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Abstract. This article discusses modern techniques for nonuniform sampling and reconstruction of
functions in shift-invariant spaces. It is a survey as well as a research paper and provides
a unified framework for uniform and nonuniform sampling and reconstruction in shift-
invariant spaces by bringing together wavelet theory, frame theory, reproducing kernel
Hilbert spaces, approximation theory, amalgam spaces, and sampling. Inspired by appli-
cations taken from communication, astronomy, and medicine, the following aspects will be
emphasized: (a) The sampling problem is well defined within the setting of shift-invariant
spaces. (b) The general theory works in arbitrary dimension and for a broad class of gener-
ators. (c) The reconstruction of a function from any sufficiently dense nonuniform sampling
set is obtained by efficient iterative algorithms. These algorithms converge geometrically
and are robust in the presence of noise. (d) To model the natural decay conditions of real
signals and images, the sampling theory is developed in weighted Lp-spaces.
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1. Introduction. Modern digital data processing of functions (or signals or im-
ages) always uses a discretized version of the original signal f that is obtained by
sampling f on a discrete set. The question then arises whether and how f can be
recovered from its samples. Therefore, the objective of research on the sampling prob-
lem is twofold. The first goal is to quantify the conditions under which it is possible to
recover particular classes of functions from different sets of discrete samples. The sec-
ond goal is to use these analytical results to develop explicit reconstruction schemes
for the analysis and processing of digital data. Specifically, the sampling problem
consists of two main parts:

(a) Given a class of functions V on Rd, find conditions on sampling sets X =
{xj ∈ Rd : j ∈ J}, where J is a countable index set, under which a function
f ∈ V can be reconstructed uniquely and stably from its samples {f(xj) :
xj ∈ X}.
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Fig. 1.1 The sampling problem. Top: A function f defined on R has been sampled on a uniform
grid. Bottom: The same function f has been sampled on a nonuniformly spaced set. The
sampling locations xj are marked by the symbol ×, and the sampled values f(xj) by a
circle o.

(b) Find efficient and fast numerical algorithms that recover any function f ∈ V
from its samples on X.

In some applications, it is justified to assume that the sampling set X = {xj : j ∈ J}
is uniform, i.e., that X forms a regular n-dimensional Cartesian grid; see Figures
1.1 and 1.2. For example, a digital image is often acquired by sampling light inten-
sities on a uniform grid. Data acquisition requirements and the ability to process
and reconstruct the data simply and efficiently often justify this type of uniform data
collection. However, in many realistic situations the data are known only on a nonuni-
formly spaced sampling set. This nonuniformity is a fact of life and prevents the use of
the standard methods from Fourier analysis. The following examples are typical and
indicate that nonuniform sampling problems are pervasive in science and engineering.

• Communication theory : When data from a uniformly sampled signal (func-
tion) are lost, the result is generally a sequence of nonuniform samples. This
scenario is usually referred to as a missing data problem. Often, missing sam-
ples are due to the partial destruction of storage devices, e.g., scratches on
a CD. As an illustration, in Figure 1.3 we simulate a missing data problem
by randomly removing samples from a slice of a three-dimensional magnetic
resonance (MR) digital image.

• Astronomical measurements: The measurement of star luminosity gives rise
to extremely nonuniformly sampled time series. Daylight periods and adverse
nighttime weather conditions prevent regular data collection (see, e.g., [111]
and the references therein).

• Medical imaging : Computerized tomography (CT) and magnetic resonance
imaging (MRI) frequently use the nonuniform polar and spiral sampling sets
(see Figure 1.2 and [21, 90]).
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Fig. 1.2 Sampling grids. Top left: Because of its simplicity the uniform Cartesian sampling grid
is used in signal and image processing whenever possible. Top right: A polar sampling
grid used in computerized tomography (see [90]). In this case, the two-dimensional Fourier
transform f̂ is sampled with the goal of reconstructing f . Bottom left: Spiral sampling used
for fast MRI by direct signal reconstruction from spectral data on spirals [21]. Bottom right:
A typical nonuniform sampling set as encountered in spectroscopy, astronomy, geophysics,
and other signal and image processing applications.

Original digital image Digital image with missing data

Fig. 1.3 The missing data problem. Left: Original digital MRI image with 128×128 samples. Right:
MRI image with 50% randomly missing samples.

Other applications using nonuniform sampling sets occur in geophysics [92], spec-
troscopy [101], general signal/image processing [13, 22, 103, 106], and biomedical
imaging [20, 59, 90, 101] (see Figures 1.2 and 1.4). More information about modern
techniques for nonuniform sampling and applications can be found in [16].
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Fig. 1.4 Sampling and boundary reconstruction from ultrasonic images. Left: Detected edge points
of the left ventricle of a heart from a two-dimensional ultrasound image constitute a nonuni-
form sampling of the left ventricle’s contour. Right: Boundary of the left ventricle recon-
structed from the detected edge sample points (see [59]).

1.1. Sampling in Paley–Wiener Spaces: Bandlimited Functions. Since infi-
nitely many functions can have the same sampled values on X = {xj}j∈J ⊂ Rd, the
sampling problem becomes meaningful only after imposing some a priori conditions
on f . The standard assumption is that the function f on Rd belongs to the space
of bandlimited functions BΩ; i.e., the Fourier transform f̂(ξ) =

∫
Rd f(x)e−2πi〈ξ,x〉dx

of f is such that f̂(ξ) = 0 for all ξ /∈ Ω = [−ω, ω]d for some ω < ∞ (see, e.g.,
[15, 44, 47, 55, 62, 72, 78, 88, 51, 112] and the review papers [27, 61, 65]). The reason
for this assumption is a classical result of Whittaker [114] in complex analysis which
states that, for dimension d = 1, a function f ∈ L2(R) ∩B[−1/2,1/2] can be recovered
exactly from its samples {f(k) : k ∈ Z} by the interpolation formula

(1.1) f(x) =
∑

k∈Z
f(k) sinc(x− k),

where sinc(x) = sinπx
πx . This series gave rise to the uniform sampling theory of Shan-

non [96], which is fundamental in engineering and digital signal processing because
it gives a framework for converting analog signals into sequences of numbers. These
sequences can then be processed digitally and converted back to analog signals via
(1.1).

Taking the Fourier transform of (1.1) and using the fact that the Fourier transform
of the sinc function is the characteristic function χ[−1/2,1/2] shows that for any ξ ∈
[−1/2, 1/2]

f̂(ξ) =
∑

k

f(k)e2πikξ =
∑

k

〈f̂ , ei2πk·〉L2(−1/2,1/2) e
i2πkξ.

Thus, reconstruction by means of the formula (1.1) is equivalent to the fact that
the set {ei2πkξ, k ∈ Z} forms an orthonormal basis of L2(−1/2, 1/2) called the har-
monic Fourier basis. This equivalence between the harmonic Fourier basis and the
reconstruction of a uniformly sampled bandlimited function has been extended to
treat some special cases of nonuniformly sampled data. In particular, the results by
Paley and Wiener [87], Kadec [71], and others on the nonharmonic Fourier bases
{ei2πxkξ, k ∈ Z} can be translated into results about nonuniform sampling and re-
construction of bandlimited functions [15, 62, 89, 94]. For example, Kadec’s theorem
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[71] states that if X = {xk ∈ R : |xk − k| ≤ L < 1/4} for all k ∈ Z, then the set
{ei2πxkξ, k ∈ Z} is a Riesz basis of L2(−1/2, 1/2); i.e., {ei2πxkξ, k ∈ Z} is the image
of an orthonormal basis of L2(−1/2, 1/2) under a bounded and invertible operator
from L2(−1/2, 1/2) onto L2(−1/2, 1/2). Using Fourier transform methods, this re-
sult implies that any bandlimited function f ∈ L2 ∩ B[−1/2,1/2] can be completely
recovered from its samples f(xk), k ∈ Z, as long as the sampling set is of the form
X = {xk ∈ R : |xk − k| < 1/4}k∈Z.

The sampling set X = {xk ∈ R : |xk − k| < 1/4}k∈Z in Kadec’s theorem is just
a perturbation of Z. For more general sampling sets, the work of Beurling [23, 24],
Landau [74], and others [18, 58] provides a deep understanding of the one-dimensional
theory of nonuniform sampling of bandlimited functions. Specifically, for the exact and
stable reconstruction of a bandlimited function f from its samples {f(xj) : xj ∈ X},
it is sufficient that the Beurling density

(1.2) D(X) = lim
r→∞

inf
y∈R

#X ∩ (y + [0, r])
r

satisfies D(X) > 1. Conversely, if f is uniquely and stably determined by its samples
on X ⊂ R, then D(X) ≥ 1 [74]. The marginal case D(X) = 1 is very complicated
and is treated in [79, 89, 94].

It should be emphasized that these results deal with stable reconstructions. This
means that an inequality of the form

‖f‖p ≤ C


∑

xj∈X
|f(xj)|p




1/p

holds for all bandlimited functions f ∈ Lp ∩BΩ. A sampling set for which the recon-
struction is stable in this sense is called a (stable) set of sampling. This terminology
is used to contrast a set of sampling with the weaker notion of a set of uniqueness. X
is a set of uniqueness for BΩ if f |X = 0 implies that f = 0. Whereas a set of sampling
for B[−1/2,1/2] has a density D ≥ 1, there are sets of uniqueness with arbitrarily small
density. See [73, 25] for examples and characterizations of sets of uniqueness.

While the theorems of Paley and Wiener and Kadec about Riesz bases consisting
of complex exponentials ei2πxkξ are equivalent to statements about sampling sets that
are perturbations of Z, the results about arbitrary sets of sampling are connected to
the more general notion of frames introduced by Duffin and Schaeffer [40]. The concept
of frames generalizes the notion of orthogonal bases and Riesz bases in Hilbert spaces
and of unconditional bases in some Banach spaces [2, 5, 6, 12, 14, 15, 20, 28, 29, 46,
66, 97].

1.2. Sampling in Shift-Invariant Spaces. The series (1.1) shows that the space
of bandlimited functions B[−1/2,1/2] is identical with the space

(1.3) V 2(sinc) =

{∑

k∈Z
ck sinc(x− k) : (ck) ∈ `2

}
.

Since the sinc function has infinite support and slow decay, the space of band-
limited functions is often unsuitable for numerical implementations. For instance, the
pointwise evaluation

f 7→ f(x0) =
∑

k∈Z
ck sinc(x0 − k)
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is a nonlocal operation, because, as a consequence of the long-range behavior of sinc,
many coefficients ck will contribute to the value f(x0). In fact, all bandlimited func-
tions have infinite support since they are analytic. Moreover, functions that are
measured in applications tend to have frequency components that decay for higher
frequencies, but these functions are not bandlimited in the strict sense. Thus, it has
been advantageous to use non-bandlimited models that retain some of the simplicity
and structure of bandlimited models but are more amenable to numerical implemen-
tation and are more flexible for approximating real data [13, 63, 64, 86, 103, 104].
One such example are the shift-invariant spaces which form the focus of this paper.

A shift-invariant space is a space of functions on Rd of the form

V (φ1, . . . , φr) =





r∑

i=1

∑

j∈Zd
cijφi(x− j)



 .

Such spaces have been used in finite elements and approximation theory [34, 35, 67,
68, 69, 98] and for the construction of multiresolution approximations and wavelets
[32, 33, 39, 53, 60, 70, 82, 83, 95, 98, 99, 100]. They have been extensively studied in
recent years (see, for instance, [6, 19, 52, 67, 68, 69]).

Sampling in shift-invariant spaces that are not bandlimited is a suitable and re-
alistic model for many applications, e.g., for taking into account real acquisition and
reconstruction devices, for modeling signals with smoother spectrum than is the case
with bandlimited functions, or for numerical implementation [9, 13, 22, 26, 85, 86, 103,
104, 107, 110, 115, 116]. These requirements can often be met by choosing “appropri-
ate” functions φi. This may mean that the functions φi have a shape corresponding to
a particular “impulse response” of a device, or that they are compactly supported, or
that they have a Fourier transform |φ̂i(ξ)| that decays smoothly to zero as |ξ| → ∞.

1.2.1. Uniform Sampling in Shift-Invariant Spaces. Early results on sampling
in shift-invariant spaces concentrated on the problem of uniform sampling [7, 9, 10,
11, 37, 64, 105, 108, 107, 113, 116] or interlaced uniform sampling [110]. The problem
of uniform sampling in shift-invariant spaces shares some similarities with Shannon’s
sampling theorem in that it requires only the Poisson summation formula and a few
facts about Riesz bases [7, 9]. The connection between interpolation in spline spaces,
filtering of signals, and Shannon’s sampling theory was established in [11, 109]. These
results imply that Shannon’s sampling theory can be viewed as a limiting case of
polynomial spline interpolation when the order of the spline tends to infinity [11, 109].
Furthermore, Shannon’s sampling theory is a special case of interpolation in shift-
invariant spaces [7, 9, 113, 116] and a limiting case for the interpolation in certain
families of shift-invariant spaces V (φn) that are obtained by a generator φn = φ∗· · ·∗φ
consisting of the n-fold convolution of a single generator φ [9].

In applications, signals do not in general belong to a prescribed shift-invariant
space. Thus, when using the bandlimited theory, the common practice in engineering
is to force the function f to become bandlimited before sampling. Mathematically,
this corresponds to multiplication of the Fourier transform f̂ of f by a characteristic
function χΩ. The new function fa with Fourier transform f̂a = f̂χΩ is then sampled
and stored digitally for later processing or reconstruction. The multiplication by χΩ
before sampling is called prefiltering with an ideal filter and is used to reduce the
errors in reconstructions called aliasing errors. It has been shown that the three steps
of the traditional uniform sampling procedure, namely prefiltering, sampling, and
postfiltering for reconstruction, are equivalent to finding the best L2-approximation of
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a function in L2∩BΩ [9, 105]. This procedure generalizes to sampling in general shift-
invariant spaces [7, 9, 10, 85, 105, 108]. In fact, the reconstruction from the samples
of a function should be considered as an approximation in the shift-invariant space
generated by the impulse response of the sampling device. This allows a reconstruction
that optimally fits the available samples and can be done using fast algorithms [106,
107].

1.2.2. Nonuniform Sampling in Shift-Invariant Spaces. The problem of nonuni-
form sampling in general shift-invariant spaces is more recent [4, 5, 30, 66, 75, 76, 77,
102, 119]. The earliest results [31, 77] concentrate on perturbation of regular sampling
in shift-invariant spaces and are therefore similar in spirit to Kadec’s result for band-
limited functions. For the L2 case in dimension d = 1, and under some restrictions
on the shift-invariant spaces, several theorems on nonuniform sampling can be found
in [76, 102]. Moreover, a lower bound on the maximal distance between two sampling
points needed for reconstructing a function from its samples was given for the case
of polynomial splines and other special cases of shift-invariant spaces in [76]. For the
general multivariate case in Lp, the theory was developed in [4], and for the case of
polynomial spline shift-invariant spaces, the maximal allowable gap between samples
was obtained in [5]. For general shift-invariant spaces, a Beurling density D ≥ 1 is
necessary for stable reconstruction [5]. As in the case of bandlimited functions, the
theory of frames is central in nonuniform sampling of shift-invariant spaces, and there
is an equivalence between a certain type of frame and the problem of sampling in
shift-invariant spaces [5, 66, 75].

The aim of the remainder of this paper is to provide a unified framework for
uniform and nonuniform sampling in shift-invariant spaces. This is accomplished by
bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces,
approximation theory, amalgam spaces, and sampling. This combination simplifies
some parts of the literature on sampling. We also hope that this unified theory will
provide the ground for more interactions between mathematicians, engineers, and
other scientists who are using the theory of sampling and reconstruction in specific
applications.

The paper is intended as a survey, but it contains several new results. In par-
ticular, all the well-known results are developed in weighted Lp-spaces. Extensions
of frame theory and reproducing kernel Hilbert spaces to Banach spaces are dis-
cussed, and the connections between reproducing kernels in weighted Lp-spaces, Ba-
nach frames, and sampling are described. In the spirit of a review, we focus on the
discussion of the sampling problem and results, and we postpone the technical details
and proofs to the end of each section or to section 8. The reader more interested in
the applications and techniques can omit the proofs in a first reading.

The paper is organized as follows. Section 2 introduces the relevant spaces for
sampling theory and presents some of their properties. Weighted Lp-spaces and se-
quence spaces are defined in section 2.1. Wiener amalgam spaces are discussed in
section 2.2, where we also derive some convolution relations in the style of Young’s
inequalities. The weighted Lp-shift-invariant spaces are introduced in section 2.3, and
some of their main properties are established. The sampling problem in weighted
shift-invariant spaces is stated in section 3. In sections 4.1 and 4.2 some aspects of
reproducing kernel Hilbert spaces and frame theory are reviewed. The discussion in-
cludes an extension of frame theory and reproducing kernel Hilbert spaces to Banach
spaces. The connections between reproducing kernels in weighted Lp-spaces, Banach
frames, and sampling are discussed in section 4.3. Frame algorithms for the recon-
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struction of a function from its samples are discussed in section 5. Section 6 discusses
iterative reconstructions. In applications, a function f does not belong to a particular
prescribed space V , in general. Moreover, even if the assumption that a function f
belongs to a particular space V is valid, the samples of f are not exact due to digital
inaccuracy, or the samples are corrupted by noise when they are obtained by a real
measuring device. For this reason, section 7 discusses the results of the various recon-
struction algorithms when the samples are corrupted by noise, which is an important
issue in practical applications. The proofs of the lemmas and theorems of sections 6
and 7 are given in section 8.

2. Function Spaces. This section provides the basic framework for treating non-
uniform sampling in weighted shift-invariant spaces. The shift-invariant spaces under
consideration are of the form

(2.1) V (φ) =




∑

k∈Zd
ckφ(· − k)



 ,

where c = (ck)k∈Z is taken from some sequence space and φ is the so-called generator
of V (φ). Before it is possible to give a precise definition of shift-invariant spaces, we
need to study the convergence properties of the series

∑
k∈Zd ckφ(· − k). In the context

of the sampling problem the functions in V (φ) must also be continuous. In addition,
we want to control the growth or decay at infinity of the functions in V (φ). Thus the
generator φ and the associated sequence space cannot be chosen arbitrarily. To settle
these questions, we first discuss weighted Lp-spaces with specific classes of weight
functions (section 2.1), and we then develop the main properties of amalgam spaces
(section 2.2). Only then will we give a rigorous definition of a shift-invariant space
and derive its main properties in section 2.3. Shift-invariant spaces figure prominently
in other areas of applied mathematics, notably in wavelet theory and approximation
theory [33, 34]. Our presentation will be adapted to the requirements of sampling
theory.

2.1. Weighted Lpν -Spaces. To model decay or growth of functions, we use
weighted Lp-spaces [41]. A function f belongs to Lpν(Rd) with weight function ν
if νf belongs to Lp(Rd). Equipped with the norm ‖f‖Lpν = ‖νf‖Lp , the space Lpν is a
Banach space. If the weight function ν grows rapidly as |x| → ∞, then the functions
in Lpν decay roughly at a corresponding rate. Conversely, if the weight function ν
decays rapidly, then the functions in Lpν may grow as |x| → ∞.

In general, a weight function is just a nonnegative function ν. We will use two spe-
cial types of weight functions. The weight functions denoted by ω are always assumed
to be continuous, symmetric, i.e., ω(x) = ω(−x), positive, and submultiplicative:

(2.2) 0 < ω(x+ y) ≤ ω(x)ω(y) ∀x, y ∈ Rd.

This submultiplicativity condition implies that 1 ≤ ω(0) ≤ ω(x) for all x ∈ Rd. For a
technical reason, we impose the growth condition

∞∑

n=1

logω(nk)
n2 <∞ ∀k ∈ Zd .

Although most of the results do not require this extra condition on ω, we use it in
Lemma 2.11. For simplicity we refer to ω as a submultiplicative weight. A prototypical
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example is the Sobolev weight ω(x) = (1 + |x|)α, with α ≥ 0. When ω = 1, we obtain
the usual Lp-spaces.

In addition, a weight function ν is called moderate with respect to the submulti-
plicative weight ω, or simply ω-moderate, if it is continuous, symmetric, and positive
and satisfies ν(x + y) ≤ Cω(x)ν(y) for all x, y ∈ Rd. For instance, the weights
ν(x) = (1+ |x|)β are moderate with respect to ω(x) = (1+ |x|)α if and only if |β| ≤ α.
If ν is ω-moderate, then ν(y) = ν(x+ y − x) ≤ Cω(−x)ν(x+ y), and it follows that

1
ν(x+ y)

≤ Cω(x)
1

ν(y)
.

Thus, the weight 1
ν is also ω-moderate.

If ν is ω-moderate, then a simple computation shows that

‖f(· − y)‖Lpν ≤ Cω(y) ‖f‖Lpν ,

and in particular, ‖f(· − y)‖Lpω ≤ ω(y) ‖f‖Lpω . Conversely, if Lpν is translation-invariant,
then ω(x) = sup‖f‖Lpν≤1 ‖f(. − x)‖Lpν is submultiplicative and ν is ω-moderate. To
see this, we note that

ω(x) = sup
‖f‖Lpν≤1

‖f(.− x)‖Lpν

is the operator norm of the translation operator f 7→ f(· − x). Since operator norms
are submultiplicative, it follows that ω(x+ y) ≤ ω(x)ω(y). Moreover,

∫

Rd
|f(t− x)|p ν(t)pdt =

∫

Rd
|f(t)|p ν(t+ x)pdt ≤ ω(x)p

∫

Rd
|f(t)|p ν(t)pdt.

Thus, ν(x + y) ≤ ω(x)ν(y), and therefore the weighted Lp-spaces with a moderate
weight are exactly the translation-invariant spaces.

We also consider the weighted sequence spaces `pν(Zd) with weight ν: a sequence
{(ck) : k ∈ Zd} belongs to `pν if ((cν)k) = (ckνk) belongs to `p with norm ‖c‖`pν =
‖νc‖`p , where (νk) is the restriction of ν to Zd.

2.2. Wiener Amalgam Spaces. For the sampling problem we also need to con-
trol the local behavior of functions so that the sampling operation f 7→ (f(xj))j∈J is
at least well defined. This is done conveniently with the help of the Wiener amalgam
spaces W (Lpν). These consist of functions that are “locally in L∞ and globally in Lpν .”
To be precise, a measurable function f belongs to W (Lpν), 1 ≤ p <∞, if it satisfies

(2.3) ‖f‖pW (Lpν) =
∑

k∈Zd
ess sup{|f(x+ k)|p ν(k)p;x ∈ [0, 1]d} <∞.

If p =∞, a measurable function f belongs to W (L∞ν ) if it satisfies

(2.4) ‖f‖W (L∞ν ) = sup
k∈Zd
{ess sup{|f(x+ k)| ν(k);x ∈ [0, 1]d}} <∞.

Note that W (L∞ν ) coincides with L∞ν .
Endowed with this norm, W (Lpν) becomes a Banach space [43, 45]. Moreover, it

is translation invariant; i.e., if f ∈W (Lpν), then f(· − y) ∈W (Lpν) and

‖f(· − y)‖W (Lpν) ≤ Cω(y) ‖f‖W (Lpν) .



594 AKRAM ALDROUBI AND KARLHEINZ GRÖCHENIG

The subspace of continuous functions W0(Lpν) = W (C,Lpν) ⊂ W (Lpν) is a closed
subspace of W (Lpν) and thus also a Banach space [43, 45]. We have the following
inclusions between the various spaces.

Theorem 2.1. Let ν be ω-moderate and 1 ≤ p ≤ q ≤ ∞. Then the following
inclusions hold:

(i) W0(Lpν) ⊂W0(Lqν) and W (Lpν) ⊂W (Lqν) ⊂ Lqν .
(ii) W0(Lpω) ⊂W0(Lpν), W (Lpω) ⊂W (Lpν), and Lpω ⊂ Lpν .
The following convolution relations in the style of Young’s theorem [118] are

useful.
Theorem 2.2. Let ν be ω-moderate.
(i) If f ∈ Lpν and g ∈ L1

ω, then f ∗ g ∈ Lpν and

‖f ∗ g‖Lpν ≤ C ‖f‖Lpν ‖g‖L1
ω
.

(ii) If f ∈ Lpν and g ∈W (L1
ω), then f ∗ g ∈W (Lpν) and

‖f ∗ g‖W (Lpν) ≤ C ‖f‖Lpν ‖g‖W (L1
ω) .

(iii) If c ∈ `pν and d ∈ `1ω, then c ∗ d ∈ `pν and

‖c ∗ d‖`pν ≤ C ‖c‖`pν ‖d‖`1ω .
Remark 2.1. Amalgam spaces and their generalizations have been investigated

by Feichtinger, and the results of Theorem 2.1 can be found in [42, 43, 45, 44]. The
results and methods developed by Feichtinger can also be used to deduce Theorem
2.2. However, for the sake of completeness, in section 2.4 we present direct proofs of
Theorems 2.1 and 2.2 that do not rely on the deep results of amalgam spaces.

2.3. Shift-Invariant Spaces. This section discusses shift-invariant spaces and
their basic properties. Although some of the following observations are known in
wavelet and approximation theory, they have received little attention in connection
with sampling.

Given a so-called generator φ, we consider shift-invariant spaces of the form

(2.5) V pν (φ) =




∑

k∈Zd
ckφ(· − k) : c ∈ `pν



 .

If ν = 1, we simply write V p(φ). The weight function ν controls the decay or growth
rate of the functions in V pν (φ). To some extent, the parameter p also controls the
growth of the functions in V pν (φ), but more importantly, p controls the norm we
wish to use for measuring the size of our functions. For some applications in image
processing, the choice p = 1 is appropriate [36]; p = 2 corresponds to the energy norm,
and p = ∞ is used as a measure in some quality control applications. Moreover, the
smoothness of a function and its appropriate value of p, 1 ≤ p <∞, for a given class
of signals or images can be estimated using wavelet decomposition techniques [36].
The determination of p and the signal smoothness are used for optimal compression
and coding of signals and images.

For the spaces V pν (φ) to be well defined, some additional conditions on the gen-
erator φ must be imposed. For ν = 1 and p = 2, the standard condition in wavelet
theory is often stated in the Fourier domain as

(2.6) 0 < m ≤ âφ(ξ) =
∑

j∈Zd
|φ̂(ξ + j)|2 ≤M <∞ for almost every ξ,
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for some constants m > 0 and M > 0 [80, 81]. This condition implies that V 2(φ) is a
closed subspace of L2 and that

{
φ(· − k) : k ∈ Zd

}
is a Riesz basis of V 2(φ), i.e., the

image of an orthonormal basis under an invertible linear transformation [33].
The theory of Riesz bases asserts the existence of a dual basis. Specifically, for any

Riesz basis for V 2(φ) of the form
{
φ(· − k) : k ∈ Zd

}
, there exists a unique function

φ̃ ∈ V 2(φ) such that {φ̃(· − k) : k ∈ Zd} is also a Riesz basis for V 2(φ) and such that
φ̃ satisfies the biorthogonality relation

〈φ̃(·), φ(· − k)〉 = δ(k),

where δ(0) = 1 and δ(k) = 0 for k 6= 0. Since the dual generator φ̃ belongs to V 2(φ),
it can be expressed in the form

(2.7) φ̃(·) =
∑

k∈Zd
bkφ(· − k) .

The coefficients bk are determined explicitly by the Fourier series

∑

k∈Zd
bke

2πikξ =


∑

k∈Zd

∣∣∣φ̂(ξ + k)
∣∣∣
2



−1

;

i.e., (bk) is the inverse Fourier transform of (
∑
k∈Zd |φ̂(ξ + k)|2)−1 (see, for example,

[8, 9]). Since aφ(ξ)−1 ≤ 1/m by (2.6), the sequence (bk) exists and belongs to `2(Zd).
In order to handle general shift-invariant spaces V pν (φ) instead of V 2(φ), we need

more information about the dual generator. The following result is one of the central
results in this paper and is essential for the treatment of general shift-invariant spaces.

Theorem 2.3. Assume that (1) φ ∈ W (L1
ω) and that (2)

{
φ(· − k) : k ∈ Zd

}
is

a Riesz basis for V 2(φ). Then the dual generator φ̃ is in W (L1
ω).

As a corollary, we obtain the following theorem.
Theorem 2.4. Assume that φ ∈W (L1

ω) and ν is ω-moderate.
(i) The space V pν (φ) is a subspace (not necessarily closed) of Lpν and W (Lpν) for

any p with 1 ≤ p ≤ ∞.
(ii) If

{
φ(· − k) : k ∈ Zd

}
is a Riesz basis of V 2(φ), then there exist constants

mp > 0,Mp > 0 such that

(2.8) mp ‖c‖`pν ≤

∥∥∥∥∥∥
∑

k∈Zd
ckφ(· − k)

∥∥∥∥∥∥
Lpν

≤Mp ‖c‖`pν ∀c ∈ `pν(Zd)

is satisfied for all 1 ≤ p ≤ ∞ and all ω-moderate weights ν. Consequently,{
φ(· − k) : k ∈ Zd

}
is an unconditional basis for V pν (φ) for 1 ≤ p <∞, and

V pν (φ) is a closed subspace of Lpν and W (Lpν) for 1 ≤ p ≤ ∞.
The theorem says that the inclusion in Theorem 2.4(i) and the norm equivalence

(2.8) hold simultaneously for all p and all ω-moderate weights, provided that they hold
for the Hilbert space V 2(φ). But in V 2(φ), the Riesz basis property (2.8) is much
easier to check. In fact, it is equivalent to inequalities (2.6). Inequalities (2.8) imply
that `pν and V pν (φ) are isomorphic Banach spaces and that the set

{
φ(· − k) : k ∈ Zd

}

is an unconditional basis of V pν (φ). In approximation theory we say that φ has stable
integer translates and is a stable generator [67, 68, 69]. When ν = 1 the conclusion
(2.8) of Theorem 2.4 is well known and can be found in [67, 68, 69].
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As a corollary of Theorem 2.4, we obtain the following inclusions among shift-
invariant spaces.

Corollary 2.5. Assume that φ ∈W (L1
ω) and that ν is ω-moderate. Then

V 1
ω (φ) ⊂ V pω (φ) ⊂ V qω (φ) for 1 ≤ p ≤ q ≤ ∞

and

V qω (φ) ⊂ V qν (φ) for 1 ≤ q ≤ ∞.

2.4. Proof of Theorems. We begin with the following properties of weight func-
tions.

Lemma 2.6. Let K be a compact subset of Rd and let ν be an ω-moderate weight.
Then there exists a constant C1 > 0 such that

C−1
1 ν(j) ≤ ν(x+ j) ≤ C1ν(j) ∀j ∈ Zd, ∀x ∈ K.

Proof. Using the submultiplicative property, we have

ν(x+ j) ≤ Cω(x)ν(j)

and

ν(j) = ν(x+ j − x) ≤ Cν(x+ j)ω(−x) .

We may take C1 = C maxx∈K ω(x), since ω is continuous and symmetric and K is
compact.

As a consequence of Lemma 2.6 and the definition of W (Lpν) we obtain a slightly
different characterization of the amalgam spaces.

Corollary 2.7. The following are equivalent.
(i) f ∈W (Lpν).

(ii) |f | ≤ ∑
k∈Zd ckχ[0,1]d(· − k) a.e. for some c ∈ `pν , for instance, ck =

ess supx∈[0,1]d |f(x+ k)|.
In the corollary above, we used the standard notation χ[0,1]d to denote the char-

acteristic function of [0, 1]d.
Proof (of Theorem 2.1). Write bl = ess supx∈[0,1]d |f(x+ l)ν(l)|. Then ‖b‖`p =

‖f‖W (Lpν) for 1 ≤ p ≤ ∞. Therefore, the inclusions W0(Lpν) ⊂ W0(Lqν) and W (Lpν) ⊂
W (Lqν) in (i) follow immediately from the inclusion `p ⊂ `q when 1 ≤ p ≤ q ≤ ∞.
The inclusion W0(Lpν) ⊂W (Lpν) is obvious.

Next, using Lemma 2.6, we deduce that

(2.9)

∫

Rd
|f(x)ν(x)|p dx =

∫

[0,1]d

∑

j∈Zd
|f(x+ j)ν(x+ j)|p dx

≤ C1

∫

[0,1]d

∑

j∈Zd
|f(x+ j)ν(j)|p dx ≤ C1 ‖f‖pW (Lpν)

holds for 1 ≤ p <∞. Consequently, the inclusion W (Lpν) ⊂ Lpν holds.
Similarly, for p =∞ we have

(2.10)

‖fν‖L∞ = sup
j∈Zd
{ess sup{|f(x+ j)ν(x+ j)| : x ∈ [0, 1]d}}

≤ C1 sup
j∈Zd
{ess sup{|f(x+ j)ν(j)| : x ∈ [0, 1]d}}

= C1 ‖f‖W (L∞ν ).
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The inclusion Lpω ⊂ Lpν follows immediately from the inequality ν(x) ≤ Cν(0)ω(x)
for all x ∈ Rd. Likewise, the inclusion W (Lpω) ⊂W (Lpν) follows from `pω ⊂ `pν .

Proof (of Theorem 2.2). To prove (i), let f ∈ Lpν , g ∈ L1
ω, and 1 ≤ p ≤ ∞. Then

using the fact that ν(x) = ν(x− y + y) ≤ Cν(x− y)ω(y), we have

(2.11)

|(f ∗ g)(x)| ν(x) =
∣∣∣∣
∫

Rd
g(y)f(x− y)dy

∣∣∣∣ ν(x)

≤ C
∫

Rd
|g(y)|ω(y) |f(x− y)| ν(x− y)dy

≤ C(|g|ω ∗ |f | ν)(x).

From the pointwise estimate above and Young’s inequality for the convolution of an
L1 function with an Lp function, it follows that

‖(f ∗ g)ν‖Lp ≤ C ‖fν‖Lp ‖gω‖L1 .

Thus f ∗ g ∈ Lpν and ‖f ∗ g‖Lpν ≤ C ‖f‖Lpν ‖g‖L1
ω

.
To prove (ii), consider first the case g = χ[0,1]d for 1 ≤ p < ∞. Write bk =

ess supx∈[0,1]d |f ∗ χ[0,1]d(x+ k)|. Then, using Hölder’s inequality, we obtain

bpk ≤ ess supx∈[0,1]d

∣∣∣∣∣

∫

[0,1]d
|f(x+ k − y)| dy

∣∣∣∣∣

p

≤
∫

[0,1]d−[0,1]d
|f(k − y)|p dy.

Using Lemma 2.6 with K = [0, 1]d − [0, 1]d = [−1, 1]d, it follows that

(2.12)
‖b‖p`pν ≤

∫

[0,1]d−[0,1]d

∑

k∈Zd
|f(k − y)|p |ν(k)|pdy

≤ C1
∫

[0,1]d
∑
k∈Zd

|f(k − y)|p |ν(k − y)|pdy = C1 ‖f‖pLpν .

Thus we have
∥∥f ∗ χ[0,1]d

∥∥
W (Lpν)

≤ C ‖f‖Lpν .
For general g ∈W (L1

ω) we use the representation of Corollary 2.7, which implies
that |g| ≤∑k∈Zd ckχ[0,1]d(· − k) and ‖c‖`1ω = ‖g‖W (L1

ω). We estimate

|f ∗ g| ≤ |f | ∗ |g| ≤
∑

k∈Zd
ck
(
|f | ∗ χ[0,1]d

)
(· − k),

and consequently

‖f ∗ g‖W (Lpν) ≤
∑

k∈Zd
ck
∥∥|f | ∗ χ[0,1]d(· − k)

∥∥
W (Lpν)

≤ C2

∑

k∈Zd
ck ω(k) ‖f‖Lpν .

The last inequality implies

‖f ∗ g‖W (Lpν) ≤ C2 ‖f‖Lpν ‖g‖W (L1
ω) .

The case p =∞ is proved in a similar fashion.
The proof of (iii) is similar to the proof of (i).
To finish the proofs of this section, we need the following three lemmas.
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Lemma 2.8. If φ ∈W (L1
ω) then the autocorrelation sequence

(2.13) ak =
∫

Rd
φ(x)φ(x− k)dx

belongs to `1ω, and we have

‖a‖`1ω ≤ C ‖φ‖
2
W (L1

ω) .

Proof. Write bk = ess supx∈[0,1]d |φ(x+ k)| and b∨k = b−k = ess supx∈[0,1]d |φ(x− k)|.
Then ‖φ‖W (L1

ω) = ‖b‖`1ω = ‖b∨‖`1ω and

|ak| ≤
∫

Rd
|φ(x)| |φ(x− k)| dx

≤
∫

[0,1]d

∑

j∈Zd
|φ(x+ j)| |φ(x+ j − k)|dx ≤

∑

j∈Zd
bjbj−k

= (b ∗ b∨)(k).

Theorem 2.2(iii) implies that ‖a‖`1ω ≤ C‖b‖
2
`1ω

= C ‖φ‖2W (L1
ω)

Lemma 2.9. If φ ∈ W (L1
ω) and c ∈ `pν , then the function f =

∑
k∈Zd ckφ(x− k)

belongs to W (Lpν) and

‖f‖W (Lpν) ≤ C ‖c‖`pν ‖φ‖W (L1
ω) .

Proof. Write bk = ess supx∈[0,1]d |φ(x+ k)|, dk = ess supx∈[0,1]d |f(x+ k)|. Then
‖φ‖W (L1

ω) = ‖b‖`1ω and ‖f‖W (Lpν) = ‖d‖`pν , and we have

dk = ess supx∈[0,1]d

∣∣∣∣∣∣
∑

j∈Zd
cjφ(x+ k − j)

∣∣∣∣∣∣
≤
∑

j∈Zd
|cj | bk−j = (|c| ∗ b)(k).

Theorem 2.2(iii) then implies that ‖d‖`pν ≤ C ‖c‖`pν ‖b‖`1ω ; in other words, ‖f‖W (Lpν) ≤
C‖c‖`pν ‖φ‖W (L1

ω).
Lemma 2.10. If f ∈ Lpν and g ∈ W (L1

ω), then the sequence d defined by dk =∫
Rd f(x)g(x− k)dx belongs to `pν and we have

‖d‖`pν ≤ C ‖f‖Lpν ‖g‖W (L1
ν) , 1 ≤ p ≤ ∞ .

Remark 2.2. The fact that the autocorrelation sequence in Lemma 2.8 belongs
to `1ω is a direct consequence of Lemma 2.10.

Proof. Since g ∈ W (L1
ω) ⊂ Lp

′

1/ν by Theorem 2.1 and f ∈ Lpν , the terms dk are
well defined. For 1 ≤ p <∞ we have

|dkν(k)|p =
∣∣∣∣
∫

Rd
f(x)g(x− k)ν(k)dx

∣∣∣∣
p

≤



∫

[0,1]d

∑

j∈Zd
|f(x+ j)| |g(x+ j − k)ν(k)|dx



p

≤
∫

[0,1]d


∑

j∈Zd
|f(x+ j)| |g(x+ j − k)ν(k)|



p

dx.
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We sum over k and apply Theorem 2.2(iii) to the sequences {f(x + j) : j ∈ Zd} and
{g(x− j) : j ∈ Zd} for fixed x ∈ Rd, and we obtain

‖d‖p
`pν
≤
∫

[0,1]d

∑

k∈Zd

∣∣∣∣∣∣
∑

j∈Zd
|f(x+ j)| |g(x+ j − k)ν(k)|

∣∣∣∣∣∣

p

dx

≤ Cp
∫

[0,1]d

∑

k∈Zd
|f(x+ k)ν(k)|p


∑

k∈Zd
|g(x− k)ω(k)|



p

dx

≤ Cp ‖g‖pW (L1
ω) ‖f‖

p
Lpν
.

The case p =∞ is proved in a similar fashion.
For the proof of Theorem 2.3 we need the following weighted version of Wiener’s

lemma on absolutely convergent Fourier series.
Lemma 2.11. Assume that the submultiplicative weight ω satisfies the so-called

Beurling–Domar condition (mentioned in section 2.1)

(2.14)
∞∑

n=1

logω(nk)
n2 <∞ ∀ k ∈ Zd .

If f(ξ) =
∑
k∈Zd ake

2πikξ is an absolutely convergent Fourier series with coefficient
sequence a = (ak)k∈Zd ∈ `1ω(Zd) and if f(ξ) 6= 0 for all ξ ∈ Rd, then 1

f also has an
absolutely convergent Fourier series 1

f(ξ) =
∑
k∈Zd bke

2πikξ with coefficient sequence
b = (bk)k∈Zd ∈ `1ω(Zd).

Remark 2.3. The unweighted version is a classical lemma of Wiener. The
weighted version is implicit in [38] and stated in [91].

We are now ready to prove Theorem 2.3.
Proof (of Theorem 2.3). We have already seen that the dual generator φ̃ ∈ V 2(φ)

has the expansion

φ̃ =
∑

k∈Zd
bkφ(· − k) ,

where the coefficients bk are the Fourier coefficients of â−1(ξ) = (
∑
k∈Zd |φ̂(ξ+k)|2)−1.

We wish to apply Lemma 2.11 to â. Since {φ(· − k) : k ∈ Zd} is a Riesz basis for
V 2(φ), we have â(ξ) 6= 0 for all ξ ∈ Rd by (2.6). Furthermore, using the Poisson
summation formula, â has the Fourier series

â(ξ) =
∑

k∈Zd
|φ̂(ξ + k)|2 =

∑

k∈Zd
〈φ, φ(· − k)〉e2πikξ .

Consequently, by Lemma 2.8, the Fourier coefficients of â are in `1ω(Zd). Thus the hy-
potheses of Wiener’s lemma are satisfied, and we conclude that the Fourier coefficients
of â−1 are also in `1ω(Zd). Now Lemma 2.9 implies that φ̃ ∈W (L1

ω).
Proof (of Theorem 2.4). Part (i) and the right-hand inequality in (2.8) follow

directly from Lemma 2.9.
To prove the remaining statements, we consider the operator Tφ defined by

(2.15) Tφ c =
∑

k∈Zd
ckφ(· − k) , c ∈ `pν ,
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and the operator T∗
φ̃

defined by

(2.16) (T∗
φ̃
f)k =

∫

Rd
f(x)φ̃(x− k)dx .

Lemma 2.9 implies that Tφ is a bounded map from `pν to Lpν with range V pν (φ).
Furthermore, Lemma 2.10 implies that T∗

φ̃
is a bounded map from Lpν to `pν .

Let f =
∑
k∈Zd ckφ(· − k) ∈ V pν (φ) = Range(Tφ). Since {φ̃(· − k) : k ∈ Zd} is

biorthogonal to {φ(· − k) : k ∈ Zd}, we find that ck = 〈f, φ̃(· − k)〉 = (T∗
φ̃
f)k, or

c = T∗
φ̃
f . Consequently,

(2.17) ‖c‖`pν ≤ ‖T∗φ̃‖op ‖f‖Lpν ,

and we may choose mp = ‖T∗
φ̃
‖−1

op as the lower bound in (2.8). The other statements
of the theorem follow immediately from (2.8).

Proof (of Corollary 2.5). Since ν(k) = ν(k + 0) ≤ Cν(0)ω(k), we immediately
have the inclusions `qω(Zd) ⊂ `qν(Zd). Since

`1ω(Zd) ⊂ `pω(Zd) ⊂ `qω(Zd) ⊂ `qν for 1 ≤ p ≤ q ≤ ∞,
the inequality (2.8) then implies the inclusions

V 1
ω (φ) ⊂ V pω (φ) ⊂ V qω (φ) ⊂ V qν (φ) for 1 ≤ p ≤ q ≤ ∞.

3. The Sampling Problem in Weighted Shift-Invariant Spaces V pν (φ). For
a reasonable formulation of the sampling problem in V pν (φ) the point evaluations
f → f(x) must be well defined. Furthermore, a small variation in the sampling
point should produce only a small variation in the sampling value. As a minimal
requirement, we need the functions in V pν (φ) to be continuous. This is guaranteed by
the following statement.

Theorem 3.1. Assume that φ ∈ W0(L1
ω), that φ satisfies (2.6), and that ν is

ω-moderate.
(i) V pν (φ) ⊂W0(Lpν) for all p, 1 ≤ p ≤ ∞.

(ii) If f ∈ V pν (φ), then we have the norm equivalences

‖f‖Lpν ≈ ‖c‖`pν ≈ ‖f‖W (Lpν) .

(iii) If X = {xj : j ∈ J} is such that infj,l |xj − xl| > 0, then

(3.1)

( ∑

xk∈X
|f(xk)|p |ν(xk)|p

)1/p

≤ Cp ‖f‖Lpν ∀ f ∈ V pν (φ).

In particular, if φ is continuous and has compact support, then the conclusions (i)–(iii)
hold.

A set X = {xj : j ∈ J} satisfying infj,l |xj − xl| > 0 is called separated.
Inequality (3.1) has two interpretations. It implies that the sampling operator

SX : f → f |X is a bounded operator from V pν (φ) into the corresponding sequence
space

`pν(X) =





(cj) :


∑

j∈J
|cj |pν(xj)p




1/p

<∞




.
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Equivalently, the weighted sampling operator SX : f → fν|X is a bounded operator
from V pν (φ) into `p.

To recover a function f ∈ V pν (φ) from its samples, we need a converse of inequality
(3.1). Following Landau [74], we say that X is a set of sampling for V pν (φ) if

(3.2) cp ‖f‖Lpν ≤


∑

xj∈X
|f(xj)|p |ν(xj)|p




1/p

≤ Cp ‖f‖Lpν ,

where cp and Cp are positive constants independent of f .
The left-hand inequality implies that if f(xj) = 0 for all xj ∈ X, then f = 0.

Thus X is a set of uniqueness. Moreover, the sampling operator SX can be inverted on
its range and SX

−1 is a bounded operator from Range(SX) ⊂ `pν(X) to V pν (φ). Thus
(3.2) says that a small change of a sampled value f(xj) causes only a small change of
f . This implies that the sampling is stable or, equivalently, that the reconstruction of
f from its samples is continuous. As pointed out in section 1.1, every set of sampling
is a set of uniqueness, but the converse is not true. For practical considerations and
numerical implementations, only sets of sampling are of interest, because only these
can lead to robust algorithms.

A solution to the sampling problem consists of two parts:
(a) Given a generator φ, we need to find conditions on X, usually in the form

of a density, such that the norm equivalence (3.2) holds. Then, at least in
principle, f ∈ V pν (φ) is uniquely and stably determined by f |X .

(b) We need to design reconstruction procedures that are useful and efficient in
practical applications. The objective is to find efficient and fast numerical
algorithms that recover f from its samples f |X , when (3.2) is satisfied.

Remark 3.1.
(i) The hypothesis that X be separated is for convenience only and is not essen-

tial. For arbitrary sampling sets, we can use adaptive weights to compensate
for the local variations of the sampling density [48, 49]. Let Vj = {x ∈
Rd : |x − xj | ≤ |x − xk| for all k 6= j} be the Voronoi region at xj, and let
γj = λ(Vj) be the size of Vj. Then X is a set of sampling for V pν (φ) if

cp ‖f‖Lpν ≤


∑

xj∈X
|f(xj)|p γj |ν(xj)|p




1/p

≤ Cp ‖f‖Lpν .

In numerical applications the adaptive weights γj are used as a cheap device
for preconditioning and for improving the ratio Cp/cp, the condition number
of the set of sampling [49, 101].

(ii) The assumption that the samples {f(xj) : j ∈ J} can be measured exactly is
not realistic. A better assumption is that the sampled data is of the form

(3.3) gxj =
∫

Rd
f(x)ψxj (x)dx,

where {ψxj : xj ∈ X} is a set of functionals that act on the function f to
produce the data {gxj : xj ∈ X}. The functionals {ψxj : xj ∈ X} may reflect
the characteristics of the sampling devices. For this case, the well-posedness
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condition (3.2) must be replaced by

(3.4) cp ‖f‖Lp ≤


∑

xj∈X

∣∣gxj (f)
∣∣p



1/p

≤ Cp ‖f‖Lp ,

where gxj are defined by (3.3) and where cp and Cp are positive constants
independent of f [1].

3.1. Proof of Theorem 3.1.
Proof. To prove (i), let f =

∑
k∈Zd ckφ(· − k) ∈ V pν (φ). Then Lemma 2.9 implies

that

(3.5) ‖f‖W (Lpν) ≤ C ‖c‖`pν ‖φ‖W (L1
ω) .

To verify the continuity of f in the case 1 ≤ p < ∞, we observe that W (Lpν) ⊂
W (L∞ν ) ⊂ L∞ν and thus

(3.6) ‖f‖L∞ν ≤ C‖f‖W (Lpν) .

Let fn = ν(·)∑|k|≤n ckφ(· − k) be a partial sum of f . Then (3.5) and (3.6) imply
that

‖f − fn‖L∞ν ≤ C‖φ‖W (L1
ω)


∑

|k|>n
|ck|pν(k)p




1/p

.

Therefore, the sequence of continuous functions νfn converges uniformly to the con-
tinuous function νf . Since ν is positive and continuous, f must be continuous as
well.

To treat the case p =∞ we choose a sequence φn of continuous functions with
compact support such that ‖φ−φn‖W (L1

ω) 7→ 0 as n→∞. Set fn(x) =
∑
k∈Z ckφn(x− k).

Since the sum is locally finite, each fn is continuous. Using (3.5) we estimate

‖f − fn‖L∞ν ≤ C‖c‖`∞ν ‖φ− φn‖W (L1
ω) → 0.

It follows that the sequence fnν converges uniformly to fν. Thus f is continuous as
well.

Regarding the proof of (ii), the norm equivalence ‖f‖Lpν ≈ ‖c‖`pν was proved
earlier in Theorem 2.4. Theorem 2.1 implies that ‖f‖Lpν ≤ C ‖f‖W (Lpν). Finally, if
f =

∑
k ckφ(· − k) ∈ V pν (φ), then we obtain

‖f‖W (Lpν) ≤ C ‖c‖`pν ‖φ‖W (L1
ω) ≤ C1 ‖f‖Lpν

by Lemma 2.9 and (2.8). This proves that ‖f‖Lpν and ‖f‖W (Lpν) are equivalent norms
on V pν (φ).

For the proof (iii), if infj,l |xj − xl| = δ > 0, then there are at most N = N(δ)
sampling points in every cube k + [0, 1]d. Thus, using Lemma 2.6, we obtain

∑

xj∈k+[0,1]d
|f(xj)|p |ν(xj)|p ≤ N sup

x∈[0,1]d
|f(x+ k)|p |ν(x+ k)|p

≤ CN sup
x∈[0,1]d

|f(x+ k)|p |ν(k)|p .
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Taking the sum over k ∈ Zd and applying the norm equivalence proved in (ii), we
obtain

∑

xj∈X
|f(xj)|p |ν(xj)|p ≤ CN

∑

k∈Zd
sup

x∈[0,1]d
|f(x+ k)|p |ν(k)|p

= NC1 ‖f‖pW (Lpν)

≤ C2 ‖f‖Lpν
for all f ∈ V pν (φ).

4. Reproducing Kernel Hilbert Spaces, Frames, and Nonuniform Sampling.
As mentioned in the introduction, results of Paley and Wiener and Kadec relate Riesz
bases consisting of complex exponentials to sampling sets that are perturbations of
Z. More generally, the appropriate concept for arbitrary sets of sampling in shift-
invariant spaces is the concept of frames discussed in section 4.2. Frame theory
generalizes and encompasses the theory of Riesz bases and enables us to translate
the sampling problem into a problem of functional analysis. The connection between
frames and sets of sampling is established by means of reproducing kernel Hilbert
spaces (RKHSs), discussed in the next section. Frames are introduced in section 4.2,
and the relation between RKHSs, frames, and sets of sampling is developed in section
4.3.

4.1. RKHSs. Theorem 3.1(iii) holds for arbitrary separated sampling sets, so in
particular Theorem 3.1(iii) shows that all point evaluations f → f(x) are continuous
linear functionals on V pν (φ) for all x ∈ Rd. Since V pν (φ) ⊂ Lpν and the dual space of
Lpν is Lp

′

1/ν , where 1/p+ 1/p′ = 1, there exists a function Kx ∈ Lp
′

1/ν such that

f(x) = 〈f,Kx〉 =
∫

Rd
f(t)Kx(t) dt

for all f ∈ V pν (φ). In addition, it will be shown that Kx ∈ V p
′

1/ν(φ).
In the case of a Hilbert space H of continuous functions on Rd, such as V 2(φ), the

following terminology is used. A Hilbert space is an RKHS [117] if, for any x ∈ Rd,
the pointwise evaluation f → f(x) is a bounded linear functional on H. The unique
functions Kx ∈ H satisfying f(x) = 〈f,Kx〉 are called the reproducing kernels of H.

With this terminology we have the following consequence of Theorem 3.1.
Theorem 4.1. Let ν be ω-moderate. If φ ∈ W0(L1

ω), then the evaluations f →
f(x) are continuous functionals, and there exist functions Kx ∈ V 1

ω (φ) such that
f(x) = 〈f,Kx〉. The kernel functions are given explicitly by

(4.1) Kx(y) =
∑

k∈Zd
φ(x− k) φ̃(y − k).

In particular, V 2(φ) is an RKHS.
The above theorem is a reformulation of Theorem 3.1. We only need to prove

the formula for the reproducing kernel. Note that Kx in (4.1) is well defined: since
φ̃ ∈ W0(L1

ω), Theorem 2.3 combined with Theorem 3.1(iii) implies that the sequence
{φ̃(x − k) : k ∈ Zd} belongs to `1ω. Thus, by the definition of V 1

ω (φ), we have Kx ∈
V 1
ω (φ), and so Kx ∈ V pν (φ) for any p with 1 ≤ p ≤ ∞ and any ω-moderate weight ν.

Furthermore, Kx is clearly the reproducing kernel, because if f(x) =
∑
k ckφ(x− k),
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then

〈f,Kx〉 =
∑

j,k

cjφ(x− k)〈φ(· − j), φ̃(· − k)〉 =
∑

k

ckφ(x− k) = f(x) .

4.2. Frames. In order to reconstruct a function f ∈ V pν (φ) from its samples
f(xj), it is sufficient to solve the (infinite) system of equations

(4.2)
∑

k∈Zd
ckφ(xj − k) = f(xj)

for the coefficients (ck). If we introduce the infinite matrix U with entries

(4.3) Ujk = φ(xj − k)

indexed by X × Zd, then the relation between the coefficient sequence c and the
samples is given by

Uc = f |X .

Theorem 3.1(ii) and (iii) imply that f |X ∈ `pν(X). Thus U maps `pν(Zd) into
`pν(X).

Since f(x) = 〈f,Kx〉, the sampling inequality (3.2) implies that the set of re-
producing kernels {Kxj , xj ∈ X} spans V p

′

1/ν . This observation leads to the following
abstract concepts.

A Hilbert frame (or simply a frame) {ej : j ∈ J} of a Hilbert space H is a
collection of vectors in H indexed by a countable set J such that

(4.4) A ‖f‖2H ≤
∑

j

|〈f, ej〉|2 ≤ B ‖f‖2H

for two constants A,B > 0 independent of f ∈ H [40].
More generally, a Banach frame for a Banach space B is a collection of functionals

{ej : j ∈ J} ⊂ B∗ with the following properties [54].
(a) There exists an associated sequence space Bd on the index set J , such that

A‖f‖B ≤ ‖(〈f, ej〉)j∈J‖Bd ≤ B‖f‖B

for two constants A,B > 0 independent of f ∈ B.
(b) There exists a so-called reconstruction operator R from Bd into B, such that

R((〈f, ej〉)j∈J ) = f.

4.3. Relations between RKHSs, Frames, and Nonuniform Sampling. The fol-
lowing theorem translates the different terminologies that arise in the context of sam-
pling theory [2, 40, 74].
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Theorem 4.2. The following are equivalent:
(i) X = {xj : j ∈ J} is a set of sampling for V pν (φ).

(ii) For the matrix U in (4.3), there exist a, b > 0 such that

a ‖c‖`pν ≤ ‖Uc‖`pν(X) ≤ b ‖c‖`pν ∀ c ∈ `
p
ν .

.(iii) There exist positive constants a > 0 and b > 0 such that

a ‖f‖Lpν ≤


∑

xj∈X
|f(xj)|p |ν(xj)|p




1/p

≤ b ‖f‖Lpν ∀ f ∈ V
p
ν (φ).

(iv) For p = 2, the set of reproducing kernels {Kxj : xj ∈ X} is a (Hilbert) frame
for V 2(φ).

Remark 4.1.
(i) The relation between RKHSs and uniform sampling of bandlimited functions

was first reported by Yao [117] and used to derive interpolating series similar
to (1.1). For the case of shift-invariant spaces, this connection was established
in [9]. Sampling for functions in RKHSs was studied in [84]. For the general
case of nonuniform sampling in shift-invariant spaces, the connection was
established in [5].

(ii) The relation between Hilbert frames and sampling of bandlimited functions is
well known [14, 48]. Sampling in shift-invariant spaces is more recent, and
the relation between frames and sampling in shift-invariant spaces (with p = 2
and ν = 1) can be found in [5, 30, 75, 77, 102].

(iii) The relation between Hilbert frames and the weighted average sampling men-
tioned in Remark 3.1 can be found in [1]. This relation is obtained via kernels
that generalize the RKHS.

5. Frame Algorithms for Lpν -Spaces. Theorem 4.2 states that a separated set
X = {xj : j ∈ J} is a set of sampling for V 2(φ) if and only if the set of reproducing
kernels {Kxj : xj ∈ X} is a frame for V 2(φ). It is well known from frame theory that
there exists a dual frame {K̃xj : xj ∈ X} ⊂ V 2(φ) that allows us to reconstruct the
function f ⊂ V 2(φ) explicitly as

(5.1) f(x) =
∑

j∈J
〈f,Kxj 〉K̃xj (x) =

∑

j∈J
f(xj)K̃xj (x).

However, a dual frame {K̃xj : xj ∈ X} is difficult to find in general, and this method
for recovering a function f ∈ V 2(φ) from its samples {f(xj) : xj ∈ X} is often not
practical.

Instead, the frame operator

(5.2) T f(x) =
∑

j∈J
〈f,Kxj 〉Kxj (x) =

∑

j∈J
f(xj)Kxj (x)

can be inverted via an iterative that we now describe. The operator I− 2
A+B T is

contractive, i.e., the operator norm on L2(Rd) satisfies the estimate
∥∥∥∥I− 2

A+B
T
∥∥∥∥

op
≤ B −A
A+B

< 1 ,
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where A,B are frame bounds for {Kxj : xj ∈ X}. Thus, 2
A+B T can be inverted by

the Neumann series

A+B

2
T−1 =

∞∑

n=0

(
I− 2

A+B
T
)n

.

This analysis gives the iterative frame reconstruction algorithm, which is made up of
an initialization step

f1 =
∑

j∈J
f(xj)Kxj

and iteration

(5.3) fn =
2

A+B
f1 +

(
I− 2

A+B
T
)
fn−1.

As n→∞, the iterative frame algorithm (5.3) converges to f∞ = T−1 f1 = T−1 T f =
f .

Remark 5.1.
(i) The computation of T requires the computation of the reproducing frame func-

tions {Kxj : xj ∈ X}, which is a difficult task. Moreover, for each sam-
pling set X we need to compute a new set of reproducing frame functions
{Kxj : xj ∈ X}.

(ii) Even if the frame functions {Kxj : xj ∈ X} are known, the performance of
the frame algorithm depends sensitively on estimates for the frame bounds.
Since accurate and explicit frame bounds, let alone optimal ones, are hardly
ever known for nonuniform sampling problems, the frame algorithm converges
very slowly in general. For efficient numerical computations involving frames,
the primitive iteration (5.3) should therefore be replaced almost always by
acceleration methods, such as Chebyshev or conjugate gradient acceleration.
In particular, conjugate gradient methods converge at the optimal rate, even
without any knowledge of the frame bounds [49, 56].

(iii) The convergence of the frame algorithm is guaranteed only in L2, even if the
function belongs to other spaces Lpν . It is a remarkable fact that in Hilbert
space the norm equivalence (4.4) alone guarantees that the frame operator is
invertible. In Banach spaces the situation is much more complicated and the
existence of a reconstruction procedure must be postulated in the definition of
a Banach frame. In the special case of sampling in shift-invariant spaces, the
frame operator T is invertible on all V pν (φ) whenever T is invertible on V 2(φ)
and φ possesses a suitable polynomial decay [57].

6. Iterative Reconstruction Algorithms. Since the iterative frame algorithm is
often slow to converge and its convergence is not even guaranteed beyond V 2(φ),
alternative reconstruction procedures have been designed [4, 76]. These procedures
are also iterative and based on a Neumann series. For the sake of exposition, the
proofs of the results of this section and the next section are postponed to section 8.

The first step is to approximate the function f from its samples {f(xj) : xj ∈ X}
using an interpolation or a quasi-interpolation QX f . For example, QX f could be a
piecewise linear interpolation of the samples f |X or even an approximation by step
functions, the so-called sample-and-hold interpolant.
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The approximation QX f is then projected in the space V pν (φ) to obtain the first
approximation f1 = P QX f ∈ V pν (φ). The error e = f − f1 between the functions
f and f1 belongs to the space V pν (φ). Moreover, the values of e on the sampling
set X can be calculated from {f(xj) : xj ∈ X} and (P QX f)(xj). Then we repeat
the interpolation-projection procedure on e and obtain a correction e1. The updated
estimate is now f2 = f1 + e1. By repeating this procedure, we obtain a sequence
fn = f1 + e1 + e2 + e3 + · · ·+ en−1 that converges to the function f .

In order to prove convergence results for this type of algorithm, we need the
sampling set to be dense enough. The appropriate definition for the sampling density
of X is again due to Beurling.

Definition 6.1. A set X = {xj : j ∈ J} is γ0-dense in Rd if

(6.1) Rd =
⋃

j

Bγ(xj) ∀ γ > γ0 .

This definition implies that the distance of any sampling point to its nearest
neighbor is at most 2γ0. Thus, strictly speaking, γ0 is the inverse of a density; i.e.,
if γ0 increases, the number of points per unit cube decreases. In fact, if a set X is
γ0-dense, then its Beurling density defined by (1.2) satisfies D(X) ≥ γ−1

0 . This last
relation states that γ0-density imposes more constraints on a sampling set X than
the Beurling density D(X).

To create suitable quasi-interpolants, we proceed as follows. Let {βj}j∈J be a
partition of unity such that

(1) 0 ≤ βj ≤ 1 for all j ∈ J ;
(2) supp βj ⊂ Bγ(xj); and
(3)

∑
j∈J βj = 1.

A partition of unity that satisfies these conditions is sometimes called a bounded
partition of unity. Then the operator QX defined by

QX f =
∑

j∈J
f(xj)βj

is a quasi-interpolant of the sampled values f |X .
In this situation we have the following qualitative statement.
Theorem 6.1. Let φ in W0(L1

ω) and let P be a bounded projection from Lpν onto
V pν (φ). Then there exists a density γ > 0 (γ = γ(ν, p,P)) such that any f ∈ V pν (φ) can
be recovered from its samples {f(xj) : xj ∈ X} on any γ-dense set X = {xj : j ∈ J}
by the iterative algorithm

(6.2)
{
f1 = P QX f,
fn+1 = P QX(f − fn) + fn.

Then iterates fn converge to f uniformly and in the W (Lpν)- and Lpν-norms. The
convergence is geometric, that is,

‖f − fn‖Lpν ≤ C ‖f − fn‖W (Lpν) ≤ C ′ ‖f − f1‖Lpν α
n,

for some α = α(γ) < 1.
The algorithm based on this iteration is illustrated in Figure 6.1. Figure 6.2 shows

the reconstruction of a function f by means of this algorithm, and Figure 6.3 shows
the reconstruction of an MRI image with missing data.

Remark 6.1. For ν = 1, Theorem 6.1 was proved in [4]. For a special case of the
weighted average sampling mentioned in Remark 3.1, a modified iterative algorithm
and a theorem similar to Theorem 6.1 can be found in [1].
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Fig. 6.1 The iterative reconstruction algorithm of Theorem 6.1.
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Fig. 6.2 Reconstruction of a function f with ‖f‖2 ≈ 3.5 using the iteration algorithm (6.2) of
Theorem 6.1. Top left: Function f belonging to the shift-invariant space generated by the
Gaussian function e−x

2/2σ2
, σ ≈ 0.81, and its sample values {f(xj) : xj ∈ X} marked

by + (density γ ≈ 0.8). Top right: Error ‖f − fn‖L2 against the number of iterations.
Bottom left: Final error f − fn after 10 iterations. Bottom right: Reconstructed function
f10 (continuous line) and original samples {f(xj) : xj ∈ X}.

Universal Projections in Weighted Shift-Invariant Spaces. Theorem 6.1
requires bounded projections from Lpν onto V pν (φ). In contrast to the situation in
Hilbert space, the existence of bounded projections in Banach spaces is a difficult
problem. In the context of nonuniform sampling in shift-invariant spaces, we would
like the projections to satisfy additional requirements. In particular, we would like
projectors that can be implemented with fast algorithms. Further, it would be useful
to find a universal projection, i.e., a projection that works simultaneously for all Lpν ,
1 ≤ p ≤ ∞, and all weights ν. In shift-invariant spaces such universal projections do
indeed exist.
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Fig. 6.3 Missing data reconstruction. Top left: Original digital MRI image with 128×128 samples.
Top right: MRI image with 50% randomly missing samples. Bottom left: Reconstruction
using the iterative reconstruction algorithm (6.2) of Theorem 6.1. The corresponding shift-
invariant space is generated by φ(x, y) = β3(x)× β3(y), where β3 = χ[0,1] ∗ χ[0,1] ∗ χ[0,1] ∗
χ[0,1] is the B-spline function of degree 3.

Theorem 6.2. Assume φ ∈W0(L1
ω). Then the operator

P : f →
∑

k∈Zd
〈f, φ̃(· − k)〉φ(· − k)

is a bounded projection from Lpν onto V pν (φ) for all p, 1 ≤ p ≤ ∞, and all ω-moderate
weights ν.

Remark 6.2. The operator P can be implemented using convolutions and sam-
pling. Thus the universal projector P can be implemented with fast “filtering” algo-
rithms [3].

7. Reconstruction in Presence of Noise. In practical applications the given
data are rarely the exact samples of a function f ∈ V pν (φ). We assume more generally
that f belongs to W0(Lpν); then the sampling operator f 7→ {f(xj) : xj ∈ X} still
makes sense and yields a sequence in `pν(X). Alternatively, we may assume that
f ∈ V pν (φ), but that the sampled sequence is a noisy version of {f(xj) : xj ∈ X},
e.g., that the sampling sequence has the form {f ′xj = f(xj) + ηj} ∈ `pν(X). If a
reconstruction algorithm is applied to noisy data, then the question arises whether
the algorithm still converges, and if it does, to which limit it converges.

To see what is involved, we first consider sampling in the Hilbert space V 2(φ).
Assume that X = {xj : j ∈ J} is a set of sampling for V 2(φ). Then the set of
reproducing kernels {Kxj : xj ∈ X} forms a frame for V 2(φ), and so f ∈ V 2(φ) can
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be reconstructed from the samples f(xj) = 〈f,Kxj 〉 with the help of the dual frame
{K̃xj : xj ∈ X} ⊂ V 2(φ) in the form of the expansion

(7.1) f =
∑

j∈J
〈f,Kxj 〉K̃xj =

∑

j∈J
f(xj)K̃xj .

If f 6∈ V 2(φ), but f ∈ W0(L2), say, then f(xj) 6= 〈f,Kxj 〉 in general. However, the
coefficients 〈f,Kxj 〉 still make sense for f ∈ L2 and the frame expansion (7.1) still
converges. The following result describes the limit of this expansion when f 6∈ V 2(φ).

Theorem 7.1. Assume that X ⊂ Rd is a set of sampling for V 2(φ) and let P be
the orthogonal projection from L2 onto V 2(φ). Then

P f =
∑

j∈J
〈f,Kxj 〉K̃xj

for all f ∈ L2.
The previous theorem suggests a procedure for sampling: the function f is first

“prefiltered” with the reproducing kernel Kx to obtain the function fa defined by
fa(x) = 〈f,Kx〉 for all x ∈ Rd. Sampling fa on X then gives a sequence of inner
products fa(xj) = 〈f,Kxj 〉. The reconstruction (7.1) of fa is then the least square
approximation of f by a function fa ∈ V 2(φ). In the case of bandlimited functions,
we have φ(x) = sinπx/(πx) and Kx(t) = sinπ(t−x)

π(t−x) . Then the inner product fa(x) =
〈f,Kx〉 = f ∗ φ(x) is just a convolution. The filtering operation corresponds to a
restriction of the bandwidth to [−1/2, 1/2], because (f ∗ φ)̂ = f̂ · χ[−1/2,1/2], and is
usually called prefiltering to reduce aliasing.

In practical situations, any sampling sequence is perturbed by noise. This per-
turbation can be modeled in several equivalent ways. (a) The function f ∈ V 2(φ) is
sampled on X, and then noise ηj ∈ `2 is added, resulting in a sequence f ′j = f(xj)+ηj .
(b) We start with an arbitrary sequence f ′j ∈ `2(X). (c) We sample a function
f ∈W0(L2), which is not necessarily in V 2(φ).

In this situation, we wish to know what happens if we run the frame algorithm
with the input sequence {f ′j : j ∈ J}. If {f ′j : j ∈ J} ∈ `2(X), we can still initialize
the iterative frame algorithm by

(7.2) g1 =
∑

j∈J
f ′j Kxj .

This corresponds exactly to the first step in the iterative frame algorithm (5.3). Then
we set

(7.3) gn =
2

A+B
g1 +

(
I − 2

A+B
T

)
gn−1 .

Since {Kxj} is a frame for V 2(φ) by assumption, this iterative algorithm still converges
in L2, and its limit is

(7.4) g∞ = lim
n→∞

gn =
∑

j∈J
f ′j K̃xj .

Theorem 7.2. Let X be a set of sampling for V 2(φ). Then for any {f ′j : j ∈
J} ∈ `2(X), the modified frame algorithm (7.3) with the initialization (7.2) converges
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Fig. 7.1 Reconstruction of a function f with additive noise using the iterative algorithm (6.2) of
Theorem 6.1. Top left: Function f belonging to the shift-invariant space generated by the
Gaussian function e−x

2/2σ2
, σ ≈ 0.81. Top right: Function f with an additive white noise

(SNR ≈ 0db). Bottom left: Noisy signal sampled on a nonuniform grid with maximal
gap ≈ 0.51. Bottom right: Reconstructed function f10 after 10 iterations (continuous line)
and original signal f (dotted line).

to g∞ =
∑
j∈Zd f

′
j K̃xj ∈ V 2(φ). We have that

∑

j∈J
|f ′j − g∞(xj)|2 <

∑

j∈J
|f ′j − g(xj)|2

for all g ∈ V 2(φ) with equality if and only if g = g∞. Thus g∞ fits the given data
optimally in the least squares sense.

Next we investigate the iterative algorithm (6.2) in the case of noisy samples
{f ′j : j ∈ J} ∈ `pν(X). We use the initialization

(7.5) f1 = P QX f
′ = P


∑

j∈J
f ′j βj


 ,

and define the recursion as in (6.2) by

(7.6) fn = f1 + (I−P QX)fn−1 .

The convergence of this algorithm is clarified in the following theorem (see Figure
7.1).

Theorem 7.3. Under the same assumptions as in Theorem 6.1, the algorithm
(7.6) converges to a function f∞ ∈ V pν (φ), which satisfies P QX f∞ = P QX{f ′j}.
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8. Proofs of Lemmas and Theorems of Sections 6 and 7.

8.1. Proofs of Lemmas and Theorems of Section 6. To prove Theorems 6.1
and 6.2, we need the following lemmas.

Lemma 8.1. If f ∈ V pν (φ), then the oscillation (or modulus of continuity)
oscδ(f)(x) = sup|y|≤δ |f(x+ y)− f(x)| belongs to W (Lpν). Moreover, for all ε > 0,
there exists δ0 > 0 such that

(8.1) ‖oscδ(f)‖W (Lpν) ≤ ε ‖f‖W (Lpν) uniformly for all f ∈ V pν (φ) and δ < δ0 .

Remark 8.1. Inequality (8.1) implies that oscδ is a (sublinear) operator from
V pν (φ) to W (Lpν). Using Theorems 2.1(i) and 3.1(ii), we conclude that oscδ is a (sub-
linear) operator from V pν (φ) to Lpν , and we also have ‖oscδ(f)‖Lpν ≤ Cε ‖f‖Lpν for
some constant C independent of f and δ.

Proof. We show first that oscδ(φ) ∈ W (L1
ω). Without loss of generality, assume

δ ≤ 1. Let I = [0, 1]d, C = [−1, 1]d, and R = I + C = [−1, 2]d. Then for j ∈ Zd we
have

sup
x∈I

sup
|y|≤δ

|φ(x+ y + j)| ≤ sup
x∈R
|φ(x+ j)|

≤
∑

k∈R∩Zd
sup
x∈I
|φ(x+ j + k)|.

It follows that

sup
x∈I
|oscδ(φ)(x+ j)| ≤ sup

x∈I
sup
|y|≤δ

|φ(x+ y + j)|+ sup
x∈I

sup
|y|≤δ

|φ(x+ j)|

≤ 2
∑

k∈R∩Zd
sup
x∈I
|φ(x+ j + k)| .

Summing over j, we obtain

(8.2) ‖oscδ(φ)‖W (L1
ω) ≤ 2C #(R∩ Zd) ‖φ‖W (L1

ω) .

Thus, oscδ(φ) ∈W (L1
ω).

Next we show that limδ→0 oscδ(φ)W (L1
ω) = 0. Since oscδ(φ) ∈W (L1

ω), there exists
an integer L0 > 0 such that

(8.3)
∑

|k|≥L0

sup
x∈I
|oscδ(φ)(x+ k)|ω(k) <

ε

2
.

Moreover, since φ is continuous, there exists a δ0 > 0 such that

(8.4) sup
x∈I

sup
|y|≤δ

|φ(x+ y + k)− φ(x+ k)|ω(k) ≤ ε

(2L0)d

for all |k| < L0 and all δ < δ0.
Combining (8.3) and (8.4), we obtain that for any ε > 0 there exists a δ0 > 0

such that

‖oscδ(φ)‖W (L1
ω) <

ε

2
+
ε

2
= ε ∀ δ, 0 < δ ≤ δ0.

Thus, ‖oscδ(φ)‖W (L1
ω) → 0 as δ → 0.
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Finally, if f =
∑
k∈Zd ckφ(· − k) ∈ V pν (φ), then we have

oscδ(f)(x) = sup
|y|≤δ

∣∣∣∣
∑

k∈Zd
ck (φ(x− k)− φ(x+ y − k))

∣∣∣∣

≤
∑

k∈Zd
|ck| sup

|y|≤δ
|φ(x− k)− φ(x+ y − k)|

≤
∑

k∈Zd
|ck| oscδ(φ)(x− k).

Therefore Lemma 2.9 implies that

‖oscδ(f)‖W (Lpν) ≤ C ‖c‖`pν ‖oscδ(φ)‖W (L1
ω) ,

so (8.1) follows.
Given a bounded uniform partition of unity {βj} associated with a separated

sampling set X, we define a quasi-interpolant QX c on sequences by

QX c =
∑

j∈J
cjβj .

If f ∈W0(Lpν), we write

QX f =
∑

j∈J
f(xj)βj

for the quasi-interpolant of the sequence cj = f(xj). If the partition of unity satisfies
the additional condition βj(xj) = 1, hence βj(xk) = 0 for k 6= j, then QX c(xj) = cj
for all j ∈ J and QX c actually interpolates the sequence c.

Lemma 8.2. If {βj} is a bounded uniform partition of unity, then QX is a
bounded operator from `pν(X) to Lpν and to W (Lpν), i.e., ‖QX c‖W (Lpν) ≤ C‖c‖`pν(X).
In particular, if f ∈W0(Lpν), then

‖QX f‖Lpν ≤ ‖QX f‖W (Lpν) ≤ C‖f |X‖`pν(X) ≤ C ′‖f‖W (Lpν) .

Proof. Let χ be the characteristic function of the compact set Bγ(0) + [0, 1]d.
Since 0 ≤ βj ≤ 1 and supp βj ⊂ Bγ(xj), we conclude that for all xj ∈ k + [0, 1]d,

βj(x) ≤ χ(x− k) .

Therefore,
∣∣∣∣
∑

j∈J
cjβj

∣∣∣∣ ≤
∑

k∈Zd

( ∑

j:xj∈k+[0,1]d
|cj |
)
χ(· − k),

and consequently Lemma 2.9 implies that
∥∥∥∥
∑

j∈J
cjβj

∥∥∥∥
W (Lpν)

≤ C
( ∑

k∈Zd

( ∑

j:xj∈k+[0,1]d
|cj |
)p
ν(k)p

)1/p

‖χ‖W (L1
ω).

Since X is separated, there are at most N sampling points xj in each cube k+ [0, 1]d.
So by Hölder’s inequality we have

(∑
j:xj∈k+[0,1]d |cj |

)p ≤ Np/p′∑
j:xj∈k+[0,1]d |cj |p.



614 AKRAM ALDROUBI AND KARLHEINZ GRÖCHENIG

Since furthermore ν(k) ≤ Cν(xj) for xj ∈ k + [0, 1]d by Lemma 2.6, we have proved
that

∥∥∥∥∥∥
∑

j∈J
cjβj

∥∥∥∥∥∥
W (Lpν)

≤ C ′

∑

j∈J
|cj |pν(xj)p




1/p

= C ′‖c‖`pν .

Now the boundedness of QX on W0(Lpν) follows from
∥∥∥∥∥∥
∑

j∈J
f(xj)βj

∥∥∥∥∥∥
W (Lpν)

≤ C ′‖f |X‖`pν(X) ≤ C ′′‖f‖W (Lpν) .

Lemma 8.3. Let P be any bounded projection from Lpν onto V pν (φ). Then there
exists a γ0 = γ0(P) such that the operator I−P QX is a contraction on V pν (φ) for
every separated γ-dense set X with γ ≤ γ0.

Proof. For f ∈ V pν (φ) we have

‖f − P QX f‖Lpν = ‖P f − P QX f‖Lpν
≤ ‖P‖op ‖f −QX f‖Lpν
≤ ‖P‖op ‖oscγ(f)‖Lpν
≤ C1ε ‖P‖op ‖f‖Lpν .

We can choose γ so small that C1ε ‖P‖op < 1 to get a contraction.
Remark 8.2. Diligent bookkeeping shows that the sufficient sampling density is

determined by the inequality

C1C2

∥∥∥T∗
φ̃

∥∥∥
op
‖oscγ(φ)‖W (L1

ω) ‖P‖op < 1,

where ‖P‖op is the operator norm of the projector P on V pν (φ), C1 is the constant in
(2.9) or (2.10), C2 is the constant in Theorem 2.2(iii), and ‖ T∗

φ̃
‖op is the operator

norm in (2.17).
Proof (of Theorem 6.1). Let en = f − fn be the error after n iterations. By (6.2),

the sequence en satisfies the recursion

en+1 = f − fn+1

= f − fn − P QX(f − fn)
= (I − P QX)en.

Using Lemma 8.3, we may choose γ so small that ‖ I−P QX ‖op = α < 1. Therefore,
we obtain

(8.5) ‖en+1‖W (Lpν) ≤ α ‖en‖W (Lpν)

and

‖en‖W (Lpν) ≤ αn‖e0‖W (Lpν) .

Thus ‖en‖W (Lpν) → 0, and the proof is complete.
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Proof (of Theorem 6.2). Using the operators Tφ and T∗
φ̃

defined in (2.15) and
(2.16), we have

P f =
∑

k∈Zd
〈f, φ̃(· − k)〉φ(· − k) = Tφ T∗

φ̃
f .

The proof of Theorem 2.3 shows that T∗
φ̃

Tφ = I`pν , and Lemmas 2.9 and 2.10 show
that T∗

φ̃
Tφ is bounded from Lpν to V pν (φ). Therefore,

P2 = (Tφ T∗
φ̃
)(Tφ T∗

φ̃
) = Tφ T∗

φ̃
= P,

and so P is a projection. Let f ∈ V pν (φ); then f = Tφ c for some c ∈ `pν , so the range
of P is V pν (φ).

8.2. Proofs of Theorems of Section 7.
Proof (of Theorem 7.1). Let P be the orthogonal projection onto V 2(φ). Since

Kx ∈ V 2(φ), we have PKx = Kx for all x ∈ Rd and thus

〈f,Kx〉 = 〈f,PKx〉 = 〈P f,Kx〉
for all f ∈ L2. Consequently,

(8.6)
∑

j∈J
〈f,Kxj 〉K̃xj =

∑

j∈J
〈P f,Kxj 〉K̃xj = P f

because P f ∈ V 2(φ) and (8.6) is the identity on V 2(φ).
Proof (of Theorem 7.2). It is well known that the dual frame {K̃xj : xj ∈ X} is

given by K̃xj = T−1Kxj , where T is the frame operator defined by (5.2) [40]. Thus,
the iteration (7.3) converges to

(8.7) g∞ = T−1 g1 =
∑

j∈J
f ′j T−1Kxj =

∑

j∈J
f ′j K̃xj .

To show the least squares property, we start with two simple observations. First,
from (8.7) we see that

∑

j∈J
f ′j Kxj = Tg∞ ,

and second, for g ∈ V 2(φ) we have
∑

j∈J
g(xj)f ′j =

∑

j∈nJ
〈g,Kxj 〉f ′j

= 〈g,
∑

j∈J
f ′jKxj 〉(8.8)

= 〈g,Tg∞〉,
and by definition of the frame operator,

∑
j |g(xj)|2 = 〈g,Tg〉. Using (8.8), we esti-

mate the least square error as follows:
∑

j∈J
|f ′j − g(xj)|2 −

∑

j∈J
|f ′j − g∞(xj)|2

=
∑

j∈J

(
|g(xj)|2 − 2 Re g(xj)f ′j − |g∞(xj)|2 + 2 Re g∞(xj)f ′j

)

= 〈g,Tg〉 − 2Re 〈g,Tg∞〉 − 〈g∞,Tg∞〉+ 2Re 〈g∞,Tg∞〉
= 〈(g − g∞),T(g − g∞)〉 > 0.
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The last expression is strictly positive for g 6= g∞, since T is both positive and
invertible.

Proof (of Theorem 7.3). The hypothesis of Theorem 6.1 guarantees that I−P QX
is a contraction on V pν (φ). Therefore, the iterates fn converge to some f∞ ∈ V pν (φ).
Taking limits in (7.6), we obtain

f∞ = f1 + (I−P QX)f∞

or

f1 = P QX f
′ = P QX f∞,

as desired.
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[55] K. Gröchenig, Reconstruction algorithms in irregular sampling, Math. Comp., 59 (1992),
pp. 181–194.
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