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ABSTRACT: In engineering and applied
mathematics, Zak transforms have been effectively
used for over 50 years in various applied settings.

As Andre Weil observed in the 1940s and as 1.
Gelfand noted in a 1950 paper, an exceedingly
elementary proof of the Plancherel Theorem for LCA
groups uses only the Fourier series ideas later
incorporated in Zak transforms; in brief, Zak
transforms are Fourier series expressions and the



Fourier transform on any non-compact LCA group is
an average of Zak transforms. It is remarkable that
only a small handful of mathematicians know this
proof and that all textbooks continue to give much
harder and less transparent proofs for even the case
of the group R. Generalized Zak transforms arise
naturally as intertwining operators for various
representations of Abelian groups and allow
formulation of many appealing theorems.

Remark : Theresults discussed below

represent joint work by the speaker with E.
Hernandez, H. Sikic, and G. Weiss.

1. The Abelian Group Plancherel Theorem

1.1 Overview. In textbooks on real analysis, one
can {ind a variety of proofs of the Plancherel
Theorem for R", n € N. All are lengthy, non-
elementary, and technical, e.g. :

* use of complex analysis to compute Fourier
transforms of Gaussian functions followed by

use of approximate identities defined by Gaussians to
extend the Fourier transform from L}(R™) N L?(IR")
to a unitary operator on L?(R");



* use of the Hermite function orthonormal basis for
L?(R") and the computation that theHermite
functions are eigenfunctions of the Fourier transform
having eigenvalues which are fourth roots of 1;

« reversion to the 19th century interpretation of
Fourier transforms as Riemann sum limits of rescaled
Fourier series expressions and justification of this
approach by somewhat delicate dominated
convergence arguments.

In fact, as we'll show, none of this is necessary. The
proof of the Plancherel Theorem for R" via Zak
transforms uses only basic Fourier series ideas and
applies with only superficial changes in notation to
every locally compact, Abelian group (LCA group).

1.2. Notations and Definitions. Let G=(G,t) be an
additive LCA group.

(¢) The dual group G = (G, + Jof Gis
the essentially unique LCA group for which there is
a continuous, bi-additive homomorphism
(&,2) — & -z from G x G into R/Z such that,
with e¢(x) = e,(£) = €™, every continuous

homomorphism from G (respectively, G) into the
multiplicative group {z € C: |z| = 1}is of the form




ec for some € € G (respectively, of the form e, for
some = € G). Existence of G is shown in many texts.
[For G=R" = additive group of n x 1 real column
matrices, it's convenient to take G to be the group of
1 x nreal row matrices with ¢ - x a matrix product
and similarly with all other Abelian Lie groups]

(¢4) A lattice in G is a topologically discrete
subgroup £ C G for which T, = G/L is compact in
the quotient topology (e.g., the integer lattice Z" in
Rn).

Existence of lattices follows from Weil's
structural theorem: The connected component Gyof
0 in G 1s the direct sum of the unique maximal,
connected, compact, subgroup K of G and a non-

unique subgroup isomorphic and homeomorphic to
R™ n > 0, with G/G discrete.

(¢¢¢) Given a lattice L, there is a unique
Haar measure ;1 = pi, on G assigning mass 1 to
every L-tiling domain C C G (thus C is Borel
measurable and G is the disjoint union of the
translates of C by members of £--if we wish we can
take C to have compact closure). Then
LY =1{jeG:VkelL, j-kisthezero element in
R/Z} is a lattice in G called the lattice dual of £ and




there is a unique Haar measure /i =(%) . on G
assigning mass 1 to every £+ — tiling domain. Also,
1 (respectively, [ )induces normalized Haar measure
on the compact group T, = G/L (respectively, on
T, = G/L+) and {e;:j € L'} is an orthonormal
basis for L*(Tz) while {¢; : k € L} is an
orthonormal basis for L*(T,. ).

|In the R" case with £=7Z", [0, 1)"is a L-tiling
domain and the matrix transpose map
takes Z" to (Z™)*, so p1 is Lebesgue measure on R”
and [z is Lebesgue measure on (R™)". When G is an
Abelian Lie group with finitely many connected
components, each of the compact groups T, = G/L
1s 1somorphic and homeomorphic to the product of
the standard n — torus T" = R"/Z", n > 0, and a
finite group.]

(iv) Using the notations in (ii¢), let
Mz p and (Mg _p )7 be the spaces of C-valued
£t L+

measurable functions ® and ®~ on G x G such that,
forall (k, ) € £L x £ and all (z,€) € G x G,

D(x+ k. £+ J) = ep( OB, ae, (1)

3w+ b, &+ ) = ey (0)B(w,8) ae., (2)



and the £ x £— periodic functions |®/, [®~| are in
LA(T, x T,.).

Note that the magnitudes of ® and ™ are
periodic in both variables by (1) and (2). The norms
of these functions are understood to be the L? norms
of their magnitudes as functions on the compact
group T, x T, relative to the normalized Haar
measure induced by 1 X 1.

(v) Using the notations in (727 ), for
f € L?(G, p)and g € L*(G, 11), the Zak transforms
Zofand Z7 g of f and gare the a.e. well defined

Fourier series expressions

Zeflw, ) =S S+ )ee( ) &)
(2299 = T gl + el @

Note that not only are the roles of z and &
reversed in (3) and (4) but, as in (1) and (2), we also
have a change of sign n the exponents.

1.3. Theorem. Using the above notations, for cach
choice of L,

(i) f = Z,f 1s a unitary map from L*(G,u)
onto MTﬁme whose inverse 1s a.e. well defined by



fla) = (Ze) 7 @)(w) = [; | @(x.)dR(€); (5)
(44)g — Z7. g is a unitary map from L*(G,7)

onto (M T,xT,, )~ whose inverse is a.c. well defined

by

9(&) = ((Zz)7 @) () = Jp, (2, E)dpu(x); (6)

(i) @~ (2, ) S(UP)(x,§) = ¥ P (x, ) (7)
defines a unitary map U/ from MTL_XT _ onto

(MTExTﬁl )N :

Proof : (z) For each L-tiling domain C C G,
translation invariance of 11 gives

11E,,, = Je 2 1f (2 + k)

2
THGw kel (5)
so (f(x + k))per € I*(L) fora.c. z € G. Since
{e-k : k € L} is an orthonormal basis for L*(T, ),
(Zcf)(x, -) € LT ) for a.e. x and a simple

change of summation index argument shows that
Z. f satisfies the transformation condition (1) with
(8) then yielding Z, [ & M:rcx“r “and

fonn

1Z, fI* = Hf”im,m' Finally, given ® ¢ M3¢£XT£_
with f defined by (5), the transtormation law (1)

L



implies that, for a.e. x, f(z + k) is the ( — k)t
Fourier coefficient of the the L*(T . ) function
®(z, - ) from which it follows that f € L*(G,p)
with ®=7, f.

(17) We merely repeat the arguments in (i7) with
the roles of « and ¢ reversed and use the
transformation law (2) in place of (1).

(27¢) 1s merely an elementary computation showing
that U/ converts the transformation law (1) for ® to
the transformation law (2) for &~ along with the
trivial observation that I/ doesn't effect magnitudes.

1.4 Corollary 1 (The Plancherel Theorem for LCA
Groups). Using the above notations, for each
choice of a lattice £ C Gand corresponding dual

lattice £+ C G,

(7) the unitary map Fg = (Z;.) 'olloZ, from L*(G,

1) onto L?(G, i) is described on the dense subspace
LY(G, p) NL*(G, p) C L*(G.p) by

(Faf)(E) = Jof (B)e—c(x)dp(z);  (9)

(ii) when g € LY(G, i) N L*(G, f),



((»7:@)“19)(1:)—(( )“10?/1 oZ,.g)(x)
= (Fg9) = Jag(&)ex(€)dp(¢) (10)

|In particular, of course, (i) proves the existence of a
unique unitary extension to L?(G) of the Fourier
transform f ~— f on (L' NL?) (G, 1) and gives an
explicit expression for this extension, (ii) gives the
standard formula relating F to the inverse of F
and (¢) and (7) show that the only pairs of Haar
measures 4, fion G, G for which the Plancherel
Theorem holds are pt = p,, i = (i ), for some

dual lattice pair £, £ ]

Proof: (i) For f € LNG, u) NL2(G, 1), we use
the definitions of Z, f and U/ in (3) and (7) along with
the inversion formula (6) for Z,. to obtain, for each

choice of a L-tiling domain C C G,

(Z3.) oUoZy f)(€)
= [oc 2 (2, f) (@, €)dpu()

kel

= (by translation invariance of 1)

fG y)du(y)



= [(¢).

(17) follows from a similar computation using (4) and
(5) in place of (3) and (6), the only changes being
reversal of the roles of G and G and the sign changes
in the exponents for Z3, and ¢/ .

1.5 Corollary 2 (Poisson Summation Formula)
When f satisfies the smoothness and decay

properties needed to have both Z, f and Z}. f
pointwise well — defined and jointly continuous in an

open neighborhood of (0,0),
> fk) =2 J(i). (11)

kel jeLlt

Proof. From Theorem 1.3 and Corollary 1,

PN

2y f =UZ,f. Since (UZ, [)(0,0)
=(Z,/)(0,0)=%" f(k) while

kel
(Z71)(0,0) = 5= F(5), we obtain (11).

jeLt

1.6 Remarks. Corollary 2 1s not surprising since all
standard proofs of the Poisson Summation Formula

rest on lattice periodization of Fourier integrals and
that is precisely what 1s going on with Zak



transforms. Zak transforms can be viewed as
discretizations of Fourier integrals and, for the case
G=R, can compared with other discretizations such
as the short-time Fourier transform and the Discrete
Cosine transform. However, Corollary 1 yields the
intriguing converse statement that Fourier integrals
are just averages of Zak transforms for any choice of
a lattice. What is surprising is that, since
periodization techniques have been used for over 100
years 1n harmonic analysis, and since A. Weil's 1940
book on integration on locally compact Hausdorff
spaces alludes to a proof of the Plancherel Theorem
for Abelian groups via Fourier series ideas with 1.
Gelfand being sufficiently impressed by this
approach to sketch Weil's argument for R in a 1950
paper on eigenfunction expansions, only a very small
handful of mathematicians have paid any attention.
Perhaps part of the reason is that the Zak transform
for R is often presented as a somewhat arcane way to

turn L2(R) into L2(T?) and its applications are
customarily described as part of the discretization
machinery germane to certain problems in
mathematical physics (Zak's original motivation in
his 1967 paper for introducing a transform motivated
by his reading of Weil's famous 1964 Acta paper but
which others later labeled the Zak transform) and
applied harmonic analysis. The above discussion is



tended to suggest that the Zak transform ought to
be seen as a fundamental tool for every aspect of
Abelian harmonic analysis with the Fourier transform
being just a by-product of Zak transforms and with
passage to Zak transform image spaces for
calculations equivalent to but often considerably less
technical than passage to Fourier domains. To say
the least, this substantially changes the perspective
on Fourier transforms and suggests that introductory
courses 1n real analysis should follow-up standard
coverage of elementary measure theory and Fourier
series for T=R/Z with definition of the Zak transform
Z7 and at least a sketch of the above argument
showing how Z, leads quickly and "painiessly" to the
Plancherel Theorem for [R.

2. Generalized Zak Transforms for Abelian
Group Representations.

2.1 Overview. The isometry and transformation
condition properties discussed above for Z . are

succinctly expressed m the language of group
representations by saying that the unitary map 72,
intertwines the restriction to £ of the regular
representation f( - ) — f(zr—+ -) of G on

L?(G, ) with the modulation representation

O(x, - )~ e )P(x, - Yof L



on the Zak space Mr, .., . This suggests going on to

define and apply generalized Zak transforms
intertwining certain unitary representations of
discrete LCA groups with modulation
representations. One can also look at operator-
valued analogs for non Abelian discrete groups, the
limitation being that a non-Abelian discrete group £
has a Plancherel Formula if and only if £ is a finite
extension of an Abelian group. We won't take time
below to discuss non-Abelian generalizations.

2.2 General Setting for (Abelian) Zak
transforms:

(1) ({,x) — [ - x is a free action of a countable
additive group £ on aset X. Thus, k- (I-z)
= (k+1)-azforall x € Xandall k,l € £ with
[-x=2 & 1=0.

(72) There is a o-finite measure v on X for
which L(X,v) is a separable Hilbert space and for
which v i1s quasi L-invariant in the sense that, for
cach! € L, x — [ - r1s measurable and we have a

Radon-Nikodym derivative J;(z) = ddyy((l;;) defined

and >0 for a.e. z. Then, by the chain rule for
Radon-Nikodym derivatives,




Jiw(2) =Nk - 2)]p(z) a.e. and
(Duf) () = Ti(z)2 f(1- )

defines a unitary representation D of £ on L?(X,v).

(¢47) The action is regular in the sense that there
exists a measurable set C such that X is the disjoint
union of thesets /- C, [ € £. Hence, X is also the
disjoint union of the orbits £ - = as x ranges over C.
(Obviously, C plays the role of a £-tiling domain for
the special case when L is a lattice in X=G and
l-x=1+x).

Remarks: (i)In practice, we start with a
continuous action o f a non-discrete LCA group G
onalocally compact, Hausdor f f space
X'(perhaps atopological mani fold), take L to be
a lattice in G, take C'tobea Borel subsetof X'
withl-C'NC =10 foreachl € L\{0}, thentake
X=L - C. But C could then be replaced by any
measurable subset of X containing exactly one
point from each L-orbit.

(1i)In general, when a quasi L-invariant
measure v exists, one can construct a finite
L — tnvariant measure pwhich is equivalent to v
in the usual measure sense. But, forexvamplesof
actions of discrete Abelian matrix groups on R"
and, more generally, actions by commuting manifold



diffeomorphisms along the integral curves of
commuting vector fields, there will be a natural
choice for v, e.g. Lebesgue measure on R"in the first
case and the measure defined by a Riemannian
volume form in the manifold case. In such cases,
replacement of v by . is arti ficial and doesn't add
anything new.

2.3 Notations and Definitions. In the above
general setting:

(i) (£, + )is the compact, additive LCA group
dual to £ and jiis normalized Haar measure on £
with {e, : | € L} the orthonormal basis of L2(L, i)
defined as in §1 by ¢, (&) = 2™,

(it) For b € L*(X, v), the generalized Zak
transform 71 of v relative to the action of £ and the
measure v is the L2(£, 1) — valued function on X
well defined v-a.e. by

Zip(x, ) = 2. (Di)(x) e( ) (12)

el

2.4 Remarks: The computations we made earlier
in the case of the translation action of £L C Gon G
generalize easily to yield the following:

(1) (ZDy) (. €) = ei§) (Z)(x, §) a.e. (13)



80 1 = Za) intertwines the unitary D of £ on
L2(X, 1) and the modulation representation of £,
on the image under Z of L2(X,11);

(¢4) For any choice of an orbit-cross section set
C C X as above,

JeJ 5 123z, &) 1P dfi(§)dv () =
Jo L@l 2)Pdv(z) =

el

Sl dvly) =1l (13)

el

Defining the initial expression in (13) to be [|Z4[?,
it follows that Z is an isometry from L*(X,v)
onto the Hilbert space M of measurable functions
® from X x Linto C satisfying the transformation
condition D,(®( - ,¢)) = e, (&)P( -, &) a.e.
and |0, = [ [7 19(2,€) P di(§)dv(z) < oo
Indeed, for ® € M, f = Z7'®is a.e. well defined
by

jﬁ L 5 d/,b )

2.5 More Notations and Definitions. In the context
of 2.2-2.4, for ¢,v € L*(X, v),



(¢) [¢,0]=[¢,¥]p is the member of LY( £, i)
well defined a.e. by

(0,000 = [oZo (2. 2w, &) dv(z);  (14)

|Note that by the computations in 2.4 and
use of the Cauchy-Schwartz inequality,

(0,10) = [0,1]

18 a bounded, sesquilinear, Hermitian symmetric map
from L*(X, v) x L*(X, v) into L'(£,77) and
has the positive semi-detinite property [v,1)] > 0.]

(1) py is the LY(L, i) weight function [¢,1)];

(vit) supp py = {& : p(§) # 0} (well defined
modulo a iz — null set);

(iv) when ¢ € L*(X, v)\{0}, the D-cyclic
subspace <t¢>p, is the closure in L2(X, v/) of
the span of By = {Djv : [ € L}.

Theorem 2.6. Using the above notations, for ¢,
non-zero members of L*(X,v)and [ € £

(2’) [ngbjl/)] - el[(fb?w} — {CbaD—ﬂM ;



(ZZ) < quﬁaw > 1200 - fzeg[q’),w}du
= < gbaDlw = LZ(X,;/);

(ii1) <o >p L <> p o, Y] =0a.e.;

(iv) & — Ty(0) = 1/2 Xy, 15 @ Unitary map

from <i >}, onto the closed subspace Hy of L2(L, i)
consisting of members of L2(L, ﬁ) which vanish a.e.
oft supp p,,. In particular, using (), 7 intertwines

D on <t/>, with the modulation representation of £

on Hw’.

Sketch of the Proof. (i) and (ii) are easy
calculations using the transformation and isometry
properties of Z, (u47) follows easily from (i7), and
(tv) is another routine calculation using (z), (¢77), and
the "inner product” properties of | -, - |.

Corollary 2.7. For each non-zero v € L2(X, ),

the spanning set B, for <¢/>p
() is an orthonormal basis < p;, = la.e.;
(i2) is a Riesz basis <> both ||py /o and H% |0 are

finite;



(¢i¢) 1s a frame < there are positive constants
A,B with

AXsupppy < Pp < BXsuppp, a-e.
(whenwe cantake A = B =1, B s said
to be a Parseval frame)

Proof : Immediate from the properties of
modulation representations and the fact that

Tp(D) = ey

Remark. The above list o f connections between
properties o f the generating set By, for < ¢ > p
and properties o f the weight function py can be
expanded considerably to discuss other
properties. Also, as discussed inthe paper [1] by
Heil and Powell, the non-averaged weight function
Zy| controls the properties of the Gabor system
generated by 1 in the R" case.
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