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Abstract. In this course we will study generalized Cantor sets and measures.
We will see that they share many properties in common with self-similar sets
and measures, although new geometric ideas are often needed in the proofs to
replace the combinatorial structure of self-similar sets/measures. In particular,
under a suitable separation condition the multifractal spectrum of generalized
Cantor measures (the set of local dimensions) can be shown to be a closed
interval, with one speci�c local dimension being attained at almost every point
of the Cantor set.
Surprisingly, the property that the multifractal spectrum is a closed interval
need not be true for convolutions of (even self-similar) Cantor measures. This
seems to be a consequence of �overlap�in their construction and was established
�rst for certain examples of self-similar Cantor measures and subsequently for
generalized Cantor measures. We will see that it is typically the case that the
multifractal spectrum of a su¢ ciently large number of convolutions of fairly
arbitrary, continuous measures admits an isolated point. This argument was
motivated by the geometric ideas used in proving a special case of this property
for generalized Cantor measures.

1. Introduction

Often in analysis one is interested in subsets of R of Lebesgue measure zero and
the singular measures1 concentrated on these sets. Many of the problems that arise
have to do with quantifying the size of the set or the singularity of the measure; for
such problems fractal dimensions can be very helpful.

The classical middle-third Cantor set and its associated uniform measure is an
important example of such a set and measure. The Cantor set and measure are
often introduced in real analysis courses to illustrate unusual ideas or pathological
behaviour. In this course, we will discuss generalizations of the classical Cantor set
and measure, and investigate fractal concepts that help to quantify their singularity,
such as local dimension and multifractal spectrum. These generalizations have
interesting and unusual properties.

Generalized Cantor sets and measures are typically not self-similar and thus
need not have the same symmetry or uniformity as the classical Cantor set/measure.
Consequently, the concentration of the measure can vary at di¤erent points in its
support, meaning general Cantor measures typically take on a range of di¤erent

This work was supported in part by NSERC.
1By a measure, we mean a �nite, positive, regular, compactly supported, Borel measure on

R.
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local dimensions. These di¤erent values are known as the multifractal spectrum.
The study of the multifractal spectrum and the �size�of the sets on which a given
local dimension is attained is known as multifractal analysis.

For self-similar measures arising from an IFS which satis�es the open set condi-
tion, it is well known that the multifractal spectrum is a closed interval and formulas
have been established for the Hausdor¤ dimension of the sets on which a given local
dimension occurs. We will modify this argument to show that a similar result can
be obtained for generalized Cantor measures, under reasonably weak assumptions.
Another interesting fact we will establish is that the �average�value of the local
dimensions is attained at almost every point. These results can be found in Section
3.

Convolutions of the classical Cantor measure are again self-similar measures.
However, they are not necessarily generated by an IFS that satis�es the open set
condition so the general multifractal theory does not apply. In fact, the theory can
fail in a striking way: the multifractal spectrum of the 3-fold convolution of the clas-
sical Cantor measure contains an isolated point. Here we will see that convolutions
of quite general, continuous, probability measures typically admit isolated points
in their multifractal spectrum, provided the number of convolutions is su¢ ciently
large. In particular, this is the case for many generalized Cantor measures. These
ideas are the content of Section 4.

Most of the proofs given in this note can be found in the literature, as detailed
in the �nal section. There are many other important research papers on related
topics; we have only mentioned those most relevant for the material discussed in
the course.

2. Notation and Basic Facts

2.1. The classical Cantor set and measure. The classical middle-third
Cantor set C is a fascinating set which is often used in analysis to construct in-
teresting examples. It is compact, totally disconnected, perfect (meaning, every
point is an accumulation point), uncountable and of Lebesgue measure zero. By
the classical Cantor measure we mean the singular, probability measure on R that
is uniformly distributed on C. This measure, �; can be de�ned in several equivalent
ways:

(1) As the self-similar measure that arises from the iterated function system
(IFS) with contractions Fi(x) = x=3 + 2i=3, i = 0; 1 and probabilities
1=2; 1=2. This means the measure is invariant in the sense that

�(E) =
1

2

�
� � F�10 (E) + � � F�11 (E)

�
for all Borel sets E:

The classical Cantor set C is the self-similar set associated with this IFS.
(2) As the Borel measure supported on C that assigns mass 2�k to the Cantor

intervals that arise at step k in the construction of the Cantor set.

(3) As the weak limit of the discrete probability measures �K = 2
�KP2K

j=1 �xj ,
where x1; :::; x2K are the left end points of the 2K Cantor intervals that
are constructed at step K in the standard Cantor set construction. By a
weak limit, we mean that for all continuous functions f on [0; 1] it is the
case that

R 1
0
fd� = limK

R 1
0
fd�K :
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(4) As the probability measure whose cumulative distribution function is the
Cantor ternary function.

From these di¤erent (but equivalent) descriptions of the Cantor measure one
can easily establish many properties of the Cantor set/measure. De�nition (2),
for example, is useful in calculating the Hausdor¤ dimension of the set. From
de�nition (3) it can be seen that the Fourier transform of � is given by b�(y) =Q1
k=1(1 + e

�4�i3�ky)=2 for all y. Since the Cantor ternary function is a continuous
function, it follows immediately from de�nition (4) that the Cantor measure is a
continuous (or non-atomic) measure, meaning the measure of any singleton is 0.

The classical Cantor set and measure has been generalized in many ways. One
obvious generalization is to consider the self-similar set arising from the IFS with
contractions Fi(x) = rx+ i(1� r), i = 0; 1 where 0 < r < 1=2. This is the Cantor
set with ratio of dissection r, (rather than 1=3rd, as in the classical case), meaning
that at each step in the standard Cantor set construction one keeps the two outer
closed intervals whose length is r times that of the parent interval. We will denote
this Cantor set as C(r), so that with this notation the classical Cantor set is C(1=3).
We can again de�ne the associated uniform Cantor measure that assigns mass 2�k

to the Cantor intervals at step k, which in this case are of length rk. This is the
self-similar measure generated by the IFS given above, with probabilities 1=2; 1=2:

Alternatively, rather than the uniform Cantor measure, we could consider the
self-similar measure generated by the same iterated function systems again, but
with probabilities p and 1� p, where 0 � p � 1. We call this the p-Cantor measure
on C(r). If p = 0 or 1, the p-Cantor measure is the point mass measure at 0 or 1,
respectively. In all other cases, it is a continuous, singular, probability measure.

2.2. Cantor sets and measures with varying ratios of dissection. In
fractal geometry one is often interested in studying self-similar sets and measures
arising from quite general iterated function systems. The IFS structure makes it
possible to compute many important quantities and deduce various properties of the
sets and measures. At the same time, the structure limits the kinds of examples that
arise. If we relax this structure, we can create many other intriguing examples. One
such variation is to allow the ratios of dissection in the construction of the Cantor
set to vary at each step. We could also allow the probabilities to vary at di¤erent
steps.

2.2.1. Cantor sets with varying ratios of dissection. Let 0 < rj < 1=2. We
denote by C(rj) 2 the Cantor set with varying ratios of dissection, rj at step j,
given by the following iterative Cantor-like construction: Let C0 = [0; 1]. Remove
from C0 the open middle interval of length 1� 2r1, leaving two closed intervals of
lengths r1. Call these intervals the Cantor intervals of step one and their union C1.
At step j in the construction assume we have inductively constructed Cj as a union
of 2j closed intervals of length r1 � � � rj , the Cantor intervals of step j. Remove the
open middle interval of length (1� 2rj+1)r1 � � � rj from each of the step j intervals
and let Cj+1 be the union of the remaining 2j+1 closed intervals of length r1 � � �rj+1.

2More properly, we should write C(frjg), but we prefer C(rj) for simplicity. This should not
cause any confusion with the notation C(r) for the Cantor set with �xed ratio of dissection r.
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Finally, de�ne the Cantor set C(rj) by

C(rj) =
1\
j=1

Cj :

As with the classical Cantor set, C(rj) is compact, perfect, totally disconnected
and uncountable. Its Lebesgue measure is lim infn!1 2

�nr1 � � �rn and hence is zero
if, for instance, the rj are bounded away from 1=2.

2.2.2. Labelling Cantor intervals and the elements of the Cantor set. The Can-
tor intervals from this construction can be labelled by �nite words with letters from
f0; 1g. The Cantor intervals of step one will be denoted I0 (left interval) and I1
(right interval). In general, if the Cantor interval of step n is labelled by the word
w of length n, then its two descendents are Iw0 and Iw1. Each x 2 C(rj) belongs
to a unique Cantor interval of step n for each n and these intervals are descendents
of one another. Thus x corresponds to an in�nite word w with the property that if
wjn denotes the truncation of w to length n, then Iwjn is the step n Cantor interval
to which x belongs. When we write x = (wj) we mean this correspondence.

2.2.3. Uniform and p-Cantor measures. Given 0 � p � 1, by the p-Cantor mea-
sure associated with C(rj), we mean the probability measure � with the property
that

�(Iw0) = �(Iw)p and �(Iw1) = �(Iw)(1� p):
Thus if w = (w1; :::; wn) with wi 2 f0; 1g, then �(Iw1���wn) = pn0(1� p)n�n0 where
n0 = cardfi : wi = 0g. As in the case for Cantor sets with �xed ratio of dissection,
the p-Cantor measure � is a singular measure whose support is the Cantor set
C(rj). It is continuous provided p 6= 0; 1. If p = 1=2 we call � the uniform Cantor
measure on C(rj).

More generally, given a sequence of weights fpjg, 0 � pj � 1, we could de�ne
a Cantor measure by the rule �(Iw1:::wn) = pw11pw22 � � � pwnn where p0j = pj and
p1j = 1� pj .

One could consider still more general Cantor sets and measures by removing
from [0; 1], k1 equally spaced, open intervals of length g1 at step one, so that C1
is the union of k1 + 1 closed interals of length r1 where (k1 + 1)r1 + k1g1 = 1.
Then inductively remove from each Cantor interval of step j, kj equally spaced
open intervals of length gj so that Cj is the union of

Qj
i=1(kj + 1) closed intervals

of length r1 � � � rj where (kj +1)rj + kjgj = 1. We can also de�ne a general Cantor
measure by putting weights pij on the i = 1; :::; kj + 1 descendents at step j. In
this note, we will focus on p-Cantor measures on C(rj), but much of what is said
here is true for these very general Cantor sets and measures, at least under suitable
assumptions. The technical details will be left for the reader.

2.3. Hausdor¤ dimension. Let � > 0. By a �-cover of a non-empty Borel
subset E � R we mean a countable collection of sets fUig of diameter at most �,
whose union contains E. We write jUij to denote the diameter of the set Ui. Given
s � 0, we de�ne

Hs
� (E) = inf

( 1X
i=1

jUijs : fUig is a �-cover of E
)

and put
Hs(E) = sup

�>0
Hs
� (E) = lim

�!0+
Hs
� (E):
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Hs(�) is a measure known as the s-dimensional Hausdor¤ measure. Hs(E) is a
decreasing function of s and can be positive and �nite for at most one choice of s.
The Hausdor¤ dimension of E; denoted dimH E, is de�ned to be the unique index
s such that Ht(E) = 0 if t > s and Ht(E) =1 for t < s. Thus

dimH F = inffs : Hs(F ) = 0g
= supfs : Hs(F ) =1g:

A useful fact is the Mass distribution principle: If there are a measure � on E
and real numbers c; � > 0 such that �(U) � cjU js for all Borel sets U with diameter
at most �, then Hs(E) � �(E)=c and dimH E � s.

We leave it as an exercise to verify that the Hausdor¤ dimension of C = C(rj)
is given by the formula

dimH C = lim inf
n!1

log 2
1
n jlog r1 � � � rnj

:

Exercise 1. Establish the formula given for the Hausdor¤ dimension of C(rj).

Exercise 2. Show that for every s � 1 there is a Cantor set with Hausdor¤
dimension s.

Exercise 3. Construct a Cantor-like set, C(rj), with Hausdor¤ dimension one
and Lebesgue measure zero.

3. Multifractal analysis of p-Cantor measures

3.1. Local Dimension. In many problems one is interested in quantifying
the singularity of a measure, i.e., to specify, in some sense, how concentrated the
measure is. One way to quantify this is through the Hausdor¤ dimension of the
measure �. This is de�ned as

dimH � = inffdimH E : �(E) > 0g:
This quantity provides global information on the singularity of the measure �. For
measures that are not uniformly distributed it is also of interest to quantify their
local singularity. The local dimension is useful for this.

Definition 1. By the local dimension at x of a probability measure � on R we
mean the quantity

dimloc�(x) = lim
r!0+

log (�(B(x; r)))

log r

where B(x; r) is the ball centred at x with radius r, provided this limit exists.
The upper and lower dimensions, denoted dimloc�(x) and dimloc�(x), are ob-

tained by replacing the limit in the de�nition above with lim sup and lim inf respec-
tively.

The local dimension at x describes the power law behaviour of �(B(x; r)) for
small r. Notice that if x =2supp�, then dimloc�(x) = 1, while if � is Lebesgue
measure on [0; 1], dimloc�(x) = 1 at all x 2 [0; 1].

One can prove that

dimH � = supfs : dimloc�(x) � s for � a.e. xg.
Moreover, the following is true.
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Proposition 1. Suppose � is a probability measure, F � R is a Borel set and
0 < c <1.

(a) Hs(F ) � �(F )=c if

lim sup
r!0+

�(B(x; r))

rs
� c for all x 2 F:

(b) Hs(F ) � 10s�(R)=c if

lim sup
r!0+

�(B(x; r))

rs
� c for all x 2 F:

Proof. (a) Fix " > 0 and for each n let

Fn = fx 2 F : �(B(x; r)) � (c+ ")rs for all r � 1=ng:

The sets Fn are increasing and the assumption of (a) guarantees that their union
is all of F .

Temporarily �x n and let fUig be a 1=2n-cover of F and hence also of Fn.
Each set Ui has diameter less than 1=n and thus �(B(x; jUij)) � (c+ ") jUijs for all
x 2 Fn. Notice that if x 2 Ui \ Fn, then B(x; jUij) � Ui and �(Ui) � (c+ ") jUijs.
Thus

�(Fn) �
X

i:Ui\Fn 6=empty
�(Ui) � (c+ ")

X
jUijs .

This is true for all 1=2n-covers of F and consequently �(Fn) � (c + ")Hs
1=2n(F ).

But as n!1, �(Fn)! �(F ) and Hs
1=2n(F )! Hs(F ). Since " > 0 was arbitrary,

�(F ) � cHs(F ).
(b) Fix "; � > 0 and consider the collection of all balls, B(x; r); with x 2 F ,

0 < r < � and �(B(x; r)) � (c � ")rs. By assumption, every x 2 F belongs
to such a ball for arbitrarily small r. By the Vitali covering lemma there are
countably many disjoint balls from the collection, fBig; such that �(Fn

S
i

Bi) = 0

and every ball in the collection is contained in the union of the sets fBi, where fBi
is a ball concentric with Bi and having �ve times the radius. Thus F �

S
i

fBi and���fBi���s � 10s�(Bi)=(c� "). As ���fBi��� � 10� and the sets Bi are disjoint,
Hs
10�(F ) �

X
i

���fBi���s � 10s

c� "
X
i

�(Bi)

=
10s

c� "�(
S
i

Bi) =
10s

c� "�(F ).

�

Corollary 1. If there is a probability measure �; concentrated on E, such
that dimloc �(x) = s for all x 2 E, then dimH E = s:

Proof. One can deduce from the previous proposition that for any " > 0,
Hs�"(E) > 0 and Hs+"(E) <1, from whence the result follows. �

We remark that there is a partial converse to this.
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Proposition 2. If dimH E > s; then there exists a probability meausre �, con-
centrated on E; such that dimloc�(x) � s for all x 2 E. Similarly, if dimH E < s,
then there exists a probability measure �, concentrated on E; such that dimloc�(x) �
s for all x 2 E.

The proof of this is more sophisticated and can be found in the literature; see
section 5.

It is an easy calculation to check that if � is the uniform Cantor measure on
the Cantor set C(r); then

dimloc�(x) =
log 2

jlog rj = dimH C(r) at all x 2 C(r).

In contrast, for measures that are not uniform the local dimension can vary
at di¤erent points in the support of the measure. This is the case with the p-
Cantor measures, for example, when p 6= 1=2. Indeed, suppose C = C(rj) and
� is the p-Cantor measure on C. To avoid technicalities we will also assume
limn

1
n log (r1 � � � rn) = log r0. If r = r1 � � � rn, then

log (�(B(0; r)))

log r
=
log (�(I0���0))

log r
=

n log p

log r1 � � � rn
! log p

log r0
,

while

log (�(B(1; r)))

log r
=
log (�(I1���1))

log r
=
n log(1� p)
log r1 � � � rn

! log(1� p)
log r0

.

Thus

dimloc�(0) =
log p

log r0
and

dimloc�(1) =
log(1� p)
log r0

:

In the next subsection, we will see that under a suitable separation assumption,
these are the extreme values of the set of local dimensions and all numbers in
between arise as local dimensions.

3.2. Multifractal spectrum. Given � � 0, we will denote

E�(�) = E� = fx : dimloc�(x) = �g:

The set of all � such that E� is non-empty is known as the multifractal spectrum of
�. For measures that are not uniform it is of interest to determine the multifractal
spectrum and the �size�of the sets E�, the so-called, multifractal analysis.

The multifractal analysis is well understood for self-similar measures generated
by an IFS which satis�es the open set condition. In this section, we will establish
similar results for p-Cantor measures supported on Cantor sets C(rj); under a
suitable separation condition that plays the role of the open set condition, namely,

Assumption: sup rj < 1=2:
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3.2.1. Local dimensions are constant almost everywhere. First, we will show
that the local dimension is constant at almost all points of the support of �.

Theorem 1. Suppose � is a p-Cantor measure on the Cantor set C = C(rj)
that satis�es sup rj < 1=2; and assume lim 1

n log (r1 � � � rn) = log r0. Then for �
a.e. x 2 C,

dimloc �(x) =
p log p+ (1� p) log(1� p)

log r0
:

Remark 1. Assuming lim 1
n log (r1 � � � rn) exists is a convenience. Similar

results can be proved with the local dimension of � at x replaced by the upper or lower
local dimensions and with lim 1

n log (r1 � � � rn) replaced by lim sup
1
n log (r1 � � � rn)

(or lim inf).

The proof has two parts, a geometric and a probabilistic part. We begin with
a geometric lemma which will have other applications. Its signi�cance is to show
that under the assumption sup rj < 1=2 we may replace balls by Cantor intervals
in the de�nition of local dimension.

Notation 1. If x 2 C, by I(k)(x) we mean the unique Cantor interval of step
k that contains x.

Of course, I(k)(x) = Iw1:::wk where x is associated with the in�nite word whose
�rst k letters are w1; :::; wk.

Lemma 1. Assume sup rj < 1=2, � is a p-Cantor measure on C(rj) and x 2
C(rj). Then

dimloc �(x) = lim
k!1

log
�
�(I(k)(x))

�
log
��I(k)(x)�� :

Proof. Fix x 2 C. Given r > 0, choose the minimum integer k so that B(x; r)
contains the Cantor interval of step k that contains x. As I(k)(x) � B(x; r), we
must have

r1 � � � rk =
���I(k)(x)��� � 2r:

On the other hand, as I(k�1)(x)  B(x; r),

r1 � � � rk�1 =
���I(k�1)(x)��� � r:

Assume x = (wj). Then I(k)(x) = Iw1:::wk and if tk is the number of indices
i such that wi = 0 for i = 1; :::; k, then putting pj = p if j = 0 and pj = 1 � p if
j = 1 we have

�(I(k)(x)) = pw1 � � � pwk = ptk(1� p)k�tk .
Since B(x; r) does not contain I(k�1)(x), it must be the case that B(x; r)\C is

contained in the union of at most two Cantor intervals of step k�1. If it is actually
the case that B(x; r) \ C � I(k�1)(x), then �(B(x; r)) � �(I(k�1)(x)) and similar
arguments to those used below, but easier, will complete the proof.

So assume B(x; r) \ C � I(k�1)(x)
S
I� and that the gap between these two

step k � 1 intervals was removed at step L in the construction, where L � k � 1.
This means both I(k�1)(x) and I� are descendents of a (common) step L�1 interval
I. Furthermore, the step L gap is contained in B(x; r) and thus

r1 � � � rL�1(1� 2rL) � r � r1 � � � rk�1:
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By assumption there exists " > 0 such that rj � 1=2� " for all j. Consequently,

r1 � � � rL�12" � r � r1 � � � rL�1(1=2)k�L.
Hence there must be some integer m (depending only on ") such that k � L � m,
in other words, I(k�1)(x) and I� are both descendents of the Cantor interval I =
Iw1���wk�m , of step k �m and B(x; r)

T
C � I. Thus

pw1 � � � pwk � �(B(x; r)) � pw1 � � � pwk�m
and

log pw1 � � � pwk�m
log r1 � � � rk=2

� log (�(B(x; r)))

log r
� log pw1 � � � pwk
log r1 � � � rk�1

.

Since m is bounded, we obtain the same limiting behaviour on both the left and
right hand side as r ! 0, (or k !1) and therefore

(3.1) dimloc �(x) = lim
k!1

log pw1 � � � pwk
log r1 � � � rk

= lim
k!1

log
�
�(I(k)(x))

�
log
��I(k)(x)�� :

�

Remark 2. It follows easily from (3.1) that the local dimensions at 0 and 1
are the extreme values.

Proof. (of Theorem) De�ne independent and identically distributed random
variables on C by

Xk(x) =

�
1 if wk = 0
0 if wk = 1

where x = (wk):

As the expected value of Xk is p, the Strong law of large numbers states that if
tk(x) is the number of 00s occuring in the �rst k digits of x, then

tk(x)

k
=
1

k

kX
j=1

Xj(x)! p � a.s.

Thus, for � almost all x,

log
�
�(I(k)(x))

�
log
��I(k)(x)�� =

log ptk(1� p)k�tk
log r1 � � � rk

=
tk log p+ (k � tk) log(1� p)

log r1 � � � rk

! p log p+ (1� p) log(1� p)
log r0

:

�

3.2.2. Multifractal formalism for p-Cantor measures. An important feature of
self-similar measures arising from an IFS that satis�es the open set condition is that
the multifractal spectrum is a closed interval and the Hausdor¤ dimension of the
sets E� can be computed. Here we will see that the same property holds for many
p-Cantor measures supported on Cantor sets with varying ratios of dissection. In
place of the open set condition, we will assume that sup rn < 1=2. We will also
continue to assume that 1

n log (r1 � � � rn)! log r0 so that we can work with limits,
but related results can again be obtained using lim sup or lim inf.
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Theorem 2. Suppose � is the p-Cantor measure supported on the Cantor set
C = C(rj) which satis�es sup rn < 1=2 and limn 1

n log (r1 � � � rn) = log r0. Without
loss of generality, assume p � 1� p. Then the set E� = fx 2 C : dimloc �(x) = �g
is non-empty if and only if

� 2
�
log p

log r0
;
log(1� p)
log r0

�
and dimHE� = f(�) where

f(�) = inf
q2R

�
q�� log(p

q + (1� p)q)
log r0

�
:

The proof we sketch below is similar to that known for self-similar sets satis-
fying the strong separation condition. Indeed, p-Cantor measures on Cantor sets
with �xed ratio of dissection are examples of self-similar measures satisfying this
separation property.

Proof. (Sketch) The fact that E� is non-empty only for the speci�ed � is
clear from (3.1).

For each q 2 R we de�ne the set function, �q; on C by

�q(Iw) = (pw1 � � � pwk)
q
(pq + (1� p)q)�k if w = w1:::; wk.

One can check that �q is a probability measure concentrated on C and

log �q(Iw) = q log�(Iw)� k log(pq + (1� p)q)

Applying (a variant of) Lemma 1 to both � and �q shows that

dimloc �q(x) = lim
k!1

log �q(I
(k)(x))

log
��I(k)(x)��

= q dimloc �(x)�
log(pq + (1� p)q)

log r0
:

Thus, if x 2 E�;

dimloc �q(x) = q��
log(pq + (1� p)q)

log r0
:

It is a routine calculus exercise to check that f(�) is achieved with the choice
of q = q(�) satisfying

� =
pq log p+ (1� p)q log(1� p)

(pq + (1� p)q) log r0
;

Thus dimloc �q(�)(x) = f(�) for all x 2 E�.
If we can establish that �q(�) is actually concentrated on E�, then it will follow

from Cor. 1 that dimH E� = f(�). To see this, �x " > 0 and let � > 0 be small.
Note that

�q(�)

�
x : �(I(k)(x)) �

���I(k)(x)�����"�
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�
Z �

�(I(k)(x))
�� ���I(k)(x)����(��")� d�(x)

=
X
jwj=k

�(Iw)
�(r1 � � � rk)�(��")��(Iw)

=
X
jwj=k

(pw1 � � � pwk)�+q
0@ kY
j=1

r
�(��")�
j

1A (pq + (1� p)q)�k
=

kY
j=1

��
pq+� + (1� p)q+�

�
r
�(��")�
j (pq + (1� p)q)�1

�
� �(k)1 (�):

Similarly,

�q(�)

�
x : �(I(k)(x)) �

���I(k)(x)����+"�

�
kY
j=1

��
pq+� + (1� p)q+�

�
r
(�+")�
j (pq + (1� p)q)�1

�
� �(k)2 (�):

Using Taylor series (in the variable �), one can verify that for su¢ ciently large
k (say, k � k1) and suitable positive constants C1; C2,

�
(k)
j (�) � exp(�k�Cj") for j = 1; 2:

ThusX
k�k1

�q(�)fx : �(I(k)(x)) �
���I(k)(x)�����"g � X

k�k1

exp(�k�C1") <1

and similarly for
P
�q(�)fx : �(I(k)(x)) �

��I(k)(x)���+"g: By the Borel Cantelli
lemma, the probability that �(I(k)(x)) �

��I(k)(x)����" occurs in�nitely often is zero
and similarly for �(I(k)(x)) �

��I(k)(x)���+". Thus for �q(�) a.e. x and large enough
k, ���I(k)(x)����+" � �(I(k)(x)) � ���I(k)(x)�����" :
Hence, for large enough k,

�+ " � log(�(I(k)(x)))

log
��I(k)(x)�� � �� "

for �q(�) a.e. x. As " > 0 was arbitrary, it follows that dimloc �(x) = � for �q(�)
a.e. x, in other words, �q(�) is concentrated on E� as we desired to show.

We will leave it to the reader to check that f(�) 6= 0 for � 2 (log p= log r0; log(1�
p)= log r0). As the endpoints of this interval are the local dimensions at 0 and 1
respectively, it follows that E� is non-empty if and only if � belongs to the closure
of the interval above. �

Exercise 4. Determine for which � the set E� has maximal Hausdor¤ dimen-
sion and �nd that dimension.
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4. Isolated points in the multifractal spectrum

4.1. Isolated points in the spectrum of convolutions of Cantor mea-
sures. An important operation in many branches of analysis is convolution. Con-
volution is a binary operation on the space of measures on R de�ned in the following
way.

Definition 2. If �; � are measures on R, then their convolution, � � �; as
de�ned as the measure with the property that for any Borel set E � R,

� � �(E) =
Z
�(E � x)d�(x):

One can verify that the support of ��� is contained in the sum of the supports
of � and �.

Given a measure �; we will write �m for the m-fold convolution of �. When �
is the uniform Cantor measure on C(r), then �m is a self-similar measure generated
by the IFS with contractions Fi(x) = rx + (1 � r)i for i = 0; 1; :::;m and weights
pi = 2

�m�m
i

�
. The support of the invariant measure is the m-fold sum of C(r). For

example, if � is the classical Cantor measure and m � 2, then �m is supported on
[0;m]. In this case, the IFS satis�es the open set condition if and only if m � 2.

Exercise 5. Determine the multifractal spectrum of � � � for the classical
Cantor measure �.

In striking contrast to the case of self-similar measures associated with IFS
satisfying the open set condition, the multifractal spectrum of �3 is known to consist
of the union of a closed interval and an isolated point:�

� : E�(�
3) 6= �

	
=

"
log 8=3

log 3
;
log 8=

p
b

log 3

#[�
log 8

log 3

�
;

where b =
�
7 +

p
13
�
=2: It can be checked that log 8=

p
b= log 3 � 1:1335 and

log 8= log 3 � 1:89278. It is also known that
log 8=3

log 3
= dimloc �

3(x) for x = (wi) where wi 2 f1; 2g

log 8=
p
b

log 3
= dimloc �

3(x) for x = (wi) where w2i = 0; w2i+1 = 1

log 8

log 3
= dimloc �

3(0) = dimloc �
3(3) (and at no other x):

The proof of these facts make strong use of the elegant combinatorial structure of
the the Cantor set and its 3-fold sum.

Similar results have been obtained for m-fold convolutions of the uniform
Cantor measures on the Cantor sets C(1=d) when d 2 N and, more generally,
for self-similar measures generated by an IFS consisting of contractions Fi(x) =
x=d + (d � 1)i=d for i = 0; 1; :::;m and probabilities pi > 0; where p0; pm � pi for
all i 6= 0;m and d � 3 is an integer. The algebraic and combinatorial structure
of these self-similar measures can again be used to show that if m � d, then the
multifractal spectrum is the union of a closed interval and one (or two) isolated
points, the local dimensions at 0;m. The signi�cance of m � d is that the support
of �m is [0;m].



MULTIFRACTAL ANALYSIS 13

A similar result holds, as well, for convolutions of p-Cantor measures � sup-
ported on the Cantor sets C(rj). Provided inf rj > 0; the spectrum of �m has also
been shown to have an isolated point for su¢ ciently large m, either dimloc �m(0)
or dimloc �m(m), depending on whether p or 1 � p is larger. Again, a key idea in
the proof of this result is that the Cantor sets, C(rj); have the property that the
M -fold sum of C(rj) (the support of �M ) is the interval [0;M ] if M +1 � sup 1=rj .

4.2. Isolated points in the spectrum of convolutions of general mea-
sures. It turns out a much more general result is true for convolutions of probability
measures: If � is any continuous, probability measure supported on [0; 1] and there
is some integer M with the M -fold sum of the support of � equal to [0;M ], then
under rather mild assumptions, it is guaranteed that there will be an isolated point
in the spectrum of �m for su¢ ciently large m:

Theorem 3. Suppose � is a continuous, probability measure supported on [0; 1]
with 0; 1 2supp� and assume (M)supp� = [0;M ] for some integer M . Assume,
also, that

(1) dimloc�(0) > 0 and
(2) supfdimloc�(x) : x 2 supp�g <1:
Then there is an integer n0 such that for all n � n0, dimloc�n(0) is isolated in

the set of local dimensions of �n.

A similar statement holds with upper local dimensions replaced by lower local
dimensions. We begin with two preliminary lemmas.

Lemma 2. Suppose �; � are measures with supp� = [0; n] and 0; 1 2supp� �
[0; 1]:

(i) If dimloc�(x) � � < 1 for all x 2 [0; n], then dimloc� � �(z) � � for all
z 2 (0; n+ 1).

(ii) If, in addition, � is a continuous measure, then the same conclusion holds
under the weaker assumption that dimloc�(x) � � for all x 2 (0; n).

Proof. (i) Fix z 2 (0; n+1) and let I = [0; 1]\ [z�n; z]. Notice that at least
one of 0 or 1 belongs to I and that I has non-empty interior. As 0; 1 both belong
to supp� it follows that �(I) = � > 0.

Fix � > 0. If x 2 I, then z � x 2 [0; n] =supp�, hence dimloc�(x) � �. This
means that for every x 2 I, there exists rx > 0 such that if r < rx then

log(�(B(z � x; r)))
log r

� �+ ":

Let An = fx 2 I : rx � 1=ng. As
S
An = I, by continuity of measure there is some

n such that �(An) > �=2. For all x 2 An,
�(B(z � x; r)) � r�+" for all r � 1=n;

thus

� � �(B(z; r)) =

Z
�(B(z � x; r))d�(x) �

Z
An

r�+"d�(x)

� r�+"�(An) � r�+"�=2:
Hence

log(� � �(B(z; r)))
log r

� log �=2

log r
+ �+ " for all r � 1=n:
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Letting r ! 0, it follows that dimloc� � �(z) � � + " and since that holds for all
" > 0, we conclude that dimloc� � �(z) � �:

(ii) Under the weaker assumption of (ii), it is still true that dimloc�(x) � � for
all x 6= z; z � n. But �fzg = �fz � ng = 0, hence the sets Infz; z � ng and I have
the same positive �-measure. Let An = fx 2 Infz; z � ng : rx � 1=ng and choose
n such that �(An) > �(I)=2. We conclude the proof as in the �rst part. �

Lemma 3. Assume � is supported on [0; 1].
(i) Then dim�n(0) = ndim�(0):
(ii) If xj 2supp� and x =

Pn
j=1 xj, then dim�

n(x) �
Pn

j=1 dim�
n(xj):

Proof. (i) This follows easily from the fact that

(�(B(0; r=n)))
n � �n(B(0; r)) � (�(B(0; r)))n :

(ii) is similar. �

Proof. (of Theorem) By assumption, if x 2 [0;M ], then there are real num-
bers xj 2supp� such that

PM
j=1 xj = x. As dim�(z) � � for all z 2supp�, the

previous lemma (ii) implies dim�M (x) �M� for all x 2 [0;M ] =supp�M :
Now apply Lemma 2 (either (i) or (ii)) with � = �M and M = n to deduce

that dim�M+1(x) �M� for all x 2 (0;M + 1).
Since supp�M+T = [0;M + T ], we can repeatedly apply this argument (but

with part (ii) of the lemma as we have only the weaker hypothesis satis�ed) to
deduce that dim�n(x) �M� for all x 2 (0; n) and any n �M .

As Lemma 3 (i) implies dim�n(0) ! 1 as n ! 1, dim�n(0) will be isolated
in the spectrum for large enough n. �

Exercise 6. For what n can you be sure �n has an isolated point in its spectrum
when � is the uniform Cantor measure on the Cantor set C(r)?

5. Credits

The size of Cantor sets and their sums was explored in [3]. There the formula
is given for the Hausdor¤ dimension of C(rk) and it is proven that if inf rk > 0,
then some n-fold sum of C(rk) is the interval [0; n].

An excellent exposition on local dimensions, including the proofs of Prop. 1
and 2, the probabilistic ideas in the proof of Theorem 1, and the multifractal
analysis for self-similar measures arising from IFS satisfying the strong separation
condition, can be in Falconer�s books, [5] and [6], (particularly, chapters 17 and
10, 11 respectively). This is based in part upon the earlier work of Cawley and
Mauldin [4], Mandelbrot [14], Riedi [17] and others. We refer the reader to the
bibliographies given in [5] and [6] for further papers. In particular, Olsen in [15]
developed a strong mathematical foundation for multifractal analysis.

Motivated in part by [16], the multifractal analysis of p-Cantor measures on
C(rk) is investigated in [11]. There one can �nd the proofs of Theorem 2 and the
geometric result, Lemma 1.

Hu and Lau in [12] established the existence of an isolated point in the spectrum
of the 3-fold convolution of the uniform Cantor measure on C(1=3). This fact
was extended to various self-similar measures with overlap, generated by IFS with
contraction factors 1=d, d 2 N, in [18], [8] and [2]. In the latter paper, formulas are
given for the spectrum in the case of convolutions of uniform Cantor measures on
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Cantor sets C(1=d). A proof of the existence of an isolated point in the spectrum of
convolutions of very general Cantor measures is given in [10]. Theorem 3 is proven
in [1]. Pathological examples are constructed in [3] and [19].

Hu and Lau have extensively investigated the multifractal analysis of self-
similar measures with overlap in a series of papers, including [7], [8], [9] and [13].
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