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• Memory and computational capacity now allow to sovle
large size complex classification problems.

• Effective but complex non-linear algorithms are developped
such as deep neural networks.

• Lack of Mathematics.

         Big Data Analysis
• Tremendous increase of data acquistion: audio, images, video
medical/biological data, industrial processes, social networks...

• Automatic analysis becomes critical for industries, science
medecine, Internet search, new services.
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Failure

         Big Data Analysis

• Piecewise constant interpolation: nearsest neighbor classifier
ỹ(x) = yj if xj = arg minxi �x− xi�

Data dimension d ≥ 106, Number of classes 2 ≤ K ≤ 104

Number of training examples per class from 10 to 1000

• Classification problems:

given a training set of examples:
�

(xi, yi)
�

i

find the label y(x) ∈ {1, ...,K} for a data vector x ∈ Rd

find a good approximation ỹ(x) of y(x), with
�

ỹ(xi) = yi

�

i

• An interpolation problem:
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• Failure of standard analysis in high dimension: here d ≥ 106.

⇒ there is typically no close data point in high dimension.

    Curse of Dimensionality

• Points are far away in high dimensions d:

- 10 points cover [0, 1] at a distance 10−1

- 10d points cover [0, 1]d at a distance 10−1.

o o o o o o o o o o

: nearly all points are in the corners!

lim
d→∞

volume sphere of radius r
volume [0, r]d

= 0
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• Considerable variability in each class. 
• Euclidean distances are meaningless

Anchor Joshua Tree Beaver Lotus Water Lily

   High Dimensional Classification
CalTech 101

• Need to find discriminative invariants.
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• The curse of dimensionality is not a problem if signals
belong to low-dimensional manifolds:

⇒ Euclidean distances provide
local similarity measures

• Manifold technics: find intrinsic coordinates
for example by diagonlizing the Laplace-Beltrami operator.

• Applies to output of low-dimensional dynamical systems
but not valid for complex signals such as music, speech,
images, geophysical data, medical signals, financial series...

     Low-Dimensional Manifold
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of probability distribution pk(x)
⇒ classification is about discriminating random processes.

• Not enough samples to estimate pk(x) in high dimension,

but can discriminate different pk(x) from their projections:
�

E(Fm(Xk)) =
�

Rd

Fm(x) pk(x) dx
�

m

• Each x ∈ Rd of class k is a realization of a process Xk

• For classification: E(Fm(Xk)) must be estimated from

one realization x ⇒ need ergodicity property
�Fm(x) ≈ E(Fm(Xk)) = µk invariant in the class k.

    Stochastic Models
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• Use higher order moments ?
Estimators have a large variance
⇒ not sufficiently invariant.

• Textures are realizations of high-dimensional stationary
processes, which are typically not Gaussian or Markovian.

• Second order moment projections: E(X(t)X(t−m)) = R(m)
estimated with weak ergodicity conditions: power spectrum.

        Texture Discrimination

same second order moments

same second order moments: not discriminative.
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same second order moments
• Natural Sounds (1s)   Original            Gaussian model

– Hammer
– Water
– Applause

       Audio Textures
J. McDermott textures
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   Learning Invariants

• Classifications can be reduced to multiple binary classifications.

an invariant operator Fk,l with:

∀x ∈ Ck Fk,l(x) ≈ µk ∈ R
∀x ∈ Cl Fk,l(x) ≈ µl �= µk

• Two classes Ck and Cl can be discriminated by finding

• Linear classifier compute Fk,l(x) from a Φ(x) = {Φn(x)}n≤D

Fk,l(x) =
�

n≤D

wn Φnx .

Strong classifier aggregating many ”weak features”.
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Representation Supervised linear classification

• Support Vector Machines optimize the
choice of hyperplane: (w, µ) from examples.

Rd RD

D � d

   Hyperplane Separation

x Φ Φx

• How to define Φ to get linear discriminative invariants ?

is nearly invariant and different in Ck and Cl.

�Φx,w� =
�

n

wn Φnx

For any two classes Ck and Cl finds w so that

≥ µ�Φx,w� class
?

w

Ck

Cl
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• Φ may be defined from prior knowledge on data.

• Unsupervised learning of Φ from unlabeled examples {xi}:

requires to model a very high dimension distribution.

Representation

x Φ Φx ≥ T class
?

   Classification with Invariants

�Φx,w�

Supervised linear classification
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Why and how does it work ?

        Deep Neural Networks
J. Hinton, Y. LeCun 

”Grand-mother cells”

unsupervised training
Le, Ranzato, Ng et. al.:

1 billion variables

Face
detector

Body
detector

Building high-level features using large-scale unsupervised learning

and minimum activation values, then picked 20 equally
spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to differentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron is
indeed a face. The first method is visualizing the most
responsive stimuli in the test set. Since the test set
is large, this method can reliably detect near optimal
stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the op-
timal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x∗ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may suffer from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 13, confirm that the tested neuron
indeed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-

Building high-level features using large-scale unsupervised learning

Figure 4. Scale (left) and out-of-plane (3D) rotation (right)
invariance properties of the best feature.

Figure 5. Translational invariance properties of the best
feature. x-axis is in pixels

The results show that the neuron is robust against
complex and difficult-to-hard-wire invariances such as
out-of-plane rotation and scaling.

Control experiments on dataset without faces:
As reported above, the best neuron achieves 81.7% ac-
curacy in classifying faces against random distractors.
What if we remove all images that have faces from the
training set?

We performed the control experiment by running a
face detector in OpenCV and removing those training
images that contain at least one face. The recognition
accuracy of the best neuron dropped to 72.5% which
is as low as simple linear filters reported in section 4.3.

5. Cat and human body detectors

Having achieved a face-sensitive neuron, we would like
to understand if the network is also able to detect other
high-level concepts.

We observed that the most common objects in the
YouTube dataset are body parts and pets and hence
suspected that the network also learns these concepts.

To verify this hypothesis and quantify selectivity prop-
erties of the network with respect to these concepts,
we constructed two datasets, one for classifying hu-
man bodies against random backgrounds and one for
classifying cat faces against other random distractors.

quences of rotated faces from The Sheffield Face Database –
http://www.sheffield.ac.uk/eee/research/iel/research/face.
Different sequences record rotated faces of different indi-
viduals. The dataset only contains rotated faces up to 90
degrees. See Appendix F for a sample sequence.

Figure 6. Visualization of the cat face neuron (left) and
human body neuron (right).

For the ease of interpretation, these datasets have a
positive-to-negative ratio identical to the face dataset.

The cat face images are collected from the dataset de-
scribed in (Zhang et al., 2008). In this dataset, there
are 10,000 positive images and 18,409 negative images
(so that the positive-to-negative ratio is similar to the
case of faces). The negative images are chosen ran-
domly from the ImageNet dataset.

Negative and positive examples in our human body
dataset are subsampled at random from a benchmark
dataset (Keller et al., 2009). In the original dataset,
each example is a pair of stereo black-and-white im-
ages. But for simplicity, we keep only the left images.
In total, like in the case of human faces, we have 13,026
positive and 23,974 negative examples.

We then followed the same experimental protocols as
before. The results, shown in Figure 14, confirm that
the network learns not only the concept of faces but
also the concepts of cat faces and human bodies.

Our high-level detectors also outperform standard
baselines in terms of recognition rates, achieving 74.8%
and 76.7% on cat and human body respectively. In
comparison, best linear filters (sampled from the train-
ing set) only achieve 67.2% and 68.1% respectively.

In Table 1, we summarize all previous numerical re-
sults comparing the best neurons against other base-
lines such as linear filters and random guesses. To un-
derstand the effects of training, we also measure the
performance of best neurons in the same network at
random initialization.

During the development process of our algorithm, we
also tried several other algorithms such as deep autoen-
coders (Hinton & Salakhutdinov, 2006; Bengio et al.,
2007) and K-means (Coates et al., 2011). In our im-
plementation, deep autoencoders are also locally con-
nected and use sigmoidal activation function. For K-
means, we downsample images to 40x40 in order to
lower computational costs.

We also varied the parameters of autoencoders, K-
means and chose them to maximize performances

”State of the art results”
Hierarchical invariance

Hinton, Bengio, Ranzato et. al.:
usupervised learning with sparse auto-encoders

Wavelets

4 G. E. Hinton, A. Krizhevsky & S. D. Wang
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Fig. 2. Left: A scatterplot in which the vertical axis represents the x output of one
of the capsules for each digit image and the horizontal axis represents the x output
from the same capsule if that image is shifted by +3 or −3 pixels in the x direction.
If the original image is already near the limit of the x positions that the capsule can
represent, shifting further in that direction causes the capsule to produce the wrong
answer, but this does not matter if the capsule sets its probability to 0 for data outside
its domain of competence. Right: The outgoing weights of 10 of the 20 generative
units for 9 of the capsules.

present in the input image. The capsule also has its own “generation units” that
are used for computing the capsule’s contribution to the transformed image. The
inputs to the generation units are x + ∆x and y + ∆y, and the contributions
that the capsule’s generation units make to the output image are multiplied by
p, so inactive capsules have no effect.

For the transforming auto-encoder to produce the correct output image, it
is essential that the x and y values computed by each active capsule correspond
to the actual x and y position of its visual entity and we do not need to know
this visual entity or the origin of its coordinate frame in advance.

As a simple demonstration of the efficacy of the transforming auto-encoder,
we trained a network with 30 capsules each of which had 10 recognition units
and 20 generation units. Each capsule sees the whole of an MNIST digit image.
Both the input and the output images are shifted randomly by -2, -1, 0, +1, or
+2 pixels in the x and y directions and the transforming auto-encoder is given
the resulting ∆x and ∆y as an additional input. Figure 2 shows that the capsules
do indeed output x and y values that shift in just the right way when the input
image is shifted. Figure 2 shows that the capsules learn generative units with
projective fields that are highly localized. The receptive fields of the recognition
units are noisier and somewhat less localized.

d

x
Linear

W1

d1 > d

Non
Linear
ρ

d�
1 ≤ d1

W2

d2 > d1 d�
2 ≤ d2

ρ

d�
m � d

Φ(x)

... SVM
y
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Over 30% of the brain for vision

Huge amount of memory

     The Best Image Classifier
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ψ(x) = θ(x)eiξx

 Psychophysics of Vision

[Wolf et Al.] 

Hypercolumns in V1:
  directional wavelets

Simple cells Gabor linear modelsFigure 2: Adapted from (Hubel and Wiesel, 1962).

Following Hubel and Wiesel, we say that the simple cells are tuned to a particular preferred
feature. This tuning is accomplished by weighting the LGN inputs in such a way that a simple
cell fires when the inputs arranged to build the preferred feature are co-activated. In contrast,
the complex cells’ inputs are weighted such that the activation of any of their inputs can drive
the cell by itself. So the complex cells are said to pool the response of several simple cells. As a
visual signal passes from LGN to V1 its representation increases in selectivity, patterns without
edges (such as sufficiently small circular dots of light) are no longer represented. Then as the
signal passes from simple cells to complex cells the representation gains in invariance. Complex
cells downstream from simple cells that respond only when their preferred feature appears in a
small window of space now represent stimuli presented over a larger region.

4.2 Model implementation

At the end of the hierarchy of visual processing, the cells in IT respond selectively to highly com-
plex stimuli and also invariantly over several degrees of visual angle. A popular class of models of
visual processing proceed through subjecting an input signal to a series of selectivity-increasing
and invariance-increasing operations (Fukushima, 1980; Perrett and Oram, 1993; Riesenhuber
and Poggio, 1999). Higher level representations become tuned to more and more complex
preferred features through selectivity-increasing operations and come to tolerate more severe
identity-preserving transformations through invariance-increasing operations.

We implemented a biologically-plausible model of the visual system modified from (Serre et al.,
2007a). This 4-layer model converts images into a feature representation via a series of processing
stages referred to as layers. In order, the layers of the model were: S1 → C1 → S2 → C2. In our
model, an object presented at a position A will evoke a particular pattern of activity in layer S2.
When the object is moved to a new position B, the pattern of activity in layer S2 will change
accordingly. However, this translation will leave the pattern in the C2 layer unaffected.

8

Complex Cells

• Non-linear
• Large receptive fields
• Some forms of invariance

 «What» Pathway towards V4:
• More specialized invariance
• «Grand mother cells»
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• Wavelets appear at early stages of vision and audition.

WHY ?

Time and Frequency
”translation” invariance

    Audio Psychophysics

 Cochlea:
dilated wavelet filters

0 ω
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    Overview
•Part I: 
Invariants and stability to diffeomorphisms
Scattering and deep neural networks

•Part II: 
Limit scattering transform
Expected scattering of stationary processes

•Part III: 
•Texture discrimination and synthesis
Multifractal analysis
Scattering on Lie Groups
Unsupervised learning of representations
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  Translations and Deformations

• Patterns are translated and deformed (class dependent)

Group: R2 ×Diff(R2)

two dimensions infinite dimensions

• Textures are stationary (translation invariant) processes
with deformations
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SO(2)×Diff(SO(2))Group:

• Rotation and deformations

• Scaling and deformations

R×Diff(R)Group:

  Rotation and Scaling Variability
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H : Heisenberg group of ”time-frequency” translations

     Frequency Transpositions

encyclopaediaslog(ω)

t

log(ω)

t
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Time and frequency translations and deformations:

• Learning frequency transposition invariance:

for speech recognition not for locutor recognition.

        Frequency Transpositions

log(ω)

t
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Translation orbits
(two-dimensional)

PV⊥k
nearly invariant
to deformations

Supervised learning:

• Specific deformation invariance must be learned.

”Linearizes” deformations

       Translation Invariance

Deformation orbits
(high dimensional)

Invariant to translations
Φ

Discriminant
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• Invariance to translations xc(t) = x(t− c)

Fourier invariants
are not stable either.

Not stable

• Lipschitz stable to diffeomorphisms xτ (t) = x(t− τ(t))

diffeomorphism metric

     Stable Translation Invariants

small deformations of x =⇒ small modifications of Φ(x)

∀c ∈ R , Φ(xc) = Φ(x) .

x(t)

xc(t)

Φ(x)

Φ(xc)

: registration

0

0

x(t)

xτ (t)

: Fourier ModulusΦ(x) = |x̂(ω)|

Φ(xc) = |x̂c(ω)|
ω

ω

Φ(x)

Φ(xτ ) �Φ(x)− Φ(xτ )� � sup
t

|τ �(t)| �x�

∀τ , �Φ(xτ )− Φ(x)� ≤ C sup
t

|∇τ(t)| �x� .
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if xc(t) = x(t− c) then | �xc(ω)| = |x̂(ω)|

• Fourier transform x̂(ω) =
�

x(t) e−iωt dt invariance:

     Fourier Translation Invariance

• Instabilites to small deformations xτ (t) = x(t− τ(t)) :

| |x̂τ (ω)|−| x̂(ω)| | is big at high frequencies
τ(t) = � t

stable

x̂(ω) x̂τ (ω) ω

unstable
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• Dilated: ψλ(t) = α−j ψ(α−jt) with λ = α−j .

• Complex analytic wavelet: ψ(t) = ψa(t) + i ψb(t)

         Wavelet Transform

|ψ̂λ(ω)|2

λ

|ψ̂λ�(ω)|2

λ� ω0

|φ̂(ω)|2ψλ(t)
ψλ�(t)

x � ψλ(t) =
�

x(u)ψλ(t− u) du

Wx =
�

x � φ(t)
x � ψλ(t)

�

t,λ

• Wavelet transform:

x̂ (ω)
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• Complex wavelet: ψ(t) = ψa(t) + iψb(t) , t = (t1, t2)

rotated and dilated: ψλ(t) = 2−j ψ(2−jrt) with λ = (2j , r)

       Image Wavelet Transform

Wx =
�

x � φ(t)
x � ψλ(t)

�

t,λ

• Wavelet transform:

real parts

imaginary parts

|ψ̂λ(ω)|2

ω1

ω2

[Wolf et Al.] 
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Proposition: (Littlewood-Paley)

The wavelet transform is unitary

Denote �x�2 =
�

|x(t)|2 dt

�Wx�2 = �x � φ�2 +
�

λ

�x � φλ�2 = �x�2

if and only if

for x(t) ∈ R

for almost all ω.

|φ̂(ω)|2 +
1
2

�

λ

�
|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2

�
= 1

    Unitary Wavelet Transforms

Wx =
�

x � φ(t)
x � ψλ(t)

�

t,λ
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• The wavelet dictionary {ψλ(t− u)}t,λ is translation invariant.

• Wavelets are uniformly stable to deformations:

if ψλ,τ (t) = ψλ(t− τ(t)) then

�ψλ − ψλ,τ� ≤ C sup
t

|∇τ(t)| .

     Why Wavelets ?
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x � ψλ1(t) = x � ψa
λ1

(t) + i x � ψb
λ1

(t)

• The modulus |x � ψλ1 | is a regular envelop

|x � ψλ1 | � φ(t)

• The average |x � ψλ1 | � φ(t) is invariant to small translations

relatively to the support of φ.

lim
φ→1

|x � ψλ1 | � φ(t) =
�

|x � ψλ1(u)| du = �x � ψλ1�1

    Wavelet Translation Invariance

pooling|x � ψλ1(t)| =
�

|x � ψa
λ1

(t)|2 + |x � ψb
λ1

(t)|2
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Window Fourier Time averagingWavelet time-frequency

Locally invariant to translations and stable to deformations

ω

         Wavelet Stabilization

|x � ψλ(t)| |x � ψλ| � φ(t)
λ

MFSC (audio) on 25ms
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MFSC (audio) on 25msBut loss of information ⇒

|x � ψλ(t)|
Time averaging on 370ms

|x � ψλ| � φ(t)

: too small.

Wavelet time-frequency

Locally invariant to translations and stable to deformations

         Wavelet Stabilization
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|x � ψλ1 |

• The high frequencies of |x � ψλ1 | are in wavelet coefficients:

W |x � ψλ1 | =
�

|x � ψλ1 | � φ(t)
|x � ψλ1 | � ψλ2(t)

�

t,λ2

    Recovering Lost Information

∀λ1 , λ2 , | | x � ψλ1 | � ψλ2 | � φ(t)

• Translation invariance by time averaging the amplitude:

|x �ψ λ1 | � φ
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x
x � φ

|x � ψλ1 | � φ

||x � ψλ1 | � ψλ2 |
||x � ψλ1 | � ψλ2 | � φ

|||x � ψλ1 | � ψλ2 | � ψλ3 |

|x � ψλ1 |

|W1|

|W2|

|W3|

     Deep Convolution Network
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Sx =





x �φ (u)
|x � ψλ1 | � φ(u)

||x �ψ λ1 | � ψλ2 | � φ(u)
|||x �ψ λ2 | � ψλ2 | � ψλ3 | � φ(u)

...





u,λ1,λ2,λ3,...

Network ouptut:

      Scattering Vector
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18 Hz

xi(t) = ai(t)
�
c � h(t)

�
with c(t) =

�

n

δ(t− nT ) .

        Amplitude Modulation

1977 Hz

log(λ1)

tlog(λ1)

t

t

log(λ2)

|x � ψλ1(t)|

|x � ψλ1 | � φ(t)

||x � ψλ1 | � ψλ2 | � φ(t) for λ1 = log(1977)
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Second order coefficients: ||x � ψλ1 | � ψλ2 |

 Second Order gives Intervals

|x �ψ λ(t)|2 = e2
λ +

�

m� �=m

cm,m� cos(ωm − ωm�)t
Interferences :

C Major

Music chord :

�|x �ψ λ1 |(ω)

ω0

x(t) =
�

m

am cos(ωmt)

•  

ψ̂λ(ω)

0 ω

ω2 − ω1

ω3 − ω2
ω3 − ω1

Minor 3rd

Major 3rd

Perfect 5th

x̂(ω)

ψ̂λ2(ω)
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lo
g(

1)

t

First order windowed scattering (small scale)

lo
g(

1)

t

First order windowed scattering (large scale)

lo
g(

2)

t

Second order windowed scattering (large scale) Band #72

2000 Hz

1 s

131 Hz

                Arpeggio

|x �ψ λ1 |(t)log(λ1)

t
log(λ1)

t

t

log(λ2)

|x � ψλ1 | � φ(t)

||x � ψλ1 | � ψλ2 | � φ(t) for λ1 = 2000
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     Deep Convolution Network

x

|W1|

|W2|

|W3|

x � φ

|x � ψλ1 | � φ

||x � ψλ1 | � ψλ2 | � φ
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stable to deformations xτ (t) = x(t− τ(t))

�Sx− Sxτ� ≤ C sup
t

|∇τ(t)| �x�

�Sx�2 =
∞�

m=0

�

λ1,...,λm

���|||x � ψλ‘ | � ...| � ψλm | � φ
���

2

      Scattering  Properties

contractive �Sx− Sy� ≤ �x− y�

preserves norms �Sx� = �x�

Theorem: For appropriate wavelets, a scattering is

Sx =





x �φ (u)
|x � ψλ1 | � φ(u)

||x �ψ λ1 | � ψλ2 | � φ(u)
|||x �ψ λ2 | � ψλ2 | � ψλ3 | � φ(u)

...





u,λ1,λ2,λ3,...
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- it preserves the norm �|W |x� = �x�

|W |x =
�

x � φ(t)
|x � ψλ(t)|

�

t,λ

is non-linear

Wx =
�

x � φ(t)
x � ψλ(t)

�

t,λ

is linear and �Wx� = �x�

- it is contractive �|W |x− |W |y� ≤ �x− y�
because for (a, b) ∈ C2 ||a|− |b|| ≤ |a− b|

     Contraction
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• S is contractive because product of contractive operators.

     Scattering Contraction
x

|W1|

|W2|

|W3|

x � φ

|x � ψλ1 | � φ

||x � ψλ1 | � ψλ2 | � φ
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to zero as the depth increases.

• S preserves the norm because inner layer energy converge

     Scattering Energy Conservation

x
x � φ

|x � ψλ1 | � φ

||x � ψλ1 | � ψλ2 |
||x � ψλ1 | � ψλ2 | � φ

|||x � ψλ1 | � ψλ2 | � ψλ3 |

|x � ψλ1 |

|W1|

|W2|

|W3|
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x � ψλ1(t) = x � ψa
λ1

(t) + i x � ψb
λ1

(t)

• The modulus |x � ψλ1 | is a regular lower frequency envelop

x̂ (ω)

Modulus shift wavelet coefficient energy to low frequencies.

      Modulus «Demodulation»

λ ω0

ψ̂λ(ω)

�x � ψλ(ω)
�|x � ψλ|(ω)
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Wavelet transforms ”nearly commute” with deformations:

Dτx(t) = x(t− τ(t))

Commutator operator:

[W,Dτ ] = W Dτ −Dτ W

Lemma :

� [W,Dτ ] � ≤ C sup
t

|∇τ(t)| .

and � [|W |, Dτ ] � ≤ � [W,Dτ ] �
because modulus commutes with diffeomorphisms.

 Lipschitz Stability to Deformations
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• Considerable variability in each class. 
• Euclidean distances are meaningless

Anchor Joshua Tree Beaver Lotus Water Lily

Part II: High Dimensional Classification
CalTech 101

• Need to find discriminative invariants.
Monday, August 12, 2013



Why and how does it work ?

Linear
Classifier

        Deep Neural Networks
J. Hinton, Y. LeCun ”State of the art results”

The Wk are learned
with a sparsity criteria

Wavelets

4 G. E. Hinton, A. Krizhevsky & S. D. Wang

!6 !4 !2 0 2 4 6
!4

!3

!2

!1

0

1

2

3

4

5

6

           x outputs of module 30 before and after a +3 or !3 pixel shift

Fig. 2. Left: A scatterplot in which the vertical axis represents the x output of one
of the capsules for each digit image and the horizontal axis represents the x output
from the same capsule if that image is shifted by +3 or −3 pixels in the x direction.
If the original image is already near the limit of the x positions that the capsule can
represent, shifting further in that direction causes the capsule to produce the wrong
answer, but this does not matter if the capsule sets its probability to 0 for data outside
its domain of competence. Right: The outgoing weights of 10 of the 20 generative
units for 9 of the capsules.

present in the input image. The capsule also has its own “generation units” that
are used for computing the capsule’s contribution to the transformed image. The
inputs to the generation units are x + ∆x and y + ∆y, and the contributions
that the capsule’s generation units make to the output image are multiplied by
p, so inactive capsules have no effect.

For the transforming auto-encoder to produce the correct output image, it
is essential that the x and y values computed by each active capsule correspond
to the actual x and y position of its visual entity and we do not need to know
this visual entity or the origin of its coordinate frame in advance.

As a simple demonstration of the efficacy of the transforming auto-encoder,
we trained a network with 30 capsules each of which had 10 recognition units
and 20 generation units. Each capsule sees the whole of an MNIST digit image.
Both the input and the output images are shifted randomly by -2, -1, 0, +1, or
+2 pixels in the x and y directions and the transforming auto-encoder is given
the resulting ∆x and ∆y as an additional input. Figure 2 shows that the capsules
do indeed output x and y values that shift in just the right way when the input
image is shifted. Figure 2 shows that the capsules learn generative units with
projective fields that are highly localized. The receptive fields of the recognition
units are noisier and somewhat less localized.

d

x
Linear

W1

d1 > d

Non
Linear
ρ

d�
1 ≤ d1

W2

d2 > d1 d�
2 ≤ d2

ρ

d�
m � d

Φ(x)

... y
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Fourier Failure

  Translations and Deformations

• Patterns are translated and deformed (class dependent)

Group: R2 ×Diff(R2)

• Invariance to translations xc(t) = x(t− c)

∀c ∈ R , Φ(xc) = Φ(x) .

• Lipschitz stable to diffeomorphisms xτ (t) = x(t− τ(t))

diffeomorphism metric

∀τ , �Φ(xτ )− Φ(x)� ≤ C sup
t

|∇τ(t)| �x� .
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x
x � φ

|x � ψλ1 | � φ

||x � ψλ1 | � ψλ2 |
||x � ψλ1 | � ψλ2 | � φ

|||x � ψλ1 | � ψλ2 | � ψλ3 |

|x � ψλ1 |

|W1|

|W2|

|W3|

      Local Scattering Transform
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stable to deformations xτ (t) = x(t− τ(t))

�Sx− Sxτ� ≤ C sup
t

|∇τ(t)| �x�

�Sx�2 =
∞�

m=0

�

λ1,...,λm

���|||x � ψλ‘ | � ...| � ψλm | � φ
���

2

        Scattering  Properties

contractive �Sx− Sy� ≤ �x− y�

preserves norms �Sx� = �x�

Theorem: For appropriate wavelets, a scattering is

Sx =





x �φ (u)
|x � ψλ1 | � φ(u)

||x �ψ λ1 | � ψλ2 | � φ(u)
|||x �ψ λ2 | � ψλ2 | � ψλ3 | � φ(u)

...





u,λ1,λ2,λ3,...
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          Part II : Overview

•Deterministic Scattering transform
Limit scattering integral
Inversion
Image classification application

•High-dimensional stochastic models 
Scattering models of stationary processes
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eiξt x(t) |x � ψλ(t)| with λ = 2j ≥ ξ

eimξtx(t) = eiξt ... eiξteiξtx(t)

�
eimξu x(u) φ(t− u)du

Scattering transform:

Sx(p) = µ−1
p

�
| |x � ψλ1 |...| � ψλm(u)| du

Frequencies ω = mξ

Countable frequency set

| |x � ψλ1 | � ψλ2 | ... | � ψλm(t)|
Paths p = (λ1, λ2..., λm)

Countable path set

Frequency set: R
δ̂(ω) = 1

φ̂(ω) in [−ξ, ξ]

Sδ(p) = 1
Path set P ∼ ZN ∼ R

Local Fourier:

�
| |x � ψλ1 |...| � ψλm(u)| φ(t− u) du .

Local scattering:

    Fourier  versus  Scattering

x̂(ω) =
�

eiωu x(u) du

Fourier transform: ξ −→ 0
φ −→ 1
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p = (2j1 , 2j2 , 2j3 , ...) yields a non-linear frequency subdivision.

ω

0

     Frequency Subdivision

ψ̂2j1 (ω)

ψ̂2j2 (ω)

�||x � ψ2j1 | � ψ2j2 |(ω)

0

�|x � ψ2j1 |(ω)

x̂(ω)
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• Give a meaning to limφ→1 S = S.

• S̄ is defined on inifinite paths: p =
�
2jk

�

k∈N
with 2jk ≥ 0.

Path set P = NZ ∼ R.

• S is defined on finite paths: p =
�
2jk

�

k≤m
with 2jk ≥ ξ.

Countable path set.

• Must define a measure dµ(p) on P hence a σ−algebra.

finite path p = cylinder set of infinite path beginning by p.

dµ(p): scattering mass of a Dirac on a cylinder set.

φ̂(ω) in [−ξ, ξ]

  Limit Scattering Transform
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We know that �Sx�2 = �x�2 and limφ→1 S = S

Conjecture:
�

P
|Sx(p)|2 dµ(p) = �x�2 .

∀x ∈ L2(R) , Sx(p) ∈ L2(P, dµ)
�

P
|Sx(p)|2 dµ(p) <∞ .

There exists a measure dµ on P such that

Theorem S converges weakly to S when φ goes to 1

     Scattering Transform
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→ ω → ω

x(t) |x̂(ω)| Sx(p(ω))|

ω p(ω) with dµ(p(ω)) = dω

PR

   Frequency to Paths Mapping

Sx(p(ω))ω

�
|x̂(ω)|2 |ψ̂(2jω)|2 dω =

� 2j+1π

2jπ
|Sx(p(ω))|2 dω

ψ̂λ
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xτ (t) = x(t− τ(t)) with τ(t) = � t .

Fourier transforms maps regularity and decay and vice-versa.
What notion of regularity defined by the scattering decay ?
Depends on the sparsity/geometry of wavelet coefficients.

  Scattering Integral Examples

ψ̂λ

x(t) |x̂(ω)| Sx

xτ (t) |�xτ (ω)| Sxτ

� |x̂|− |x̂τ | �
�x� �τ ��∞

= 13 �Sx− Sxτ�P
�x� �τ ��∞

= 1.4
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Image
x(t)

t = (t1, t2)

φ(t) = 1

              Image Scattering Transforms

�x � ψλ1�1

Scattering

λ1 = 2j1 rθ1

|x � ψλ1 | � φ

�|x � ψλ1 | � ψ2j2�1

||x � ψλ1 | � ψλ2 | � φ

λ1 = 2j1 rθ1

λ2 = 2j2 rθ2

Fourier Modulus
|x̂(ω)|

ω = (ω1, ω2)

ω1

ω2
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 Digit Classification: MNIST
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x(t) ||x � ψλ1 | � ψλ2 | � φ(2Jn)|x � ψλ1 | � φ(2Jn)

Second order Scattering Sx:

 Digit Classification: MNIST

2J

φ
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S

Each image is represented by its scattering tranfsorm
Each class Ck is approximated by an affine space Ak

computed from examples with a Principal Component Analysis

       Affine Space Classification

A1

A2

x

Sx
x

x

Joan Bruna
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Training size Conv. Net. Scattering
300 7.2% 4.4%
5000 1.5% 1.0%
20000 0.8% 0.6%
60000 0.5% 0.4%

LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST
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|W |

Scattering Inversion: Phase Recovery

I. Waldspurger

x �φ (t)

|x �ψ λ(t)|
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x(t)

Theorem For appropriate wavelets

is invertible and the inverse is continuous.

|W |x =
�

x � φ , |x � ψλ|
�

λ

Wx =
�

x � φ , x � ψλ

�

λ
is linear and unitary.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

|W |−1
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Theorem For appropriate wavelets

is invertible and the inverse is continuous.

Propagation of errors
�

||x � ψλ1 | � ψλ2 | � φ , 0
�

λ1,λ2,λ3

|W |−1

|W |−1

|W |−1

|W |−1

Scattering Inversion: Phase Recovery
I. Waldspurger

Inverse scattering: x

�
x � φ , |x � ψλ1 |

�

λ1

�
|x � ψλ1 | � φ , ||x � ψλ1 | � ψλ2 |

�

λ1,λ2

�
||x � ψλ1 | � ψλ2 | � φ , |||x � ψλ1 | � ψλ2 | � ψλ3 |

�

λ1,λ2,λ3

�
|||x � ψλ1 | � ψλ2 | � ψλ3 | � φ , ||||x � ψλ1 | � ψλ2 | � ψλ3 | � ψλ4 |

�

λ1,λ2,λ3,λ4

|W |x =
�

x � φ , |x � ψλ|
�

λ
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Original audio signal x

adding 2nd layer coefficients ||x � ψλ1 | � ψλ2 | � φ

from 1st layer coefficients |x � ψλ1 | � φ

Reconstruction from Sx for an averaging window φ of 1 s

      Audio Reconstruction

Monday, August 12, 2013



SX(t) =





X � φ(t)
|X � ψλ1 | � φ(t)

||X � ψλ1 | � ψλ2 | � φ(t)
|||X � ψλ2 | � ψλ2 | � ψλ3 | � φ(t)

...





λ1,λ2,λ3,...

• If X(t) is a stationary process then
||X � ψλ1 | � ...| � ψλm(t)| is also stationary.

Scattering :

SX =





E(X)
E(|X � ψλ1 |)

E(||X � ψλ1 | � ψλ2 |)
E(|||X � ψλ2 | � ψλ2 | � ψλ3 |)

...





λ1,λ2,λ3,...

SX(t) may converge to the expected scattering transform:
• When φ→ 1 with ”appropriate” ergodicity conditions”

      Expected Scattering  Transform
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Bernoulli

SX(λ1, λ2)

SX(λ1)

SX(λ1, λ2, λ3)

SX(λ1, λ2, λ3, λ4)

ω
Gaussian White

SX(p(ω))2 : Radon measure

Constant Fourier power spectrum: R̂X(ω) = σ2.

�
R̂X(ω) |ψ̂2j (ω)|2 dω =

� 2j+1

2j

SX(p(ω))2 dω .

     Scattering White Noises

ω→

→

X(t)
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X(t) stationary process:

SX =





E(X)
E(|X � ψλ1 |)

E(||X � ψλ1 | � ψλ2 |)
E(|||X � ψλ2 | � ψλ2 | � ψλ3 |)

...





λ1,λ2,λ3,...

      Expected Scattering  Transform

preserves norms

Theorem: A scattering is

�SX − SXτ� ≤ C sup
t

|∇τ(t)| E(|X|2)1/2 .

�SX�2 = E(|X|2)

contractive �SX − SY �2 ≤ E(|X − Y |2)

stable to stationary deformations Xτ (t) = X(t− τ(t))

(for finite random vectors)
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             Textures with Same Spectrum

E(||X � ψλ1 | � ψλ2 |)E(|X � ψλ1 |)
Expected ScatteringX(t)

stationary process
R̂X(ω)

Power Spectrum
ω1

ω2

ω1

ω2
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lo
g(

1)

t

First order windowed scattering (small scale)

lo
g(

1)

t

First order windowed scattering (large scale)

lo
g(

2)

t

Second order windowed scattering (large scale) Band #51

SpectrumX: stationary process

    Sounds with Same Spectrum 

ω

2s window

Fourier

J. McDermott |x �ψ λ1 |(t)

|x � ψλ1 | � φ(t)

||x � ψλ1 | � ψλ2 | � φ(t) for λ1 = 2000log(λ2)

log(λ1)

log(λ1)

t
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SX =





E(X) = E(U0X)
E(|X � ψλ1 |) = E(U1X)

E(||X � ψλ1 | � ψλ2 |) = E(U2X)
E(|||X � ψλ2 | � ψλ2 | � ψλ3 |) = E(U3X)

...





λ1,λ2,λ3,...

• An expected scattering is a non-complete representation

Representation of Random Processes

p(x) =
1
Z

exp
� ∞�

m=1

λm . Umx
�

�

RN

Umx p(x) dx = E(UmX)

and maximizes the entropy −
�

p(x) log p(x) dx

can be written:

Theorem (Boltzmann) The distribution p(x) which satisfies
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• Maximum entropy estimation of X(t) :
- Gaussian model from 2nd order moments
(N power spectrum coefficients)
- Scattering model 1st & 2nd orders ((log2 N)2 coefficients)

     Synthesis from Second Order
Joan BrunaJ. McDermott textures Joakim Anden

- Original applause

- Original water

- Gaussian model

- Gaussian model

- Original jackhammer

- Gaussian model
- Scattering model

- Scattering model

- Scattering model
Monday, August 12, 2013



Original Reconstructed

      Image Reconstruction
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• How to represent high-dimensional data              for classification ?

Part III: High Dimensional Classification
x ∈ Rd

• Need to compute discriminative invariants.

Anchor Joshua Tree Beaver Lotus Water Lily
CalTech 101

MNIST digit classification

Texture classification

Speech and Music classificationlog(ω)

tlog(ω)

t
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• Deep network algorithms learn the Wk with sparsity.

  Deep Neural Network Classifiers
J. Hinton, Y. LeCun ”State of the art results”

x1 ρ(x1(u)) = |x1(u)|

d

x
Linear

W1

d1 > d

Non
Linear
ρ W2

d2 > d1

ρ
...

Linear
Classifier

Hierarchical invariance
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Fourier Failure

Fourier invariant: Φ(x) = |x̂(ω)| =
���
�

x(t) e−itω dω
���

  Translations and Deformations

• Invariance to translations xc(t) = x(t− c)

∀c ∈ R , Φ(xc) = Φ(x) .

• Lipschitz stable to diffeomorphisms xτ (t) = x(t− τ(t))

diffeomorphism metric

∀τ , �Φ(xτ )− Φ(x)� ≤ C sup
t

|∇τ(t)| �x� .
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-

       Wavelet Transform

• Complex analytic wavelet: ψ(t) = ψa(t) + i ψb(t)

ω

|ψ̂λ�(ω)|2

λ�

|ψ̂λ(ω)|2

λ0

|φ̂(ω)|2

|ψ̂λ(ω)|2

ω1

ω2

For t ∈ R2, dilated and rotated

with λ = (2j , r)

ψλ(t) = 2j ψ(2jrt)
-
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x � φ

|x � ψλ1 | � φ

||x � ψλ1 | � ψλ2 |
||x � ψλ1 | � ψλ2 | � φ

|||x � ψλ1 | � ψλ2 | � ψλ3 |

|x � ψλ1 |

|W1|

|W2|

|W3|

      Wavelet Scattering Transform

x
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lim
φ→1

Sx →





�
x(t) dt

�x � ψλ1�1
�|x � ψλ1 | � ψλ2�1

�||x � ψλ2 | � ψλ2 | � ψλ3�1
...





λ1,λ2,λ3,...

→ Sx ∈ L2(P)

• If x ∈ L2(Rn) then full translation invariance with

• Wavelet scattering of x(t):

    Scattering  Transform in

Sx =





x � φ(t)
|x � ψλ1 | � φ(t)

||x � ψλ1 | � ψλ2 | � φ(t)
|||x � ψλ2 | � ψλ2 | � ψλ3 | � φ(t)

...





λ1,λ2,λ3,...

L2(Rn)

�Sx− Sy� ≤ �x− y�

�Sx� = �x�

Lipschitz continuous
to diffeomorphism

Theorem
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lim
φ→1

Sx = SX =





E(X)
E(|X � ψλ1 |)

E(||X � ψλ1 | � ψλ2 |)
E(|||X � ψλ2 | � ψλ2 | � ψλ3 |)

...





λ1,λ2,λ3,...

convergence to an expected scattering:

• If x(t) is a realization of a sationary process X(t) then

    Scattering  Random Processes

• Wavelet scattering of x(t):

Sx =





x � φ(t)
|x � ψλ1 | � φ(t)

||x � ψλ1 | � ψλ2 | � φ(t)
|||x � ψλ2 | � ψλ2 | � ψλ3 | � φ(t)

...





λ1,λ2,λ3,...
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          Part III : Overview

• Scattering of Stationary Processes
Texture discrimination
Multifractal analysis and applications

•Invariance to Frequency Transposition, Rotation and Scaling
Scattering wavelets on Lie Groups

•Unsupervised Learning of Deep Networks
Scattering with frames
Sparsity and contraction.
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     Classification of Textures

CUREt database

61 classes

Rotations and 
illumination 
variations.
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40 classes of CureT

     Classification of Textures
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|X � ψλ1 | � φ

Expected Scattering
estimated with φ = 1

X

     Classification of Textures

||X � ψλ1 | � ψλ2 | � φ
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Training Fourier Histogr. Scattering

per class Spectr. Features

46 1% 1% 0.2 %

J. Bruna

     Classification of Textures

CUREt database
61 classes

Texte

yx Sx Supervised Linear
Classifier: PCA/SVM
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where As is a random variable independant of X and

X(st) ≡ As X(t)

E(|As|q) ∼ sζ(q)

and X(t) has stationary increments.

• As is a log-normal random variable for Mandelbrot cascades.

⇒ ζ(q) = ζ(1) q .

• As is constant for fractional Brownians and Levy Stable:

• Stochastic self-similarity:

   Self-Similar Multifractals
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X(st) ≡ As X(t) with E(|As|q) ∼ sζ(q) .

   Scattering Multifractals

�SX(2j1 , 2j2) = �SX(2j1−j2) .

Proposition If X has stationary increments and self-similar:

J .Bruna,E .Bacry , J .F .Muzy

• Normalized second order scattering

�SX(2j1 , 2j2) =
E(||X � ψ2j1 | � ψ2j2 |)

E(|X � ψ2j1 |)

• First order scattering coefficients

SX(2j1) = E(|X � ψj1 |) ∼ 2ζ(1)j1

Not sufficient to discriminate different selsimilar processes.
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Proposition: For fractional Brownian motion and noise

�SX(2j1 , 2j2) =
E(||X � ψ2j1 | � ψ2j2 |)

E(|X � ψ2j1 |) ∼ 2−(j2−j1)/2
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α = 2 : Brownian motion.

   Scattering Stable Levy Measures
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Figure 3: (a): Realization of a Lévy process with α = 1.1, (b): Realization of a Lévy
process with α = 1.5, (c) log SXα(j1) as a function of j1 for α-stable Lévy processes
with α = 1.1, 1.2, 1.3. The slopes are α−1. (d) log S̃Xα(j2 − j1) as a function of j2 − j1
number of realizations. The slopes are α−1 − 1.

This property can be explained as follows. Proposition 3.2 proves in (14) that

S̃X(j) =
E(||X " ψ(t)| " ψj |)

E(|X " ψ|) . (28)

The stationary process |X " ψ(t)| computes the amplitude of local variations of the
process X. It is dominated by a sparse sum of large amplitude bumps of the form
a |ψ(t − u)|, where a and u are the random amplitudes and positions of rare jumps in
dX(t), distributed according to the Lévy measure. It results that

E(||X " ψ| " ψj |) " E(|dX " |ψ| " ψj |). (29)

If 2j # 1 then |ψ| " ψj ≈ ‖ψ‖1 ψj , and E(|dX " ψj |) " 2j(α
−1−1) because the Lévy jump

process dX(t) satisfies the self-similarity property

{dX(st)}t
d
= sα

−1−1{dX(t)}t .
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with α = 1.1, 1.2, 1.3. The slopes are α−1. (d) log S̃Xα(j2 − j1) as a function of j2 − j1
number of realizations. The slopes are α−1 − 1.
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ζ(q) =
�
1 +

µ

2

�
q − µ

2
q2

• Stationary log normal random measure dX(t) obtained
as multiscale products of log-normal random variables.

µ is an ”intermittency” factor.
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Theorem: Mandelbort Random Measures dX satisfy:
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    Scattering Turbulence
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Figure 6: (a) Realization of dissipation ε(t) =
(
∂v
∂t

)2
in a turbulent flow. (b) First order

scattering coefficients logSε(j) as a function of j, estimated from 4 realizations of 219

samples each. (c) Second order Scattering coefficients log S̃ε(j1, j2) estimated from the
same data. We plot curves log S̃ε(j1, j1 + l) as a function of l for different values of j1.

where B is Brownian motion which is independent of the positive non-decreasing process
Θ(t) which is a multifractal process satisfying the self-similarity property (30). The
process Θ(t) is generally referred to as the trading time [25] and somewhat describes the
intrinsic time (versus the physical time) of the market. Thus dΘ(t) can be seen as the
instantaneous variance of the Brownian motion at time t. The multifractal structure of
X(t) is entirely deduced from the multifractal structure of Θ(t).

In this section, we compute the normalized scattering coefficients to analyze the
process Θ(t)1.

Analysis of high-frequency (”tick-by-tick”) Euro-Bund data

Euro-Bund is one of the most actively traded financial asset in the world. It corresponds
to a future contract on an interest rate of the euro-zone and it is traded on the Eurex
electronic market (in Germany). The typical number of trades is around 40.000 per day
and in this study we have used 800 trading days going from 2009 May to 2012 September.
Each trade occurs at a given price, whose logarithm is modeled by X(t) using (68).

Every single day, the sum of the quadratic variations of X(t) are computed on a
rolling interval of 30 seconds (after preprocessing the microstructure noise using [35]
technique). This can be considered as an estimation of the 30 second variance

∫ t+30s
t dΘ.

It is well known that intraday financial data are subject to very strong seasonal intraday

1We will use a proxy of Θ(t) since only X(t) is directly visible on the market .
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   Financial Time Series
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Figure 7: (a) One trading day of the German BUND (b) estimated S̃F (j1, j2) for different
values of j1.

effects (e.g., the variance is systematically stronger at opening and closing time than
at lunch time). In order to remove them, we used a standard technique consisting in
normalizing the variance by the intraday seasonal variance (computed by averaging every
day the 5min variance at a particular time of the day).

Figure 7(a) shows the resulting “deseasonalized” 30s variance for a particular day.
The scattering coefficients have been computed independently for each single day and
then averaged. Fig. 7(b) shows S̃F (j1, j2) for different values of j1. We observe that
this function does not depend on j1 and varies very little. It confirms the stochastic self-
similarity of the variance process and that the normalized scattering function behaves
like the one of an MRM.

Analysis of 5 minutes S&P 100 index

The same analysis is performed on S&P 100 index sampled every 5 minutes from April
8th 1997 to December 17th 2001. It opens 6.5 hours from 9:30am to 4:00pm. The S&P
100 Index is a stock market index of United States stocks maintained by Standard &
Poor’s. It is a subset of the S&P 500 index. We perform the same preprocessing of the
data as we did on the Euro-Bund data except that

• since it is sampled at a lower frequency there is no need to remove the microstruc-
ture noise,

• we used high and low values on each 5mn interval to compute an estimation on
the 5mn variance

∫ t+5mn
t dΘ

• all the days are concatenated and the overnight period has been preprocessed using
the usual deseasonalizing algorithm.

Figure 8(a) shows the deseasonalized 5mn variance during a trading day. Fig. 8(b)
shows S̃F (j1, j2) for different values of j1. We observe that this function does not depend
on j1 and varies very little. Again it confirms the stochastic self-similarity of the variance

26
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Fetal heart rate monitoring gives information
on the stress level of babies before delivery.
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log S̃X(2j1 , 2j2) �= F (j2 − j1) ⇒ Not self-similar

  Fetal Heart Rate Variability
P. Abry, J. Anden, V. Chudacek, M. Doret
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iii) FIGO-FP: 15 fetuses with normal fetal outcome (Apgar
score of 10, arterial cord pH > 7.30, hence healthy), yet with
pathological CTG (hence incorrectly diagnosed as abnormal),
thus referred to as FIGO-False Positives.

These 3 classes correspond to only two groups for fetal
health status: Non Healthy, equivalent to the FIGO-TP class;
and Healthy corresponding to the union of the FIGO-TN and
FIGO-FP classes.

This three-class database provides us with a reference
benchmark: On this case study database, FIGO-rules led to
a Specificity of 50% while achieving a 100% Sensitivity,
and a Matthews correlation coefficient (MCC) [25] of 0.5
and F-measure of 0.67 (cf. http://en.wikipedia.org/wiki/F1 score).
The goal of this case study analysis is twofold: To improve
performance, by decreasing the number of false positive and ;
To produce a typology of these false positives to analyze why
they were miss-classified.

3) Data preprocessing and Scattering Transform compu-
tation: As common practice for HRV analysis (cf. e.g.,
[14], [26]), the lists {tn}n=1,...,N of R-peaks are trans-
formed into regularly sampled beat-per-minute (BpM) time
series, X(t), by linear interpolation of the measurements
{(tn/1000, 60000/(tn+1 − tn))}n=1,...,N . As F-HRV carries
by nature no information beyond 3 Hz, sampling frequency is
set to fs = 8 Hz, (using higher fs has been observed to yield
no improvement in classification).

To be able to follow the evolution along time of the health
status of the fetuses, the scattering transform is computed in
T-minute long sliding windows. For clinical practice, obste-
tricians expect regular and short updates on the fetus health
status, with a typical update frequency of 5 to 10 min. Thus,
for this study, T is set to T = 512s � 8.5min (as the optimal
use of the current version of the scattering transform used here
requires power of 2 sample size), with 50% overlap. Even
though the database consists only of 45 subjects, this sliding
time-window analysis procedure amounts to computing scat-
tering coefficients, S(c, s, k), for 507 different time windows,
where c indicates the class (c =FIGO-TP, FIGO-FP, FIGO-
TN), s the subject identifier, k the time window.

While studying the evolution along time, k, of the statistics
of S(c, s, k) enables us to follow the time evolution of the fetus
health status, an average performed on the last-K-windows
before delivery can be assumed to measure the fetus health
status before delivery, and hence at the time when obstetricians
make the decision to operate delivery or not. For reasons made
explicit in Section III-C, K is set to K = 3, which (given the
overlap) corresponds to the last 17min before delivery and
hence matches the decision time frame in clinical situation.

By construction of the BpM time series (interpolation at
8 Hz), octave j1, corresponding to frequencies ranging from
2 to 4Hz, contains no or little information related to F-HRV
temporal dynamics and is thus discarded from analysis.

III. CASE STUDY

A. Fractal dynamics and scaling range

1) Fractal dynamics and scattering transform: It has often
been argued in the literature that fractal temporal dynamics

Fig. 1. Fractal Dynamics. log2 Sc(j) versus log2 2j = j (top left), and
log2 S̃c(j1, j2) versus log2 2j2−j1 = j2−j1 for j1 = 2 (top right), j1 = 3
(bottom left) and j1 = 4 (bottom right).

constitutes a relevant and fruitful model for F-HRV modeling
(cf. e.g., [14], [19], [17]). For scattering coefficients computed
from sample paths of stochastic processes characterized by
fractal temporal dynamics, it has been shown that [23]:

SX(j) � 2jz1 , (1)
S̃X(j1, j2) � 2(j2−j1)z2(j1). (2)

For instance, if applied to fractional Brownian motion (fBm),
the scaling exponents z1 and z2s are all related to the Hurst
exponents H ; if applied to multifractal processes, the scaling
exponents z1 and z2s are related to the multifractal spectrum
[23]. The scaling exponents z1 and z2s thus constitute relevant
features to characterize fractal dynamics in data, with z1

essentially related to the correlation (or second order statistics)
level, while the z2s are probing fractal dynamics beyond
correlation (at all statistical orders).

2) Scaling range: Fig. 1 displays the log of the average,
Sc, of the S(c, s, k), per class (across subjects) over the last-
K-windows, as a function of the log of scales (95% confi-
dence interval, computed from within-class standard deviations
are superimposed). Linear behaviors in such log-log plots
(superimposed dashed lines) clearly indicate that power law
behaviors such as those modeled in Eqs. 1 and 2 are observed
in F-HRV BpM time series, and hold across octaves 3 ≤ j ≤ 9
for SX(j) (top left plot) and for 3 ≤ j2 − j1 ≤ J − j1

for S̃X(j1, j2). These observations validate the relevance of
the concept of fractal to describe F-HRV temporal dynamics
across time scales ranging from 1s ≤ a = 2j ≤ 1min approx-
imately (or equivalently for frequencies in 0.01 ≤ f ≤ 1Hz).
That range encompasses and slightly enlarges the frequency
range involved into the Low-Frequency vs. High-Frequency
band decomposition, classically used for adult HRV analysis
[9], [14] and much debated in the context of intrapartum F-
HRV (cf. e.g., [27], [17]).

j2 − j1 j2 − j1 j2 − j1
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where c indicates the class (c =FIGO-TP, FIGO-FP, FIGO-
TN), s the subject identifier, k the time window.

While studying the evolution along time, k, of the statistics
of S(c, s, k) enables us to follow the time evolution of the fetus
health status, an average performed on the last-K-windows
before delivery can be assumed to measure the fetus health
status before delivery, and hence at the time when obstetricians
make the decision to operate delivery or not. For reasons made
explicit in Section III-C, K is set to K = 3, which (given the
overlap) corresponds to the last 17min before delivery and
hence matches the decision time frame in clinical situation.

By construction of the BpM time series (interpolation at
8 Hz), octave j1, corresponding to frequencies ranging from
2 to 4Hz, contains no or little information related to F-HRV
temporal dynamics and is thus discarded from analysis.

III. CASE STUDY

A. Fractal dynamics and scaling range

1) Fractal dynamics and scattering transform: It has often
been argued in the literature that fractal temporal dynamics

Fig. 1. Fractal Dynamics. log2 Sc(j) versus log2 2j = j (top left), and
log2 S̃c(j1, j2) versus log2 2j2−j1 = j2−j1 for j1 = 2 (top right), j1 = 3
(bottom left) and j1 = 4 (bottom right).

constitutes a relevant and fruitful model for F-HRV modeling
(cf. e.g., [14], [19], [17]). For scattering coefficients computed
from sample paths of stochastic processes characterized by
fractal temporal dynamics, it has been shown that [23]:

SX(j) � 2jz1 , (1)
S̃X(j1, j2) � 2(j2−j1)z2(j1). (2)

For instance, if applied to fractional Brownian motion (fBm),
the scaling exponents z1 and z2s are all related to the Hurst
exponents H ; if applied to multifractal processes, the scaling
exponents z1 and z2s are related to the multifractal spectrum
[23]. The scaling exponents z1 and z2s thus constitute relevant
features to characterize fractal dynamics in data, with z1

essentially related to the correlation (or second order statistics)
level, while the z2s are probing fractal dynamics beyond
correlation (at all statistical orders).

2) Scaling range: Fig. 1 displays the log of the average,
Sc, of the S(c, s, k), per class (across subjects) over the last-
K-windows, as a function of the log of scales (95% confi-
dence interval, computed from within-class standard deviations
are superimposed). Linear behaviors in such log-log plots
(superimposed dashed lines) clearly indicate that power law
behaviors such as those modeled in Eqs. 1 and 2 are observed
in F-HRV BpM time series, and hold across octaves 3 ≤ j ≤ 9
for SX(j) (top left plot) and for 3 ≤ j2 − j1 ≤ J − j1

for S̃X(j1, j2). These observations validate the relevance of
the concept of fractal to describe F-HRV temporal dynamics
across time scales ranging from 1s ≤ a = 2j ≤ 1min approx-
imately (or equivalently for frequencies in 0.01 ≤ f ≤ 1Hz).
That range encompasses and slightly enlarges the frequency
range involved into the Low-Frequency vs. High-Frequency
band decomposition, classically used for adult HRV analysis
[9], [14] and much debated in the context of intrapartum F-
HRV (cf. e.g., [27], [17]).
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from sample paths of stochastic processes characterized by
fractal temporal dynamics, it has been shown that [23]:
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For instance, if applied to fractional Brownian motion (fBm),
the scaling exponents z1 and z2s are all related to the Hurst
exponents H ; if applied to multifractal processes, the scaling
exponents z1 and z2s are related to the multifractal spectrum
[23]. The scaling exponents z1 and z2s thus constitute relevant
features to characterize fractal dynamics in data, with z1

essentially related to the correlation (or second order statistics)
level, while the z2s are probing fractal dynamics beyond
correlation (at all statistical orders).

2) Scaling range: Fig. 1 displays the log of the average,
Sc, of the S(c, s, k), per class (across subjects) over the last-
K-windows, as a function of the log of scales (95% confi-
dence interval, computed from within-class standard deviations
are superimposed). Linear behaviors in such log-log plots
(superimposed dashed lines) clearly indicate that power law
behaviors such as those modeled in Eqs. 1 and 2 are observed
in F-HRV BpM time series, and hold across octaves 3 ≤ j ≤ 9
for SX(j) (top left plot) and for 3 ≤ j2 − j1 ≤ J − j1

for S̃X(j1, j2). These observations validate the relevance of
the concept of fractal to describe F-HRV temporal dynamics
across time scales ranging from 1s ≤ a = 2j ≤ 1min approx-
imately (or equivalently for frequencies in 0.01 ≤ f ≤ 1Hz).
That range encompasses and slightly enlarges the frequency
range involved into the Low-Frequency vs. High-Frequency
band decomposition, classically used for adult HRV analysis
[9], [14] and much debated in the context of intrapartum F-
HRV (cf. e.g., [27], [17]).
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   Invariance to Lie  Group Actions

• Invariance to a Lie group action and stability to diffeomorphisms

–Translation and frequency transpositions

–Translations and rotations 

–Tranvariance to translation-rotations and scaling
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• Frequency transposition is a common source of variability

• Transposition ⇔ translation and deformations in log λ1

     Transposition Invariance

• Invariance with a ”frequency scattering” along log λ1

Scattering along log frequency γ1 = log2 λ1:

Scattering
along t

ΦxScattering
along log λ1

x(t)

z(γ1) = |x � ψ2γ1 (t)|

J .Anden

log λ1

t
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• Each frame is classified using a Gaussian kernel SVM.

      Genre Classification (GTZAN)

Feature Set Error (%)

∆-MFCC (32 ms)

Time Scat., m = 1

Time Scat., m = 2

Time & Frequency Scat., m=2

19.3

17.9

12.3

10.3

10 classes and 30 seconds tracks.
• GTZAN: music genre classification (jazz, rock, classical, ...)

T = 370 ms

J .Anden
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⇒ need to build invariant on the joint roto-translation group.

• Separable cascade of invariants loose joint distributions.

• Separable rotation and translation invariants can not
discriminate:

   Joint versus Separable Invariants 
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(r, t) . x(u) = x(r−1(u− t))

• Group multiplication:

(r�, t�) . (r, t) = (r�r , r�t + t�) : not commutative.

• Roto-translation group G = {g = (r, t) ∈ SO(2)× R2}

for roto-translations : x � φ(g) =
�

G
x(g�) φ(g

�−1g) dg�

• An averaging invariant is convolution on L2(G): x(g) = x(r, t)

• Roto-translation Haar measure : dg = dt dθ (rotation angle θ)

      Roto-Translation Group

for translations : x � φ(t) =
�

R2
x(t�) φ(t− t�) dt�
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|W1| |W2|

• One can define separable complex wavelets ψλ2
(r, t) ∈ L2(G) such that

W2x =
�

x � φ(r, t)
x � ψλ2

(r, t)

�

λ2,r,t

is unitary over L2(G).

= wj(r, t)= w(2j , r, t) |wj � ψλ2
(r, t)||w � ψλ2

(2j , r, t)|

wj � φ(r, t)w � φ(2j , r, t)

|W2|x =
�

x � φ(r, t)
|x � ψλ2

(r, t)|

�

λ2,r,t

.

  Scattering on a Lie Group

x

x � φ(t)

|x � ψ2jr(t)|

translation roto-translationscalo-roto-translation
+ renormalization

L. Sifre
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UIUC database:
25 classes

Scattering classification errors
Training Translation Transl + Rotation + Scaling

20 20 % 2% 0.6%

  Rotation and Scaling Invariance
Laurent Sifre

yx Sx Supervised Linear
Classifier: PCA/SVM
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Linear
Supervised
Classifier

Learn with labeled examples {(xi, yi)}iUnsupervised Learning

x ∈ Rd Φx ∈ RD

- model the {xi}i as realization of a random vector X ∈ Rd

but we can not estimate p(x)...

- adapt Φ to the high-dimensional distribution p(x) of X

• Unsupervised learning of Φ from unlabeled examples {xi}:

Representation

Φ class

    Learning Representations
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• Towards general deep networks:

     Scattering Generalization

x1 ρ(x1(u)) = |x1(u)|

Linear
Classifier

d

x
Linear

W1

d1 > d

Non
Linear
ρ

d�
1 ≤ d1

W2

d2 > d1 d�
2 ≤ d2

ρ

d�
m � d

Φ(x)

... y
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SX =





E(X)
E(|X � ψλ1 |)

E(||X � ψλ1 | � ψλ2 |)
E(|||X � ψλ2 | � ψλ2 | � ψλ3 |)

...





λ1,λ2,λ3,...

• Expected wavelet scattering transform:
= E(X0)

Initialize X0 = X

= E(X3)

X3 = |W3(X2 − E(X2))|
...

• Expected scattering: SX =
�
E(Xm)

�

m∈N

For WmZ =
� �

n Z(n) , Z � ψλ(n)
�

λ
iteratively compute

     Revisit Expected Scattering

= E(X1)

X1 = |W1(X0 − E(X0))|

= E(X2)

X2 = |W2(X1 − E(X1))|
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• Expected scattering transform: SX = {E(Xm)}m∈N

Xm = |Wm(Xm−1 − E(Xm−1)|

=
�

|�Xm−1 − E(Xm−1), θn�|
�

n

X0

E(X0)

E

++
− |W1| X1

E(X1)

E

++
−

X2|W2|

E(X2)

E

++
− |W3| X3

: HOW ?

      Generalized Scattering
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SX =
�
E(Xm)

�

m∈N
and �SX�2 =

�

m∈N
|E(Xm)|2

�SX − SY � ≤ E(�X − Y �2)
�SX� = E(�X�2)

Theorem:

X0

E(X0)

E

++
− |W1| X1

E(X1)

E

++
−

X2|W2|

E(X2)

E

++
− |W3| X3

      Scattering Properties
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|W1|
|W2|

⇒ for all m minimize �E(Xm)� .

|W3|

   Optimized Space Contraction

Proposition: The data volume reduction at layer m is

E(�Xm−1 − E(Xm−1)�2)− E(�Xm − E(Xm)�2) = �E(Xm)�2

Normalization
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⇒ Wm defines a sparse representation of Xm−1 − E(Xm−1)
Sparse dictionary learning problem.

    Sparse Layerwise Learning

X0

E(X0)

E

++
− |W1| X1

E(X1)

E

++
−

E(X2)

X2|W2|

E

++
−

E(X3)

|W3| X3

E

++
−

Xm = |Wm(Xm−1 − E(Xm−1)| with W ∗
m Wm = Id.

• Given Xm−1 − E(Xm−1) we compute Wm by minimizing

�E(Xm)� =
���E

�
|Wm(Xm−1 − E(Xm−1)|

����

l1 norm across realizations
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• Problems of functional approximations in high dimension...

• A linear classifier approximates the frontier of y(x) by

E(X0)

++
− |W1|

E(X1)

++
− |Wm|...

E(Xm)

++
−

Binary
classification
y(x) = 0 or 1

Φ
0
1

1

0

         Supervised Linear Classifiers
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      Conclusion

• High dimensional classification algorithms have considerably 
improved in the last few years with many applications.

• Beautiful problems but lack of mathematics and mathematicians 
working in this area.

• Papers and Softwares: www.di.ens.fr/data/scattering 
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