BfC) = U;‘;l BJt(C), it follows that
BZ c Z. We haveZ c B~1BZ c B~1Z, and sinceB is measure preserving = 817
(modulo sets of measure zero). By the ergodicityBofve have that eithefZ| = 0 or
|Z| = 1. SinceC is of positive measure we must have thatZ)| > 0, hencgZ|=1. &
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