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Compressed Sensing The CS blem

Multiple asurement Vectors

The CS Problem: single measurement vector

Measure and recover a k-sparse vector with an m x n matrix:
@ The problem is characterized by three parameters: £k <m <n

e n, the signal length;
e m, number of inner product measurements;
o k, the sparsity of the signal.

@ The measurement matrix A is of size m x n.

@ The target vector x € R" is k-sparse,

|z|lo = k.
@ The measurements y € R™ where y = Az.
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Compressed Sensing The CS Problem

Multiple Measurement Vectors

The CS Problem: multiple measurement vectors

Measure and recover r jointly k-sparse vectors with a single m x n
measurement matrix.

@ A single measurement matrix A of size m X n.

@ The set of r target vectors {z1,...,z,.} C R™ which are jointly
k-sparse.
@ The measurements {y1,...,y.} C R™ where y; = Ax;.

(Still Highly Underdetermined)

y1 = Az, ... ,yr = Ax,
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Compressed Sensing The CS Problem
Multiple Measurement Vectors

The CS Problem: multiple measurement vectors

Measure and recover a n X r k-row-sparse matrix with a m x n
measurement matrix.
@ The measurement matrix A is of size m x n.
@ The matrix of r target vectors X = [x1]---|z,] € R"*" is
k-row-sparse.

@ The measurements Y = [y1]- - |y,] € R™*" where Y = AX.
(Still Highly Underdetermined)
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Compressed Sensing The CS Problem

Multiple Measurement Vectors

The MMV Problem: incomplete history

A highly unfair, incomplete (compressive) sampling of results:

@ Tropp, Gilbert, Strauss: Simultaneous Orthogonal Matching Pursuit
and /;-minimization, 2006.

o Foucart: Hard Thresholding Pursuit for MMV problems, 2011.
@ Davies, Eldar: Rank Aware Algorithms, 2012.

@ Many others: primarily focused on relaxations, rank-blind variants of
OMP, mixed matrix norm techniques.
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Compressed Sensing The CS Problem

Multiple Measurement Vectors

The MMV Problem: this presentation

@ A rank-aware recovery guarantee.
@ Extension of SMV greedy algorithms to the MMV problem.
@ Empirical performance comparison.

o Totally unrelated plug for something else.
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Rank Aware Algorithms

Rank Awareness
Re: Guarantees

Simultaneous OMP

SOMP [Tropp, Gilbert, Strauss]

Initialization: X°=0,7°=0, R =Y,
forj=1;7=75+1;do

1. Max Correlation: i/ = argmax; ||A; R/ 712
2. New Support: Ti=T"1ui

3. Update Approximation: X7 = A:[NY

4. Update Residual: R’ =Y — AXY

Output: X = X7" where j* is the final completed iteration.
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Rank Awareness

Rank Aware Simultaneous OMP

RA-SOMP [Davies, Eldar]

Initialization: X°=0,7°=0, RO =Y,
forj=1,j=7+1;do

1. Rank Awareness:  compute U’~! = ortho(R/~1)
Max Correlation: i) = argmax, [[ATU7 |5
New Support: T =Ti"1uyqd

Update Approximation: X7 = ATTJ.Y

Update Residual: R =Y — AXY

ok N

Output: X = X7" where j* is the final completed iteration.
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Rank Aware Algorithms

Rank Awareness S ecovery Cuaranteac
Recovery Guarantees

Preserving Rank Awareness

RA-SOMP suffers from rank degeneration of the residual.

@ Two solutions:
o RA-Order Recursive MP [Davies/Eldar]

Max Correlation: i/ = argmaxHA;“U-"*]HQ/HPTLJHAsz.
K

o RA-SOMP + MUSIC [B./Davies & Lee/Bresler/Junge]

Apply RA-SOMP for k — r iterations, then apply MUSIC.
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Rank Awa Igorithms

Rank Awareness -
Recovery Guarantees

MMV Recovery Guarantees

Typical worst case MMV recovery guarantees reduce to the SMV case.
o Worst case MMV problem: rank(X) =1

x=x1=Ty3=---=ux, sothat X = [z|z| - |2]

@ For A from the Gaussian ensemble (entries drawn iid from A(0,m~1)),
SOMP recovers X from Y with high probability provided

m 2 Ck (log(n) +1).
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Rank Awareness

Rank Aware Recovery Guarantees

Rank aware algorithms incorporate rank in the analysis:

@ For rank aware algorithms, the rank reduces the logarithmic penalty:
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Rank Aware Algorithms
Recovery Guarantees

Rank Awareness

Rank Aware Recovery Guarantees

Rank aware algorithms incorporate rank in the analysis:

@ For rank aware algorithms, the rank reduces the logarithmic penalty:

Theorem (B.,Davies 2012)

Suppose X € R"*", T = rowsupp(X) with |T| =k, rank(X) =r < k,
and X () is in general position. If A is drawn from the Gaussian
ensemble (independently from X ), then both RA-SOMP+MUSIC and
RA-ORMP recover X fromY with high probability provided

mz Ok (24 41).

r
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Rank Aware Recovery Guarantees
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RA-ORMP recover X fromY with high probability provided

mz Ok (24 41).

r

@ When r ~ log(n), the number of required measurements is linearly
proportional to the row-sparsity of X.
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ing SMV Algorithms to MMV Problems
uarantees
Greedy Algorithms e Comparison

Greedy SMV Algorithms for MMV Problems

Following Tropp et al. & Foucart, we extend SMV algorithms to the
MMV setting.

@ Tropp et al. described the extension to the MMV setting as
“capitalization” .

@ Foucart extended Hard Thresholding Pursuit (HTP) to MMV
problems.

@ We extended and analyzed five greedy SMV algorithms to the MMV
setting (with Cermak, Hanle, Jing).

o lterative Hard Thresholding (IHT) [Blumensath & Davies]

o Normalized IHT (NIHT) [Blumensath & Davies]

e HTP and Normalized HTP (NHTP) [Foucart]

o Compressive Sampling Matching Pursuit (CoSaMP)
[Needell & Tropp]
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Greedy Algorithms

Simultaneous Normalized Iterative Hard Thresholding

SNIHT [Blumensath/Davies & B./Cermak/Hanle/Jing]
Initialization: X° =0, R? =

70 = {k indices for largest row f5 norms of A*RO}

for j=1;j=74+1; do
1. Step Size: compute the steepest descent step on 777!
(4R s
(Ti—Hllp
|Agi—1 (A" RI=Y) iy ||
2. Update Approximation: XJ = X1 i (A*ijl)
3. Suppor_t Identification: _
T7 = {k indices for largest row ¢3 norms of X7}

4. Threshold: X7 =X (JTJ

5. Update Residual: RIi=Y — AXY

j:

> s x . . . . .
Output: X = X7 where j* is the final completed. iteration.



Extendin;
Recovery
Greedy Algorithms Performance Comparison

Restricted Isometry Property

Definition (Asymmetric RIP Constants)

For the matrix Z € R™*", the asymmetric restricted isometry constants
Ly, and Uy are the smallest values such that

(1= Li)lzlls < [|Azl2 < (1 + Uk)|lzll2

for all k-sparse vectors .
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Restricted Isometry Property

Definition (Asymmetric RIP Constants)

For the matrix Z € R™*", the asymmetric restricted isometry constants
Ly, and Uy are the smallest values such that

(1= Li)lzlls < [|Azl2 < (1 + Uk)|lzll2

for all k-sparse vectors .

Let u?9(k; A) be a function of the asymmetric restricted isometry
constants of A. We find sufficient restricted isometry conditions in the
form of pu®9(k; A) < 1 that guarantee the algorithm alg will recover X
from Y.

These results are not rank aware. The algorithms are not explicitly rank
aware.

Jeff Blanchard Greedy Algorithms for MMV



Extending SMV Algorithms to MMV Problems
Recovery Guarantees
Greedy Algorithms Performance Comparison

RIP Recovery Guarantees

Theorem (B.,Cermak,Hanle,Jing)

Let A e R™*" X € R™*" with T the index set of the rows of X with
the k largest row-fs-norms. Let Y = AX + E for some error matrix

E € R™*". For each algorithm alg from SIHT, SNIHT, SHTP, SNHTP,
and SCoSaMP, there exists asymmetric restricted isometry functions
p9 = p9(k; A) and €419 = ¢99(k; A) guaranteeing that after iteration

J

alg

] a J E
| X7 — X(T)”F < (u lg)jHXHF + ﬁ

aly ||AX(Tc) + E”F

Therefore, when /ﬂlg < 1, the error is proportional to the measurements
on the non-optimal support plus noise.

If T = rowsupp(X) and E = 0, the algorithm converges to the
k-row-sparse matrix X provided ™9 (k; A) < 1.
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Greedy Algorithms

Phase Transitions

We present empirical performance comparisons in the form of weak
recovery phase transitions.

e The phase space is the unit square [0, 1]? defined by two parameters:

sg=" (undersampling ratio)
n
k . .
p=— (oversampling ratio)
m

The tests are conducted in Matlab with n = 1024.
The matrix A is drawn randomly from the Gaussian ensemble.

The row support is chosen uniformly.

The entries of the rows are drawn from {—1, 1} with equal
probability.

The empirical weak recovery phase transition is the location 50%
successful recovery.
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Extendin

Greedy Algorithms Performance Comparison

SNIHT: [ =1,2,5,10 and n = 1024

Recovery Phase Transitions: SNIHT, Gaussian Matrix Ensemble
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Blue dashed overlay is the theoretical weak phase transition for £1-minimization.
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Extendin
R

Greedy Algorithms Performance Comparison

SNHTP: [ =1,2,5,10 and n = 1024

Recovery Phase Transitions: SNHTP, Gaussian Matrix Ensemble
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Blue dashed overlay is the theoretical weak phase transition for £1-minimization.
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Extendin

Greedy Algorithms Performance Comparison

SCoSaMP: [ =1,2,5,10 and n = 1024

Recovery Phase Transitions: SCoSaMP, Gaussian Matrix Ensemble
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Blue dashed overlay is the theoretical weak phase transition for £1-minimization.
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Greedy Algorithms Performance Comparison

All: [ =2,10, n = 1024 and A Gaussian

Recovery Phase Transitions: Gaussian Matrix Ensemble
1 T T T T
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d=m/n

A is drawn from the Gaussian ensemble.
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Extendin

Greedy Algorithms Performance Comparison

All: [ =2,10, n = 1024 and A subsampled

Recovery Phase Transitions: DCT Matrix Ensemble
T T T T I

0 | | | | | | | | |
o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
d=m/n

A is a randomly subsampled DCT matrix.
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Extendin / ithms to MN

Greedy Algorithms Performance C;)mparison

Rank Aware?: [ = 1,10, n = 1024 and A Gaussian

Recovery Phase Transitions: Gaussian Matrix Ensemble
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The rank-blind greedy algorithms outperform the rank aware algorithm.
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Greedy Algorithms Performance Comparison

Summary

@ Rank aware recovery: m 2 Ck (@ + 1).
e Sufficient RIP guarantees for extending well-known SMV algorithms
to the MMV setting.

@ Low complexity, but sophisticated simultaneous greedy algorithms
appear to be rank aware.

[1.] Recovery Guarantees for Rank Aware Pursuits, with M. Davies, IEEE
Signal Processing Letters 19(7):427-430, 2012.

[2.] Greedy Algorithms for Joint Sparse Recovery, with M. Cermak, D.
Hanle, Y. Jing, submitted, 2013.

[3.] Preprints available:
www.math.grinnell.edu/~blanchaj/Research.html
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Greedy Algorithms Performance Comparison

Questions?

GAGA: GPU Accelerated Greedy Algorithms
for Compressed Sensing
with Jared Tanner (Oxford)
www.gaga4dcs.org

@ Fast GPU implementations of greedy algorithms executed from
Matlab.

Solve problems up to 22° in fractions of a second.
Robust testing suite.

Freely available for research.

Extension to matrix completion in progress.
Requires CUDA capable NVIDIA GPU.

Does NOT require parallel processing toolbox.
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