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The CS Problem
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The CS Problem: single measurement vector

Measure and recover a k-sparse vector with an m× n matrix:

The problem is characterized by three parameters: k < m < n

n, the signal length;
m, number of inner product measurements;
k, the sparsity of the signal.

The measurement matrix A is of size m× n.

The target vector x ∈ Rn is k-sparse, ‖x‖0 = k.

The measurements y ∈ Rm where y = Ax.
(Highly Underdetermined)
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Measure and recover a k-sparse vector with an m× n matrix:

The problem is characterized by three parameters: k ≤ m ≤ n
n, the signal length;
m, number of inner product measurements;
k, the sparsity of the signal.
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y A= A
x
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The CS Problem: multiple measurement vectors

Measure and recover r jointly k-sparse vectors with a single m× n
measurement matrix.

A single measurement matrix A of size m× n.

The set of r target vectors {x1, . . . , xr} ⊂ Rn which are jointly
k-sparse.

The measurements {y1, . . . , yr} ⊂ Rm where yi = Axi.
(Still Highly Underdetermined)

y1 = Ax1, . . . , yr = Axr
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The CS Problem: multiple measurement vectors

Measure and recover a n× r k-row-sparse matrix with a m× n
measurement matrix.

The measurement matrix A is of size m× n.

The matrix of r target vectors X = [x1| · · · |xr] ∈ Rn×r is
k-row-sparse.

The measurements Y = [y1| · · · |yr] ∈ Rm×r where Y = AX.
(Still Highly Underdetermined)

A = A 

X 

… 

… 

Y 
 y1  y2  y3   …   yr 

 x1  x2  x3   …   xr 
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The MMV Problem: incomplete history

A highly unfair, incomplete (compressive) sampling of results:

Tropp, Gilbert, Strauss: Simultaneous Orthogonal Matching Pursuit
and `1-minimization, 2006.

Foucart: Hard Thresholding Pursuit for MMV problems, 2011.

Davies, Eldar: Rank Aware Algorithms, 2012.

Many others: primarily focused on relaxations, rank-blind variants of
OMP, mixed matrix norm techniques.

Jeff Blanchard Greedy Algorithms for MMV



Compressed Sensing
Rank Awareness

Greedy Algorithms

The CS Problem
Multiple Measurement Vectors

The MMV Problem: this presentation

A rank-aware recovery guarantee.

Extension of SMV greedy algorithms to the MMV problem.

Empirical performance comparison.

Totally unrelated plug for something else.
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Simultaneous OMP

SOMP [Tropp, Gilbert, Strauss]

Initialization: X0 = 0, T 0 = ∅, R0 = Y ,

for j = 1; j = j + 1; do

1. Max Correlation: ij = argmaxi ‖A∗iRj−1‖2
2. New Support: T j = T j−1 ∪ ij

3. Update Approximation: Xj = A†T jY

4. Update Residual : Rj = Y −AXj

Output: X̂ = Xj? where j? is the final completed iteration.
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Rank Aware Simultaneous OMP

RA-SOMP [Davies, Eldar]

Initialization: X0 = 0, T 0 = ∅, R0 = Y ,

for j = 1; j = j + 1; do

1. Rank Awareness: compute U j−1 = ortho(Rj−1)

2. Max Correlation: ij = argmaxi ‖A∗iU j−1‖2
3. New Support: T j = T j−1 ∪ ij

4. Update Approximation: Xj = A†T jY

5. Update Residual : Rj = Y −AXj

Output: X̂ = Xj? where j? is the final completed iteration.
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Preserving Rank Awareness

RA-SOMP suffers from rank degeneration of the residual.

Two solutions:

RA-Order Recursive MP [Davies/Eldar]

Max Correlation: ij = argmax
i

‖A∗iU j−1‖2/‖P⊥T j−1Ai‖2.

RA-SOMP + MUSIC [B./Davies & Lee/Bresler/Junge]

Apply RA-SOMP for k − r iterations, then apply MUSIC.
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MMV Recovery Guarantees

Typical worst case MMV recovery guarantees reduce to the SMV case.

Worst case MMV problem: rank(X) = 1

x = x1 = x2 = · · · = xr so that X = [x|x| · · · |x]

For A from the Gaussian ensemble (entries drawn iid from N (0,m−1)),
SOMP recovers X from Y with high probability provided

m & Ck (log(n) + 1) .
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Rank Aware Recovery Guarantees

Rank aware algorithms incorporate rank in the analysis:

For rank aware algorithms, the rank reduces the logarithmic penalty:

Theorem (B.,Davies 2012)

Suppose X ∈ Rn×r, T = rowsupp(X) with |T | = k, rank(X) = r < k,
and X(T ) is in general position. If A is drawn from the Gaussian
ensemble (independently from X), then both RA-SOMP+MUSIC and
RA-ORMP recover X from Y with high probability provided

m & Ck

(
log(n)

r
+ 1

)
.

When r ∼ log(n), the number of required measurements is linearly
proportional to the row-sparsity of X.
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Greedy SMV Algorithms for MMV Problems

Following Tropp et al. & Foucart, we extend SMV algorithms to the
MMV setting.

Tropp et al. described the extension to the MMV setting as
“capitalization”.

Foucart extended Hard Thresholding Pursuit (HTP) to MMV
problems.

We extended and analyzed five greedy SMV algorithms to the MMV
setting (with Cermak, Hanle, Jing).

Iterative Hard Thresholding (IHT) [Blumensath & Davies]
Normalized IHT (NIHT) [Blumensath & Davies]
HTP and Normalized HTP (NHTP) [Foucart]
Compressive Sampling Matching Pursuit (CoSaMP)
[Needell & Tropp]
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Simultaneous Normalized Iterative Hard Thresholding

SNIHT [Blumensath/Davies & B./Cermak/Hanle/Jing]

Initialization: X0 = 0, R0 = Y ,

T 0 = {k indices for largest row `2 norms of A∗R0}

for j = 1; j = j + 1; do

1. Step Size: compute the steepest descent step on T j−1

wj =

∥∥∥(A∗Rj−1)
(Tj−1)

∥∥∥
F

‖ATj−1 (A∗Rj−1)(Tj−1)‖F
2. Update Approximation: Xj = Xj−1 + wj

(
A∗Rj−1)

3. Support Identification:
T j = {k indices for largest row `2 norms of Xj}

4. Threshold : Xj = Xj
(T j)

5. Update Residual : Rj = Y −AXj

Output: X̂ = Xj? where j? is the final completed iteration.
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Restricted Isometry Property

Definition (Asymmetric RIP Constants)

For the matrix Z ∈ Rm×n, the asymmetric restricted isometry constants
Lk and Uk are the smallest values such that

(1− Lk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + Uk)‖x‖2

for all k-sparse vectors x.

Let µalg(k;A) be a function of the asymmetric restricted isometry
constants of A. We find sufficient restricted isometry conditions in the
form of µalg(k;A) < 1 that guarantee the algorithm alg will recover X
from Y .
These results are not rank aware. The algorithms are not explicitly rank
aware.
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RIP Recovery Guarantees

Theorem (B.,Cermak,Hanle,Jing)

Let A ∈ Rm×n, X ∈ Rn×r with T the index set of the rows of X with
the k largest row-`2-norms. Let Y = AX + E for some error matrix
E ∈ Rm×r. For each algorithm alg from SIHT, SNIHT, SHTP, SNHTP,
and SCoSaMP, there exists asymmetric restricted isometry functions
µalg ≡ µalg(k;A) and ξalg ≡ ξalg(k;A) guaranteeing that after iteration
j,

‖Xj −X(T )‖F ≤ (µalg)j‖X‖F +
ξalg

1− µalg
‖AX(T c) + E‖F .

Therefore, when µalg < 1, the error is proportional to the measurements
on the non-optimal support plus noise.

If T = rowsupp(X) and E = 0, the algorithm converges to the
k-row-sparse matrix X provided µalg(k;A) < 1.
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Phase Transitions

We present empirical performance comparisons in the form of weak
recovery phase transitions.

The phase space is the unit square [0, 1]2 defined by two parameters:

δ =
m

n
(undersampling ratio)

ρ =
k

m
(oversampling ratio)

The tests are conducted in Matlab with n = 1024.

The matrix A is drawn randomly from the Gaussian ensemble.

The row support is chosen uniformly.

The entries of the rows are drawn from {−1, 1} with equal
probability.

The empirical weak recovery phase transition is the location 50%
successful recovery.

Jeff Blanchard Greedy Algorithms for MMV



Compressed Sensing
Rank Awareness

Greedy Algorithms

Extending SMV Algorithms to MMV Problems
Recovery Guarantees
Performance Comparison

SNIHT: l = 1, 2, 5, 10 and n = 1024
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←  l = 1

←  l = 2

←  l = 5

l = 10 →

Recovery Phase Transitions: SNIHT, Gaussian Matrix Ensemble

δ=m/n

ρ=
k/

m

Blue dashed overlay is the theoretical weak phase transition for `1-minimization.
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SNHTP: l = 1, 2, 5, 10 and n = 1024
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Blue dashed overlay is the theoretical weak phase transition for `1-minimization.
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SCoSaMP: l = 1, 2, 5, 10 and n = 1024
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Blue dashed overlay is the theoretical weak phase transition for `1-minimization.
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All: l = 2, 10, n = 1024 and A Gaussian
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Recovery Phase Transitions: Gaussian Matrix Ensemble

δ=m/n

ρ=
k/

m

A is drawn from the Gaussian ensemble.
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All: l = 2, 10, n = 1024 and A subsampled DCT
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Recovery Phase Transitions: DCT Matrix Ensemble

δ=m/n

ρ=
k/

m

A is a randomly subsampled DCT matrix.
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Rank Aware?: l = 1, 10, n = 1024 and A Gaussian
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Recovery Phase Transitions: Gaussian Matrix Ensemble
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m

The rank-blind greedy algorithms outperform the rank aware algorithm.
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Summary

Rank aware recovery: m & Ck
(

log(n)
r + 1

)
.

Sufficient RIP guarantees for extending well-known SMV algorithms
to the MMV setting.

Low complexity, but sophisticated simultaneous greedy algorithms
appear to be rank aware.

[1.] Recovery Guarantees for Rank Aware Pursuits, with M. Davies, IEEE
Signal Processing Letters 19(7):427–430, 2012.

[2.] Greedy Algorithms for Joint Sparse Recovery, with M. Cermak, D.
Hanle, Y. Jing, submitted, 2013.

[3.] Preprints available:
www.math.grinnell.edu/∼blanchaj/Research.html
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Questions?

GAGA: GPU Accelerated Greedy Algorithms
for Compressed Sensing

with Jared Tanner (Oxford)
www.gaga4cs.org

Fast GPU implementations of greedy algorithms executed from
Matlab.

Solve problems up to 220 in fractions of a second.

Robust testing suite.

Freely available for research.

Extension to matrix completion in progress.

Requires CUDA capable NVIDIA GPU.

Does NOT require parallel processing toolbox.
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