CIMPA 2013 Course on High Dimensional Classification with Deep Scattering Networks

Stéphane Mallat

École Normale Supérieure

www.di.ens.fr/data/scattering

• Tremendous increase of data acquistion: audio, images, video medical/biological data, industrial processes, social networks...

- Automatic analysis becomes critical for industries, science medecine, Internet search, new services.
- Memory and computational capacity now allow to sovle large size complex classification problems.
- Effective but complex non-linear algorithms are developped such as deep neural networks.
 - Lack of Mathematics.

• Classification problems:

find the label $y(x) \in \{1, ..., K\}$ for a data vector $x \in \mathbb{R}^d$ given a training set of examples: $\{(x_i, y_i)\}_i$

Data dimension $d \ge 10^6$, Number of classes $2 \le K \le 10^4$

Number of training examples per class from 10 to 1000

• An interpolation problem:

find a good approximation $\tilde{y}(x)$ of y(x), with $\left\{\tilde{y}(x_i) = y_i\right\}_i$

• Piecewise constant interpolation: nearsest neighbor classifier $\tilde{y}(x) = y_j$ if $x_j = \arg \min_{x_i} ||x - x_i||$ Failure

Curse of Dimensionality

- Failure of standard analysis in high dimension: here $d \ge 10^6$.
- Points are far away in high dimensions d:
 - 10 points cover [0,1] at a distance 10^{-1}

0 0 0 0 0 0 0 0 0 0

- 10^d points cover $[0, 1]^d$ at a distance 10^{-1} .

 $\lim_{d\to\infty} \frac{\text{volume sphere of radius } \mathbf{r}}{\text{volume } [0,r]^d} = 0$

: nearly all points are in the corners!

 \Rightarrow there is typically no close data point in high dimension.

Monday, August 12, 2013

High Dimensional Classification

CalTech 101 Beaver

Lotus

Water Lily

Anchor

Joshua Tree

- Considerable variability in each class.
- Euclidean distances are meaningless
- Need to find **discriminative invariants**.

Low-Dimensional Manifold

• The curse of dimensionality is not a problem if signals belong to low-dimensional manifolds:

 \Rightarrow Euclidean distances provide local similarity measures

- Manifold technics: find intrinsic coordinates for example by diagonlizing the Laplace-Beltrami operator.
- Applies to output of low-dimensional dynamical systems but not valid for complex signals such as music, speech, images, geophysical data, medical signals, financial series...

• Each $x \in \mathbb{R}^d$ of class k is a realization of a process X_k of probability distribution $p_k(x)$

Stochastic Models

- \Rightarrow classification is about discriminating random processes.
- Not enough samples to estimate $p_k(x)$ in high dimension, but can discriminate different $p_k(x)$ from their projections: $\left\{ E(F_m(X_k)) = \int_{\mathbb{R}^d} F_m(x) \, p_k(x) \, dx \right\}_m$
- For classification: $E(F_m(X_k))$ must be estimated from one realization $x \Rightarrow$ need ergodicity property $\widetilde{F}_m(x) \approx E(F_m(X_k)) = \mu_k$ invariant in the class k.

• Textures are realizations of high-dimensional stationary processes, which are typically not Gaussian or Markovian.

• Second order moment projections: E(X(t) X(t-m)) = R(m)estimated with weak ergodicity conditions: power spectrum.

same second order moments

same second order moments: not discriminative.

● Use higher order moments ?
Estimators have a large variance
⇒ not sufficiently invariant.

J. McDermott textures

same second order moments

Gaussian model

- Natural Sounds (1s) Original
 - -Hammer
 - Water
 - -Applause

Learning Invariants

- Classifications can be reduced to multiple binary classifications
- Two classes C_k and C_l can be discriminated by finding

an invariant operator $F_{k,l}$ with:

 $\forall x \in \mathcal{C}_k \quad F_{k,l}(x) \approx \mu_k \in \mathbb{R}$ $\forall x \in \mathcal{C}_l \quad F_{k,l}(x) \approx \mu_l \neq \mu_k$

• Linear classifier compute $F_{k,l}(x)$ from a $\Phi(x) = {\Phi_n(x)}_{n \le D}$

$$F_{k,l}(x) = \sum_{n \le D} w_n \Phi_n x \; .$$

Strong classifier aggregating many "weak features".

Hyperplane Separation

• Support Vector Machines optimize the choice of hyperplane: (w, μ) from examples.

For any two classes C_k and C_l finds w so that

$$\langle \Phi x, w \rangle = \sum_{n} w_n \, \Phi_n x$$

is nearly invariant and different in \mathcal{C}_k and \mathcal{C}_l .

• How to define Φ to get linear discriminative invariants ?

Classification with Invariants

- Φ may be defined from prior knowledge on data.
- Unsupervised learning of Φ from unlabeled examples $\{x_i\}$: requires to model a very high dimension distribution.

Wavelets

Hinton, Bengio, Ranzato et. al.: usupervised learning with sparse auto-encoders

Why and how does it work?

The Best Image Classifier

Over 30% of the brain for vision

Huge amount of memory

Psychophysics of Vision

Hypercolumns in V1: directional wavelets

Simple cells Gabor linear models

$$\psi(x) = \theta(x)e^{i\xi x}$$

Complex Cells

- Non-linear
- Large receptive fields
- Some forms of invariance

«What» Pathway towards V4:

- More specialized invariance
- «Grand mother cells»

Audio Psychophysics

Invariants and stability to diffeomorphisms

Scattering and deep neural networks

•Part II:

Limit scattering transform

Expected scattering of stationary processes

• Part III:

 Texture discrimination and synthesis Multifractal analysis
 Scattering on Lie Groups

Unsupervised learning of representations

Translations and Deformations

• Patterns are translated and deformed (class dependent)

Group: $\mathbb{R}^2 \times \text{Diff}(\mathbb{R}^2)$ two dimensions infinite dimensions

• Textures are stationary (translation invariant) processes

with deformations

Rotation and Scaling Variability

• Rotation and deformations

Group: $SO(2) \times \text{Diff}(SO(2))$

• Scaling and deformations

Group: $\mathbb{R} \times \text{Diff}(\mathbb{R})$

Frequency Transpositions

H : Heisenberg group of "time-frequency" translations

Monday, August 12, 2013

Frequency Transpositions

Time and frequency translations and deformations:

• Learning frequency transposition invariance: for speech recognition not for locutor recognition.

Stable Translation Invariants

• **Invariance** to translations $x_c(t) = x(t-c)$

$$\forall c \in \mathbf{R}$$
, $\Phi(x_c) = \Phi(x)$.

$$x(t) \underbrace{\int \left(\frac{\Phi(x)}{2} \right) = \left| \hat{x}(\omega) \right|_{x}}_{x_{\tau}(t)} \underbrace{Fourier Modulus}_{x_{\tau}(t)} \underbrace{\int \left(\frac{\Phi(x_{\tau})}{2} \right) = \left| \hat{x}(\omega) \right|_{x_{\tau}(t)} \underbrace{\int \Phi(x_{\tau})}_{\omega} = \Phi(x_{\tau}) \right| \gg \sup_{t} |\tau'(t)| ||x||}_{x_{\tau}(t)} \underbrace{\int \Phi(x_{\tau})}_{0} = \left| \hat{x}(\omega) \right|_{\omega} \underbrace{\int \Phi(x_{\tau})}_{\omega} = \Phi(x_{\tau}) || \gg \sup_{t} |\tau'(t)| ||x||}_{x_{\tau}(t)} \underbrace{Fourier invariants}_{are not stable either.}$$

• Lipschitz stable to diffeomorphisms $x_{\tau}(t) = x(t - \tau(t))$ small deformations of $x \implies$ small modifications of $\Phi(x)$

$$\forall \tau \ , \ \|\Phi(x_{\tau}) - \Phi(x)\| \leq C \sup_{t \in T} |\nabla \tau(t)| \|x\|$$
.
diffeomorphism metric

Fourier Translation Invariance

• Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$ invariance:

if
$$x_c(t) = x(t-c)$$
 then $|\hat{x}_c(\omega)| = |\hat{x}(\omega)|$

• Instabilities to small deformations $x_{\tau}(t) = x(t - \tau(t))$: $||\hat{x}_{\tau}(\omega)| - |\hat{x}(\omega)||$ is big at high frequencies $\tau(t) = \epsilon t$ $\hat{x}(\omega) = \hat{x}_{\tau}(\omega) = \omega$ **1** unstable \blacklozenge stable

Wavelet Transform

- Complex analytic wavelet: $\psi(t) = \psi^a(t) + i \psi^b(t)$
- Dilated: $\psi_{\lambda}(t) = \alpha^{-j} \psi(\alpha^{-j}t)$ with $\lambda = \alpha^{-j}$.

• Wavelet transform: $x \star \psi_{\lambda}(t) = \int x(u) \psi_{\lambda}(t-u) du$ $Wx = \begin{pmatrix} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{t,\lambda}$

Image Wavelet Transform

• Complex wavelet: $\psi(t) = \psi^a(t) + i \psi^b(t)$, $t = (t_1, t_2)$ rotated and dilated: $\psi_\lambda(t) = 2^{-j} \psi(2^{-j}rt)$ with $\lambda = (2^j, r)$

Unitary Wavelet Transforms

$$Wx = \left(\begin{array}{c} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{array}\right)_{t,\lambda}$$

Denote $||x||^2 = \int |x(t)|^2 dt$

Proposition: (Littlewood-Paley)

The wavelet transform is unitary for $x(t) \in \mathbb{R}$

$$||Wx||^{2} = ||x \star \phi||^{2} + \sum_{\lambda} ||x \star \phi_{\lambda}||^{2} = ||x||^{2}$$

if and only if for almost all ω .

$$|\hat{\phi}(\omega)|^2 + \frac{1}{2} \sum_{\lambda} \left(|\hat{\psi}_{\lambda}(\omega)|^2 + |\hat{\psi}_{\lambda}(-\omega)|^2 \right) = 1$$

Monday, August 12, 2013

• Wavelets are uniformly stable to deformations:

if $\psi_{\lambda,\tau}(t) = \psi_{\lambda}(t - \tau(t))$ then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \leq C \sup_{t} |\nabla \tau(t)|.$$

Wavelet Translation Invariance $|x \star \psi_{\lambda_{1}}^{x}(t)|^{\psi_{\lambda_{1}}} \langle t \rangle |\overline{x} \star \psi_{\lambda_{1}}^{a}(t)|^{(t)} |\overline{x} \star \psi_{\lambda_{1}}^{a}(t)|^{(t)} |\overline{x} \star \psi_{\lambda_{1}}^{a}(t)|^{(t)} |\overline{x} \star \psi_{\lambda_{1}}|^{(t)} |\overline{x} \star \psi_{\lambda_{1}}| \times \phi(t)$ $|x \star \psi_{\lambda_{1}}| \star \phi(t)$

- The modulus $|x \star \psi_{\lambda_1}|$ is a regular envelop
- The average $|x \star \psi_{\lambda_1}| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ .
- Full translation invariance at the limit:

$$\lim_{\phi \to 1} |x \star \psi_{\lambda_1}| \star \phi(t) = \int |x \star \psi_{\lambda_1}(u)| \, du = ||x \star \psi_{\lambda_1}||_1$$

but few invariants.

Wavelet Stabilization

MFSC (audio) on 25ms

Locally invariant to translations and stable to deformations

Wavelet time-frequency $|x \star \psi_{\lambda}(t)|$

Time averaging on **370ms** $|x \star \psi_{\lambda}| \star \phi(t)$

Locally invariant to translations and stable to deformations But loss of information \Rightarrow MFSC (audio) on **25ms** : too small.

Recovering Lost Information

• The high frequencies of $|x \star \psi_{\lambda_1}|$ are in wavelet coefficients:

$$W|x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t) \end{array}\right)_{t,\lambda_2}$$

• Translation invariance by time averaging the amplitude:

$$\forall \lambda_1, \lambda_2, \quad ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t)$$

Deep Convolution Network

Network ouptut:

$$Sx = \begin{pmatrix} x \star \phi(u) \\ |x \star \psi_{\lambda_1}| \star \phi(u) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(u) \\ |||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(u) \\ \dots \end{pmatrix}_{u,\lambda_1,\lambda_2,\lambda_3,\dots}$$

Second Order gives Intervals

Interferences :

$$|x \star \psi_{\lambda}(t)|^{2} = e_{\lambda}^{2} + \sum_{m' \neq m} c_{m,m'} \cos(\omega_{m} - \omega_{m'})t$$

Second order coefficients: $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|$ $\hat{\psi}_{\lambda_2}(\omega)$ $\hat{\psi}_{\lambda_2}(\omega)$ ω

Monday, August 12, 2013

Deep Convolution Network

Scattering Properties

$$Sx = \begin{pmatrix} x \star \phi(u) \\ |x \star \psi_{\lambda_1}| \star \phi(u) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(u) \\ |||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(u) \\ \dots \end{pmatrix}_{u,\lambda_1,\lambda_2,\lambda_3,\dots}$$
$$\|Sx\|^2 = \sum_{m=0}^{\infty} \sum_{\lambda_1,\dots,\lambda_m} \left\| |||x \star \psi_{\lambda_{*}}| \star \dots | \star \psi_{\lambda_m}| \star \phi \right\|^2$$

Theorem: For appropriate wavelets, a scattering is contractive $||Sx - Sy|| \le ||x - y||$ preserves norms ||Sx|| = ||x||stable to deformations $x_{\tau}(t) = x(t - \tau(t))$ $||Sx - Sx_{\tau}|| \le C \sup_{t} |\nabla \tau(t)| ||x||$ $Wx = \left(\begin{array}{c} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{array}\right)_{t,\lambda} \text{ is linear and } \|Wx\| = \|x\|$

$$W|x = \left(\begin{array}{c} x \star \phi(t) \\ |x \star \psi_{\lambda}(t)| \end{array}\right)_{t,\lambda} \text{ is non-linear}$$

Contraction

- it preserves the norm ||W|x|| = ||x||

- it is contractive $|||W|x - |W|y|| \le ||x - y||$ because for $(a, b) \in \mathbb{C}^2$ $||a| - |b|| \le |a - b|$

Scattering Contraction

 $\bullet~S$ is contractive because product of contractive operators.

Scattering Energy Conservation

• S preserves the norm because inner layer energy converge to zero as the depth increases.

Monday, August 12, 2013

Modulus «Demodulation»

• The modulus $|x \star \psi_{\lambda_1}|$ is a regular lower frequency envelop Modulus shift wavelet coefficient energy to low frequencies. Lipschitz Stability to Deformations -

Wavelet transforms "nearly commute" with deformations:

 $D_{\tau}x(t) = x(t - \tau(t))$

Commutator operator:

$$[W, D_{\tau}] = W D_{\tau} - D_{\tau} W$$

Lemma :

$$\| [W, D_{\tau}] \| \leq C \sup_{t} |\nabla \tau(t)| .$$

and $\| [|W|, D_{\tau}] \| \leq \| [W, D_{\tau}] \|$ because modulus commutes with diffeomorphisms.

Part II: High Dimensional Classification

CalTech 101

Joshua Tree

Beaver

Lotus

Water Lily

- Considerable variability in each class.
- Euclidean distances are meaningless
- Need to find **discriminative invariants**.

Deep Neural Networks

J. Hinton, Y. LeCun "S²

"State of the art results"

The W_k are learned with a sparsity criteria Why and how does it work?

Translations and Deformations

• Patterns are translated and deformed (class dependent)

• **Invariance** to translations $x_c(t) = x(t-c)$

$$\forall c \in \mathbf{R} , \Phi(x_c) = \Phi(x) .$$

• Lipschitz stable to diffeomorphisms $x_{\tau}(t) = x(t - \tau(t))$

$$\forall \tau \ , \ \left\| \Phi(x_{\tau}) - \Phi(x) \right\| \le C \sup_{\tau} \left| \nabla \tau(t) \right| \left\| x \right\|$$

Fourier Failure

diffeomorphism metric

Local Scattering Transform

Scattering Properties

$$Sx = \begin{pmatrix} x \star \phi(u) \\ |x \star \psi_{\lambda_1}| \star \phi(u) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(u) \\ |||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(u) \\ \dots \end{pmatrix}_{u,\lambda_1,\lambda_2,\lambda_3,\dots}$$
$$\|Sx\|^2 = \sum_{m=0}^{\infty} \sum_{\lambda_1,\dots,\lambda_m} \left\| |||x \star \psi_{\lambda_{*}}| \star \dots | \star \psi_{\lambda_m}| \star \phi \right\|^2$$

Theorem: For appropriate wavelets, a scattering is contractive $||Sx - Sy|| \le ||x - y||$ preserves norms ||Sx|| = ||x||stable to deformations $x_{\tau}(t) = x(t - \tau(t))$ $||Sx - Sx_{\tau}|| \le C \sup_{t} |\nabla \tau(t)| ||x||$

Monday, August 12, 2013

•Deterministic Scattering transform

Limit scattering integral

Inversion

Image classification application

•High-dimensional stochastic models

Scattering models of stationary processes

Fourier versus Scattering

 $e^{i\xi t} x(t)$

Frequencies $\omega = m\xi$ $e^{im\xi t}x(t) = e^{i\xi t} \dots e^{i\xi t}e^{i\xi t}x(t)$

Countable frequency set

Local Fourier: $\int e^{im\xi u} x(u) \phi(t-u) du$ $\hat{\phi}(\omega)$ in $[-\xi,\xi]$ Fourier transform: $\hat{x}(\omega) = \int e^{i\omega u} x(u) \, du$ $\hat{\delta}(\omega) = 1$ Frequency set: \mathbb{R}

 $|x \star \psi_{\lambda}(t)|$ with $\lambda = 2^j \ge \xi$ Paths $p = (\lambda_1, \lambda_2, ..., \lambda_m)$ $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \dots |\star \psi_{\lambda_m}(t)|$ Countable path set Local scattering: $\int ||x \star \psi_{\lambda_1}| \dots | \star \psi_{\lambda_m}(u)| \phi(t-u) \, du \; .$ Scattering transform: $\overline{S}x(p) = \mu_p^{-1} \int ||x \star \psi_{\lambda_1}| \dots | \star \psi_{\lambda_m}(u)| du$ $\overline{S}\delta(p) = 1$ Path set $\mathcal{P} \sim \mathbb{Z}^{\mathbb{N}} \sim \mathbb{R}$

Monday, August 12, 2013

 $p = (2^{j_1}, 2^{j_2}, 2^{j_3}, ...)$ yields a non-linear frequency subdivision.

Limit Scattering Transform

- Give a meaning to $\lim_{\phi \to 1} S = \overline{S}$.
- S is defined on finite paths: $p = (2^{j_k})_{k \le m}$ with $2^{j_k} \ge \xi$. Countable path set. $\hat{\phi}(\omega)$ in $[-\xi, \xi]$
- \overline{S} is defined on inifinite paths: $p = \left(2^{j_k}\right)_{k \in \mathbb{N}}$ with $2^{j_k} \ge 0$. Path set $\mathcal{P} = \mathbb{N}^{\mathbb{Z}} \sim \mathbb{R}$.

Must define a measure dµ(p) on P hence a σ-algebra.
finite path p = cylinder set of infinite path beginning by p.
dµ(p): scattering mass of a Dirac on a cylinder set.

Theorem S converges weakly to \overline{S} when ϕ goes to 1 There exists a measure $d\mu$ on \mathcal{P} such that

$$\forall x \in \mathbf{L}^{2}(\mathbf{R}) , \quad Sx(p) \in \mathbf{L}^{2}(\mathcal{P}, d\mu)$$
$$\int_{\mathcal{P}} |\overline{S}x(p)|^{2} d\mu(p) < \infty .$$

We know that $||Sx||^2 = ||x||^2$ and $\lim_{\phi \to 1} S = \overline{S}$ **Conjecture:** $\int_{\mathcal{P}} |\overline{S}x(p)|^2 d\mu(p) = ||x||^2$.

Scattering Integral Examples

Fourier transforms maps regularity and decay and vice-versa. What notion of regularity defined by the scattering decay ? Depends on the sparsity/geometry of wavelet coefficients.

Image Scattering Transforms

Image x(t) $t = (t_1, t_2)$ Fourier Modulus $|\hat{x}(\omega)|$ $\omega = (\omega_1, \omega_2)$ Scattering $\phi(t) = 1$ $|x \star \psi_{\lambda_1}| \star \phi \quad ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi$ $||x \star \psi_{\lambda_1}||_1 \quad ||x \star \psi_{\lambda_1}| \star \psi_{2^{j_2}}||_1$

$$\lambda_1 = 2^{j_1} r_{\theta_1}$$

Digit Classification: MNIST

__Digit Classification: MNIST

Second order Scattering Sx:

$$|x \star \psi_{\lambda_1}| \star \phi(2^J n)$$

 $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(2^J n)$

Affine Space Classification

Joan Bruna

Each image is represented by its scattering tranfsorm

Each class C_k is approximated by an affine space \mathbf{A}_k

computed from examples with a Principal Component Analysis

Digit Classification: MNIST

Joan Bruna

3681796691 6757863485 2179712845 4819018894

Classification Errors

Training size	Conv. Net.	Scattering
300	7.2%	4.4%
5000	1.5%	1.0 %
20000	0.8%	0.6 %
60000	0.5%	0.4 %

LeCun et. al.

Scattering Inversion: Phase Recovery-

 $Wx = \left\{ x \star \phi, x \star \psi_{\lambda} \right\}$ is linear and unitary.

Theorem For appropriate wavelets *I. Waldspurger*

$$|W|x = \left\{ x \star \phi, |x \star \psi_{\lambda}| \right\}_{\lambda}$$

is invertible and the inverse is continuous.

Scattering Inversion: Phase Recovery-

I. Waldspurger

Theorem For appropriate wavelets

$$|W|x = \left\{ x \star \phi, |x \star \psi_{\lambda}| \right\}_{\lambda}$$

is invertible and the inverse is continuous.

Inverse scattering: ng: $\begin{array}{c} x \\ \uparrow & |W|^{-1} \\ \left\{ x \star \phi , |x \star \psi_{\lambda_{1}}| \right\}_{\lambda_{1}} \\ & \uparrow & |W|^{-1} \\ \left\{ |x \star \psi_{\lambda_{1}}| \star \phi , ||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \right\}_{\lambda_{1},\lambda_{2}}
\end{array}$ $\left\{ \begin{array}{c} \|W\|^{-1} & \text{Propagation of errors} \\ \left\{ \|x * \psi_{\lambda_1}\| * \psi_{\lambda_2}\| * \phi , \| \|x * \psi_{\lambda_1}\| * \psi_{\lambda_2}\| * \psi_{\lambda_3} | \\ \|W\|^{-1} \end{array} \right\}_{\lambda_1, \lambda_2, \lambda_3}$ $\left\{ || |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi', || || x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \psi_{\lambda_4}| \right\}_{\lambda_1,\lambda_2,\lambda_2}$

J. Anden

Original audio signal x

Reconstruction from Sx for an averaging window ϕ of 1 s from 1st layer coefficients $|x \star \psi_{\lambda_1}| \star \phi$ adding 2nd layer coefficients $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi$

Expected Scattering Transform

• If X(t) is a stationary process then

 $||X \star \psi_{\lambda_1}| \star ... | \star \psi_{\lambda_m}(t)|$ is also stationary.

Scattering :

$$SX(t) = \begin{pmatrix} X \star \phi(t) \\ |X \star \psi_{\lambda_1}| \star \phi(t) \\ ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t) \\ ||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(t) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

• When $\phi \to 1$ with "appropriate" ergodicity conditions" SX(t) may converge to the expected scattering transform:

$$\overline{S}X = \begin{pmatrix} E(X) \\ E(|X \star \psi_{\lambda_1}|) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ E(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

Scattering White Noises

Constant Fourier power spectrum: $\hat{R}_X(\omega) = \sigma^2$.

Expected Scattering Transform

X(t) stationary process:

ess: $\overline{S}X = \begin{pmatrix} E(X) \\ E(|X \star \psi_{\lambda_1}|) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ E(|||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$

Theorem: A scattering is

contractive
$$\|\overline{S}X - \overline{S}Y\|^2 \le E(|X - Y|^2)$$

preserves norms $\|\overline{S}X\|^2 = E(|X|^2)$ (for finite random vectors)

stable to stationary deformations $X_{\tau}(t) = X(t - \tau(t))$ $\|\overline{S}X - \overline{S}X_{\tau}\| \leq C \sup_{t} |\nabla \tau(t)| E(|X|^2)^{1/2}.$

Textures with Same Spectrum

Representation of Random Processes

• An expected scattering is a non-complete representation

$$\overline{S}X = \begin{pmatrix} E(X) &= E(U_0X) \\ E(|X \star \psi_{\lambda_1}|) &= E(U_1X) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) &= E(U_2X) \\ E(|||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) &= E(U_3X) \\ \dots & \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

Theorem (Boltzmann) The distribution p(x) which satisfies $\int_{\mathbb{R}^N} U_m x \ p(x) \ dx = E(U_m X)$ and maximizes the entropy $\int p(x) \log p(x) \ dx$

and maximizes the entropy $-\int p(x) \log p(x) dx$

can be written:
$$p(x) = \frac{1}{Z} \exp\left(\sum_{m=1}^{\infty} \lambda_m \cdot U_m x\right)$$

Synthesis from Second Order

J. McDermott textures

Joakim Anden Joan Bruna

- Maximum entropy estimation of X(t) :
 - Gaussian model from 2nd order moments
 - (N power spectrum coefficients)
 - Scattering model 1st & 2nd orders $((\log_2 N)^2 \text{ coefficients})$
 - Original jackhammer
 - Gaussian model
 - Scattering model
 - Original water
 - Gaussian model
 - Scattering model
 - Original applause
 - Gaussian model
 - Scattering model

Image Reconstruction

Original

Reconstructed

Part III: High Dimensional Classification

- How to represent high-dimensional data $x \in \mathbb{R}^d$ for classification ? $d > 10^{6}$
- Need to compute **discriminative invariants**.

MNIST digit classification

44444444444 5555555555 777717777 88888888888

Texture classification

Anchor

Joshua Tree

 $\log(\omega)$

 $\log(\omega)$

Speech and Music classification

CalTech 101

Water Lily

Monday, August 12, 2013

Deep Neural Network Classifiers

"State of the art results"

Hierarchical invariance

J. Hinton, Y. LeCun

• Deep network algorithms learn the W_k with sparsity.

Why does it work?

Translations and Deformations

• **Invariance** to translations $x_c(t) = x(t-c)$

$$\forall c \in \mathbf{R}$$
, $\Phi(x_c) = \Phi(x)$.

Fourier invariant:
$$\Phi(x) = |\hat{x}(\omega)| = \left| \int x(t) e^{-it\omega} d\omega \right|$$

• Lipschitz stable to diffeomorphisms $x_{\tau}(t) = x(t - \tau(t))$

$$\forall \tau$$
, $\|\Phi(x_{\tau}) - \Phi(x)\| \leq C \sup_{t \in \mathcal{T}} |\nabla \tau(t)| \|x\|$.

diffeomorphism metric

Fourier Failure

Wavelet Scattering Transform

Scattering Transform in $\mathrm{L}^{\mathbf{2}}(\mathbb{R}^n)$.

• Wavelet scattering of x(t):

 $|Sx - Sy\| \le \|x - y\|$

$$Sx = \begin{pmatrix} x \star \phi(t) \\ |x \star \psi_{\lambda_1}| \star \phi(t) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t) \\ |||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(t) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

Lipschitz continuous to diffeomorphism

similarities with

Fourier transform

 $\rightarrow \overline{S}x \in \mathbf{L}^2(\mathcal{P})$

||Sx|| = ||x||

• If $x \in \mathbf{L}^2(\mathbb{R}^n)$ then full translation invariance with

$$\lim_{\phi \to 1} Sx \to \begin{pmatrix} \int x(t) dt \\ \|x \star \psi_{\lambda_1}\|_1 \\ \||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1 \\ \|\|x \star \psi_{\lambda_2}\| \star \psi_{\lambda_2}\| \star \psi_{\lambda_3}\|_1 \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

Scattering Random Processes

• Wavelet scattering of x(t):

$$Sx = \begin{pmatrix} x \star \phi(t) \\ |x \star \psi_{\lambda_1}| \star \phi(t) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t) \\ |||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(t) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

• If x(t) is a realization of a sationary process X(t) then convergence to an expected scattering:

$$\lim_{\phi \to 1} Sx = \overline{S}X = \begin{pmatrix} E(X) \\ E(|X \star \psi_{\lambda_1}|) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ E(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix} \begin{pmatrix} \text{contractive} \\ \text{representation of} \\ \text{a random proces} \\ \lambda_1, \lambda_2, \lambda_3, \dots \end{pmatrix}$$

of

- Scattering of Stationary Processes
 Texture discrimination
 Multifractal analysis and applications
- Invariance to Frequency Transposition, Rotation and Scaling Scattering wavelets on Lie Groups
- •*Unsupervised Learning of Deep Networks* Scattering with frames Sparsity and contraction.

Rotations and illumination variations.

CUREt database

61 classes

$40~{\rm classes}$ of ${\rm CureT}$

Expected Scattering estimated with $\phi = 1$

 $|X \star \psi_{\lambda_1}| \star \phi$

X

CUREt database 61 classes

Self-Similar Multifractals

• Stochastic self-similarity: $X(st) \equiv A_s X(t)$ where A_s is a random variable independent of X and

$$E(|A_s|^q) \sim s^{\zeta(q)}$$

and X(t) has stationary increments.

- A_s is constant for fractional Brownians and Levy Stable: $\Rightarrow \zeta(q) = \zeta(1) q$.
- A_s is a log-normal random variable for Mandelbrot cascades.

Scattering Multifractals

J.Bruna, E.Bacry, J.F.Muzy

$$X(st) \equiv A_s X(t)$$
 with $E(|A_s|^q) \sim s^{\zeta(q)}$

• First order scattering coefficients

$$\overline{S}X(2^{j_1}) = E(|X \star \psi_{j_1}|) \sim 2^{\zeta(1)j_1}$$

Not sufficient to discriminate different selsimilar processes. Avoid high order moments: numerical instabilities.

• Normalized second order scattering

$$\widetilde{S}X(2^{j_1}, 2^{j_2}) = \frac{E(||X \star \psi_{2^{j_1}}| \star \psi_{2^{j_2}}|)}{E(|X \star \psi_{2^{j_1}}|)}$$

Proposition If X has stationary increments and self-similar:

$$\widetilde{S}X(2^{j_1}, 2^{j_2}) = \widetilde{S}X(2^{j_1-j_2})$$

Fractional Brownian Scattering

Proposition: For fractional Brownian motion and noise $\widetilde{S}X(2^{j_1}, 2^{j_2}) = \frac{E(||X \star \psi_{2^{j_1}}| \star \psi_{2^{j_2}}|)}{E(|X \star \psi_{2^{j_1}}|)} \sim 2^{-(j_2 - j_1)/2}$

Monday, August 12, 2013

Scattering Stable Levy Measures

Monday, August 12, 2013

Mandelbrot Cascades

Barral, Mandelbrot

• Stationary log normal random measure dX(t) obtained as multiscale products of log-normal random variables.

$$\zeta(q) = \left(1 + \frac{\mu}{2}\right)q - \frac{\mu}{2}q^2$$

 μ is an "intermittency" factor.

Scattering Mandelbrot Cascades

Theorem: Mandelbort Random Measures dX satisfy:

$$\lim_{j_2 - j_1 \to \infty} \widetilde{S} dX(2j_1, 2^{j_2}) = C_2 \mu \; .$$

1 Trading day of German Bund.

Financial Time Series

Fetal Heart Rate Variability

P. Abry, J. Anden, V. Chudacek, M. Doret

Fetal heart rate monitoring gives information on the stress level of babies before delivery.

Monday, August 12, 2013

• Invariance to a Lie group action and stability to diffeomorphisms

-Translation and frequency transpositions

– Translations and rotations

-Tranvariance to translation-rotations and scaling

_Transposition Invariance

J.Anden

- Frequency transposition is a common source of variability
- Transposition \Leftrightarrow translation and deformations in log λ_1
- Invariance with a "frequency scattering" along $\log\lambda_1$

Genre Classification (GTZAN)

J.Anden

- GTZAN: music genre classification (jazz, rock, classical, ...) 10 classes and 30 seconds tracks.
- Each frame is classified using a Gaussian kernel SVM.

T = 370 ms

Feature Set	Error (%)		
Δ-MFCC (32 ms)	19.3		
Time Scat., m = 1	17.9		
Time Scat., m = 2	12.3		
Time & Frequency Scat., m=2	10.3		

Joint versus Separable Invariants

- Separable cascade of invariants loose joint distributions.
- Separable rotation and translation invariants can not discriminate:

 \Rightarrow need to build invariant on the joint roto-translation group.

Roto-Translation Group

• Roto-translation group $G = \{g = (r, t) \in SO(2) \times \mathbb{R}^2\}$

$$(r,t) \cdot x(u) = x(r^{-1}(u-t))$$

• Group multiplication:

$$(r', t') \cdot (r, t) = (r'r, r't + t')$$
: not commutative.

• An averaging invariant is convolution on $\mathbf{L}^{2}(G): x(g) = x(r, t)$ for totostrainshations $\star: \phi(t) \Rightarrow \overline{\phi}(f) \Rightarrow (t_{0}) \Rightarrow (t_{0}) = \overline{\phi}(g) = x(r, t)$

or total stations
$$\star: \phi(t) = \phi(f) = \pi(t) \phi(gdt'^1g) dg'$$

• Roto-translation Haar measure : $dg = dt d\theta$ (rotation angle θ)

Scattering on a Lie Group

L. Sifre

• One can define separable complex wavelets $\overline{\psi}_{\lambda_2}(r,t) \in \mathbf{L}^2(G)$

$$W_2 x = \left(\begin{array}{c} x \circledast \overline{\phi}(r,t) \\ x \circledast \overline{\psi}_{\lambda_2}(r,t) \end{array}\right)_{\lambda_2,r,t} \text{ is unitary over } \mathbf{L}^2(G).$$

• A roto-translation scattering applies

$$|W_2|x = \left(\begin{array}{c} x \circledast \overline{\phi}(r,t) \\ |x \circledast \overline{\psi}_{\lambda_2}(r,t)| \end{array}\right) \text{ and } |W_m| = |W_2| \text{ for } m \ge 2.$$

Rotation and Scaling Invariance

Laurent Sifre

0.6%

UIUC database: 25 classes

*x*Training

20

Learning Representations

- Unsupervised learning of Φ from unlabeled examples {x_i}:
 model the {x_i}_i as realization of a random vector X ∈ ℝ^d
 - adapt Φ to the high-dimensional distribution p(x) of X

but we can not estimate p(x)...

Scattering Generalization

• Towards general deep networks:

Revisit Expected Scattering

• Expected wavelet scattering transform:

$$\overline{S}X = \begin{pmatrix} E(X) = E(X_0) \\ E(|X \star \psi_{\lambda_1}|) = E(X_1) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) = E(X_2) \\ E(|||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) = E(X_3) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

Initialize
$$X_0 = X$$

For $W_m Z = \left(\sum_n Z(n) , Z \star \psi_\lambda(n)\right)_\lambda$ iteratively compute
 $X_1 = |W_1(X_0 - E(X_0))|$
 $X_2 = |W_2(X_1 - E(X_1))|$
 $X_3 = |W_3(X_2 - E(X_2))|$

• Expected scattering:
$$\overline{S}X = \left(E(X_m)\right)_{m \in \mathbb{N}}$$

. . .

Generalized Scattering

• Define $W_m x = (\langle x, \theta_n \rangle)_{n \le N_{m+1}}$ from \mathbb{R}^{N_m} to $\mathbb{C}^{N_{m+1}}$: HOW ?

Tight frame: $\sum_{n} |\langle x, \theta_n \rangle|^2 = ||x||^2 \iff W_m^* W_m = Id$

$$X_{m} = |W_{m}(X_{m-1} - E(X_{m-1})|) \\ = \left(|\langle X_{m-1} - E(X_{m-1}), \theta_{n} \rangle| \right)_{n}$$

• Expected scattering transform: $\overline{S}X = \{E(X_m)\}_{m \in \mathbb{N}}$

• Since W_m is a tight frame operator $||W_m x|| = ||x||$ and

$$|||W_m|x - |W_my||| \le ||x - y||$$

Theorem: $\|\overline{S}X - \overline{S}Y\| \le E(\|X - Y\|^2)$ $\|\overline{S}X\| = E(\|X\|^2)$

Optimized Space Contraction

- A generalized scattering progressively contracts the space
- For classification, we need to squeeze the space while minimizing the data volume reduction

Proposition: The data volume reduction at layer m is

$$E(\|X_{m-1} - E(X_{m-1})\|^2) - E(\|X_m - E(X_m)\|^2) = \|E(X_m)\|^2$$

 \Rightarrow for all *m* minimize $||E(X_m)||$.

Sparse Layerwise Learning

$$X_m = |W_m(X_{m-1} - E(X_{m-1}))|$$
 with $W_m^* W_m = Id$.

• Given $X_{m-1} - E(X_{m-1})$ we compute W_m by minimizing

$$\|E(X_m)\| = \left\|E\underbrace{\left(|W_m(X_{m-1} - E(X_{m-1})|\right)}\right\|$$

l¹ norm across realizations

 $\Rightarrow W_m \text{ defines a sparse representation of } X_{m-1} - E(X_{m-1})$ Sparse dictionary learning problem.

• A linear classifier approximates the frontier of y(x) by

$$\sum w_n \, \Phi_n x$$

• Problems of functional approximations in high dimension...

- High dimensional classification algorithms have considerably improved in the last few years with many applications.
- Beautiful problems but lack of mathematics and mathematicians working in this area.
- Papers and Softwares: www.di.ens.fr/data/scattering