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Nonseparable multidimensional Littlewood-Paley like
wavelet bases
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Abstract

This paper presents a method for the construction of multidimensional orthonormal
wavelet bases of L2, formed by using only one type of functions, regardless of the dimension
of space. Unlike other nonseparable wavelet bases, our bases do not rely on the matrix
dilation approach.
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Classical multidimensional wavelet bases are based on the multiresolution approach
and variable separation in each spatial direction. In particular, N -dimensional wavelet
basis can be obtained by tensor products of two one-dimensional functions (the basic
wavelet and scale function)[6]. Such wavelet bases require 2N − 1 types of functions and
are intrinsically anisotropic. This is inconvenient from different points of view and is a
stimulus to construct multidimensional wavelet bases formed by one type of functions.

In this paper we shall extend to the multidimensional case one of the simplest wavelet
bases – Littlewood-Paley’s basis [5]. It looks especially simple in Fourier space

ψ̂(ξ) = (2π)−1/2χI(ξ), (1)

where χI is indicator function of the set I = [−2π,−π]∪ [π, 2π]. The proof, that functions
ψj,k(x) = 2−j/2ψ(2−jx − k), j, k ∈ Z form complete orthonormal basis of L2(R) is based

on geometrical properties of the support I of ψ̂ (see, for example, [1]). Namely

• |I| = 2π;

• ⋃
j∈Z Ij = R, Ij ∩ Ij′ = {∅}, j 6= j′, where Ij is obtained from I by dilation by

2j (for j < 0 it is contraction). In other words, the sets Ij span the whole line R
without overlappings and gaps;

• It is possible to tile the interval [−π, π] by 2π-translation of the pieces of I.

For any set I satisfying the above-mentioned conditions, the function ψ̂(ξ) = (2π)−1/2χI(ξ)
will supply a wavelet basis of L2(R).

These conditions easily can be extended to case of N dimensions: let I ⊂ RN , assume
that

i) the measure of I is (2π)N ;

ii)
⋃

j∈Z Ij = RN , Ij ∩ Ij′ = {∅}, j 6= j′;

iii) it is possible to tile the cube [−π, π]N by 2π-translations along coordinate axes of
the parts of I.

Let us prove that
For any set I ∈ RN , satisfying conditions i), ii) and iii), the set of functions ψm,k(x) =

2−mN/2ψ(2−mx − k), x ∈ RN , k ∈ ZN , where ψ̂(ξ) = (2π)−N/2χI(ξ), ξ ∈ RN , constitutes
an orthonormal basis of L2(RN).

Proof. Using the first condition on I it follows that ‖ψm,k‖ = 1 for all m ∈ Z, k ∈ ZN .
For any f ∈ L2(RN)

∑

m∈Z,k∈ZN

|〈f, ψm,k〉|2 =
∑

m∈Z,k∈ZN

2mN

∣∣∣∣
∫

RN

f̂(ξ)ψ̂(2mξ)ei2mk·ξdξ

∣∣∣∣
2

(where 〈·, ·〉 is scalar product and overbar stands for complex conjugate).

=
∑

m∈Z,k∈ZN

(2π)−N2mN

∣∣∣∣
∫

I−m

f̂(ξ)ei2mk·ξdξ

∣∣∣∣
2

=
∑

m∈Z,k∈ZN

(2π)−N2−mN

∣∣∣∣
∫

I0

f̂(2−mζ)eik·ζdζ

∣∣∣∣
2

(use a change of variables in last equality).

1



In accordance with condition iii) there is a partition {I0
λ} of the set I0, such that we can

tile the cube [−π, π]N by 2π-shifts of the sets I0
λ along some coordinate axes. Denote by

hλ the vector of shift, corresponding to the subset I0
λ. (Obviously the vectors hλ ∈ RN

will have components {±2π, 0}.) Define f̂1(2
−mζ) =

∑
λ f̂(2−m(ζ−hλ))χI0

λ
(ζ−hλ). Then

using 2π-periodicity of the functions eik·ζ , we can write

∑

m∈Z,k∈ZN

(2π)−N2−mN

∣∣∣∣
∫

I0

f̂(2−mζ)eik·ζdζ

∣∣∣∣
2

=
∑

m∈Z,k∈ZN

(2π)−N2−mN

∣∣∣∣
∫

[−π,π]N
f̂1(2

−mζ)eik·ζdζ

∣∣∣∣
2

.

Now Parseval’s equality can be applied to the system of the functions eik·ζ , k ∈ ZN :

∑

m∈Z,k∈ZN

(2π)−N2−mN

∣∣∣∣
∫

[−π,π]N
f̂1(2

−mζ)eik·ζdζ

∣∣∣∣
2

=
∑

m∈Z
2−mN

∫

[−π,π]N

∣∣∣f̂1(2
−mζ)

∣∣∣
2

dζ.

As the sets I0
λ do not overlap, we can return to the set I0

∑

m∈Z
2−mN

∫

[−π,π]N

∣∣∣f̂1(2
−mζ)

∣∣∣
2

dζ =
∑

m∈Z
2−mN

∫

I0

∣∣∣f̂(2−mζ)
∣∣∣
2

dζ.

Finally, since the sets Im,m ∈ Z cover all space RN without overlappings and gaps, we
have

∑

m∈Z
2−mN

∫

I0

∣∣∣f̂(2−mζ)
∣∣∣
2

dζ =
∑

m∈Z

∫

I−m

∣∣∣f̂(ξ)
∣∣∣
2

dξ =

∫

RN

∣∣∣f̂(ξ)
∣∣∣
2

dξ = ‖f‖2.

Therefore, for ∀f ∈ L2(RN), we obtain Parseval’s equality

∑

m∈Z,k∈ZN

|〈f, ψm,k〉|2 = ‖f‖2,

which proves the completeness and orthogonality of our wavelet basis.

The conditions i), ii) and iii) seem rather contradictory and hard to satisfy. We can
offer a method to construct such sets. Take the “initial” set I0 as cube [−π, π]N , contract
it by 2 (which will be denoted as I−1

0 ) and consider the intersection I0 ∩ I−1
0 . Then make

some partition of this intersection, such that it is possible to move parts of I0 ∩ I−1
0 out

of the cube [−π, π]N by 2π-shifts along coordinate axes so that these parts will remain
in [−2π, 2π]N . Denote obtained set as I1 = T0I0 (where T0 stands for the map I0 → I1).
Repeating this procedure, i.e. contracting I1 by 2 and removing intersection I1 ∩ I−1

1 out
of the cube [−π, π]N , we obtain set I2 = T1I1, etc. If sequence of the maps TjIj → Ij+1

has fixed point, the set I = limj→∞ Ij will satisfy all conditions i), ii) and iii). We do not
derive conditions which guarantee that the sequence of maps Tj has a fixed point, but for
concrete reasonable partitions, the existence of a fixed point is obvious. Fig.1 represents
examples of the construction of I for 2-dimensional case.
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Figure 1: Two examples of set I construction. a) first iteration: I1; b) second iteration:
I2; c) the limit set I and set J (light gray).

We want to return to separable case of N -dimensional wavelet bases, in order to explain
why it needs several wavelet spaces in higher dimensions and why it is sufficient to have
one wavelet in our case.

In two dimensions, for example, the approximation space V0 is generated by the trans-
lation of one function φ(x, y) over Z2; the space V−1 is generated by the translation of
φ(2x, 2y) over 1

2
Z2, or equivalently by the Z2-translates of the four functions φ(2x, 2y),

φ(2x− 1, 2y), φ(2x, 2y − 1), φ(2x− 1, 2y − 1). V−1 is therefore “four times as big” as V0,
on the other hand each of the W j

0 -space is generated by the Z2-translations of a single
function ψj(x, y) and is therefore “of the same size” as V0. It follows that one needs three
(four minus one) spaces W j

0 (hence three wavelets ψj) to make up the complement of V0

in V−1. It can be rephrased in more mathematical terms: the number of wavelets is equal
to the number of different cosets of the subgroup Z2 in the group 1

2
Z2.

In our case it is also possible to introduce the multiresolution analysis. Scaling function
belonging to the space V0 can be defined naturally as indicator function of the set J ,
removed from the square [−π, π]N , i.e. φ̂(ξ) = |J |−1/2χJ(ξ) and J =

⋃−∞
j=−1 Ij, fig.1

c), where |J | = (2π)N/(2N − 1). These scaling functions satisfy all conditions of the
multiresolution analysis, excepting one that these functions form tight frame with frame
constant A = 2N − 1 (see, for example, review of frames [3]):

∀f ∈ V0 ⊂ L2(RN)
∑

k∈ZN

|〈f, φ(· − k)〉|2 = A‖f‖2.
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If ‖φ‖ = 1, then the frame constant can serve as measure of the redundancy of the set of
functions. Thus the space V0 has “A times less functions” as in the case of the orthogonal
basis and it needs only one wavelet space to make up the complement of V0 in V−1.

Certainly, all bases built by our approach will have a shortcoming inherited from
Littlewood-Paley’s basis. Since these functions are not continuous in Fourier space, they
decay slowly in the real space (like 1/x), leading to bad space localization. Unfortunately,
the attempts to construct more smooth functions within the framework of our approach
are prevented by following statement.

If the set of functions {φ(x − k), x ∈ RN , k ∈ ZN}, ‖φ‖ = 1 forms tight frame
with frame constant A, then

∑
l∈ZN |φ̂(ξ + 2πl)|2 is the indicator function of some set

S ⊂ [0, 2π]N , i.e. ∑

l∈ZN

|φ̂(ξ + 2πl)|2 = A(2π)−NχS(ξ),

and the measure of S is (2π)N/A.
Proof. The

∑
l∈ZN |φ̂(ξ + 2πl)|2 can be expanded in a Fourier series:

∑

l∈ZN

|φ̂(ξ + 2πl)|2 =
∑

k∈ZN

cke
−ik·ξ, (2)

where the Fourier coefficients are

ck = (2π)−N

∫

[0,2π]N
eik·ξ ∑

l∈ZN

|φ̂(ξ + 2πl)|2dξ = (2π)−N

∫

RN

eik·ξ|φ̂(ξ)|2dξ

= (2π)−N

∫

RN

φ(x)φ(x− k)dx. (3)

Since the functions φ(·−k) form tight frame, and using (3), φ can be expressed as follows

φ(x) = A−1
∑

k∈ZN

〈φ, φ(· − k)〉φ(x− k) = A−1(2π)N
∑

k∈ZN

ckφ(x− k). (4)

Now using (2) and (4), we can write
∥∥∥∥∥

∑

k∈ZN

ckφ(· − k)− A(2π)−Nφ

∥∥∥∥∥

2

=

∫

RN

∣∣∣∣∣
∑

k∈ZN

cke
−ik·ξ − A(2π)−N

∣∣∣∣∣

2

|φ̂(ξ)|2dξ

=

∫

[0,2π]N

∣∣∣∣∣
∑

k∈ZN

cke
−ik·ξ − A(2π)−N

∣∣∣∣∣

2 ∑

l∈ZN

|φ̂(ξ + 2πl)|2dξ

=

∫

[0,2π]N

∣∣∣∣∣
∑

m∈ZN

|φ̂(ξ + 2πm)|2 − A(2π)−N

∣∣∣∣∣

2 ∑

l∈ZN

|φ̂(ξ + 2πl)|2dξ = 0. (5)

Obviously the integral (5) can be equal to zero if and only if
∑

l∈ZN

|φ̂(ξ + 2πl)|2 = A(2π)−NχS(ξ),
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where S is some subset of cube [0, 2π]N . Consequently

∫

[0,2π]N

∣∣∣∣∣
∑

l∈ZN

|φ̂(ξ + 2πl)|2
∣∣∣∣∣

2

dξ = A2(2π)−2N |S|. (6)

On the other side we have
∫

[0,2π]N

∣∣∣∣∣
∑

l∈ZN

|φ̂(ξ + 2πl)|2
∣∣∣∣∣

2

dξ =

∫

[0,2π]N

∣∣∣∣∣
∑

k∈ZN

cke
−ik·ξ

∣∣∣∣∣

2

dξ = (2π)N
∑

k∈ZN

|ck|2

= (2π)−N
∑

k∈ZN

|〈φ, φ(· − k)〉|2 = (2π)−NA‖φ‖2 = (2π)−NA. (7)

Comparing (6) and (7), it follows that the measure of S is (2π)N/A.

It is difficult to imagine a good smooth function φ forming a tight frame of the space
V0 = span{φ(· − k), k ∈ ZN}.

In conclusion, we can also mention the approach based on so called matrix dilation
[2, 4]: the multiresolution spaces are subspaces of L2(RN) and the dilation is determined
by a matrix D with integer entries so that DZN ⊂ ZN . The number of wavelets is again
determined by the number of cosets of DZN . A particularly interesting case is given by
the “quincunx lattice”, i.e. the two-dimensional case where DZ2 = {(m,n); m+n ∈ 2Z}.
In this case there is only one other coset, and therefore only one wavelet is needed. The
sufficiency of only one wavelet space can be understood from another point of view: a
single dilation can be regarded as a dilation by

√
2 (combining with a rotation and/or a

reflection) and thus the space V−1 is only “two times as big” as V0.

The author is grateful to French Government Program “Relance de l’Est” for financial
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