Best simultaneous monotone approximants in Orlicz spaces

Fabián Eduardo Levis¹

Abstract

Let \mathcal{M}_0 be the class of all real extended μ -measurable functions on [0, 1], where μ is the Lebesgue measure.

Let $\phi : \mathbf{R}_+ \to \mathbf{R}_+$ be a differentiable and convex function, $\phi(0) = 0$, $\phi(t) > 0$, t > 0. For $f \in \mathcal{M}_0$, let

$$\Psi_{\phi}(f) := \int_{0}^{1} \phi(|f(x)|) d\mu(x).$$

Several authors studied geometric properties of the Orlicz space

$$L_{\phi}[0,1] := \{ f \in \mathcal{M}_0 : \Psi_{\phi}(\lambda f) < \infty \text{ for some } \lambda > 0 \}.$$

Under the Luxemburg norm, $L_{\phi}[0,1] =: L_{\phi}$, is a Banach space. It is easy to see that if $\phi(t) = t^p$, $1 \le p < \infty$, we obtain the Lebesgue space L_p and $\Psi_{\phi}(f) = ||f||_p^p$.

We assume that ϕ satisfies the Δ_2 -condition, i.e., there exists K > 0 such that $\phi(2t) \leq K\phi(t)$ for all $t \geq 0$. So,

$$L_{\phi} = \{ f \in \mathcal{M}_0 : \Psi_{\phi}(\lambda f) < \infty \text{ for all } \lambda > 0 \}.$$

Given $\mathcal{D} \subset L_{\phi}$ and $f^j \in L_{\phi}$, $1 \leq j \leq m$, we consider the problem of finding $g \in \mathcal{D}$ such that

$$\sum_{j=1}^{m} \Psi_{\phi}(f^{j} - g) w_{j} = \inf_{h \in \mathcal{D}} \sum_{j=1}^{m} \Psi_{\phi}(f^{j} - h) w_{j},$$
(1)

where w_j are positive weights. Denote $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D})$ the set of elements $g \in \mathcal{D}$ verifying (1), where $\mathbf{f} = (f^1, ..., f^m)$ and $\mathbf{w} = (w_1, ..., w_m)$. Each element of $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D})$ is called a *best simultaneous approximant to* f^j , $1 \leq j \leq m$, from \mathcal{D} .

In this work, we give a characterization of best simultaneous approximants when \mathcal{D} is the cone of nondecreasing left-continuous functions in L_{ϕ} . Moreover, we show an explicit formula from calculate of mín $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D})$ and máx $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D})$. Finally, we discuss the continuity of a best simultaneous monotone approximant when f^j , $1 \leq j \leq m$, are approximately continuous.

¹Departamento de Matemática, FCEFQyN, Univ. Nac. de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Argentina. E-mail: flevis@exa.unrc.edu.ar