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Part 3: Uniform and Nonuniform Recovery, Optimality

This lecture draws attention to the difference between uniform and
nonuniform guarantees in sparse recovery. We give a number of
nonuniform results concerning ¢1-minimization and we introduce
partial Fourier matrices in passing. We also show that the uniform
results from Compressive Sensing are essentially optimal. This
relies on a close connection with the geometry of Banach spaces,
in particular with properties of the unit balls of ¢1-spaces.
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Empirical Performances: Phase Transitions
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Figure: L: empirically observed weak threshold
R: strong (dashed) and weak (solid) thresholds (courtesy of J. Tanner)
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Uniform vs. Nonuniform Sparse Recovery

When A is a random matrix, uniform results read

P(V s-sparse x, recovery of x is successful using A) > 1 —¢,
while nonuniform results have the form

V s-sparse x, P(recovery of x is successful using A) > 1 —e.

Using Gaussian matrices, nonuniform s-sparse recovery results hold
for exactly s iterations of OMP in the regime m > csIn(N/s), but
uniform results do not hold in this regime.
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Nonuniform Recovery via BP when m = 2sIn(N/s)

> A necessary and sufficient condition for the recovery of a fixed
x € CN supported on S via ¢1-minimization is

> sen(x)y;

Jj€S

< |lvgllz for all vg € ker A.

» This is implied by (in the real case, equivalent to) the
injectivity of As and the existence of h € C™ such that

(A*h); = sgn(x;), j € S, [(A*h)| <1, L€S.
> The latter is in turn implied by
‘(Agag,sgn(xs»’ <1 for all £ € S.

» For subgaussian matrices, this occurs with probability > 1 — ¢
provided
m 2 2sIn(2N/¢)
(which is replaced by m 2 2s(+/In(eN/s) + \/In(l/e)/s)2 for
Gaussian matrices using Gordon's escape through the mesh).
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Bounded Orthonormal Systems

Let D € RY be endowed with a probability measure v. A bounded
orthonormal system (BOS) with constant K > 1 is a system
(¢1,-..,¢n) of function of D satisfying

/ Oi(8) () (t) = b 5,
D

sup sup |g;(t)] < K.
1<j<N teD

1. trigonometric polynomials:
take ¢x(t) = €7kt for t € D = [0,1], dv(t) = dt,

2. discrete orthonormal systems — let U € CN*N be a unitary
matrix with v/N|Ux | < K for all k,j € {1,..., N}
(e.g. Fourier or Hadamard matrix):

take ¢y(t) = VNUy, for t € {1,..., N}, v(B) = Ca“ljv(B).
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Nonuniform Recovery for BOS

For f = ZJN:1 xj¢;j, the samples of f at t1,...,t, €D are

N
F(tk) =D xi6i(tk) = (Ax)x,
j=1
where the sampling matrix A € C™*N have entries
(1) Arj = 0i(tk)-

Let an s-sparse x € CN be fixed. Let sampling points t1, ..., tm
be randomly selected according to v, and let A € C™*N be the
sampling matrix (1). If

m > C K?sIn(N)In(e 1),

then x is the unique minimizer of ||z||; subject to Az = Ax with
probability at least 1 — €.

(Proof based on the golfing scheme).
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Restricted Isometry Property for BOS

Let A € C™*N be the random sampling matrix associated to a
BOS with constant K > 1. For 6 € (0,1), if

m > C K6 2sIn*(N),

then, with probability at least 1 — N"”a(N), the matrix ﬁA has a
restricted isometry constant satisfying ds < J.

(Proof uses Dudley’s inequality, empirical method of Maurey, etc.)
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Stability: Uniform Setting
» Given ¢ > p > 1, a pair (A, A) is mixed ({q,{p)-instance
optimal of order s with constant C > 0 if

C
x = AAX)lg < 77 0s(X)p forallxe cV.

» Let A€ R™N_|f there exists A making (A, A) mixed
(£g, Lp)-instance optimal of order s with constant C, then

C
(2) Ivllg < WUZS(V)p for all v € ker A.

Conversely, if (2) holds, then there exists A making (A, A)
mixed ({4, ¢p)-instance optimal of order s with constant 2C.

» If there is an /»>-instance optimal pair of order s > 1 with
constant C, then
m>cN

for some constant ¢ depending only on C.
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Stability: Nonuniform Setting

Uniform #»-instance optimality may be irrelevant, but nonuniform
f>-instance optimality is quite relevant...

Let an s-sparse x € RV be fixed. Let A € R™N be a matrix with
ind A'(0, m1/2) entries. If N > com and m > c3sIn(N/m), then

Ix — A1(Ax +e)[2 < Cos(x)2 + D |e]2

holds for all e € R™ with probability at least 1 — 5exp(—cim).

This uses the ¢1-quotient property of A with constant d relative to
the ¢2-norm || - || on R™, which is expressed in one of the forms:

» for all e € R™, there exists u € RN with
Au=e and lull1 < d+/silel|, s«:=m/In(N/m),

> [l[e]lle/kera < d\/si|le|| for all e € R™,
> lefl« < d\/s|A%e|s for all e € R™.
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Gelfand Widths

For a subset K of a normed space X, define

E™(K,X) := inf {sup Ix — A(Ax)|, A: X "SI RM AR x}
xeK

The Gelfand m-width of K in X is

d"(K,X) = inf{ sup ||x|]|, L™ subspace of X, codim(L™) < m}
xeEKNL™

If —K = K, then
d"(K,X) < E™(K, X),
and if in addition K + K C a K, then

E™(K,X) < ad™(K,X).
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Gelfand Widths of /;-Balls: Upper Bound

Let A€ R™N with m =~ cslIn(eN/m) be such that dp5 < 1/2.
Let A; : R™ — RN be the ¢1-minimization map. Given 1 < p < 2,
for any x € B{V,

Aq(A < ¢ < C o ¢
b= BalAlle < =75 7500 S G076 ¥ (o in(e )17

This gives an upper bound for E’"(B{V,Eg’), and in turn

1-1/p
dm(BY, o) < Cmin{l,ln(e:/m)} .
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» (1-recovery of s-sparse vectors only possible for moderate s.

For s > 2, if A€ R™N is a matrix such that every s-sparse
vector x is a minimizer of ||z||; subject to Az = Ax, then

N
m>cysin (—), c1 > 0.45, ¢ = 4.
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Suppose that d™(B{', £]}) < (cu)=/P /2, where

In(eN/m)} -1

M := min {1,
m

Setting s ~ 1/(cp) > 2, there exists A € R™N allowing
£1-recovery of all s-sparse vectors. Therefore

N N , eN
m2>cysin <—> >c1sIn (,—) >csin (—)
s cim m

2 2
a In(eN/m) >C—{m>m
€ i {17 In(eN/m)} c
m

provided c is chosen small enough. This is a contradiction.
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Every s-sparse x € RN is a minimizer of ||z||; subject to Az = Ax if
and only if the null space property of order s holds, i.e.,

lvs|li < |lv|l1/2 for all v € ker A and all S € [N] with |S| <'s.
Setting d := dm(B{V,ES’), there exists A € R™N such that
Ivllp < d|lv|l1 for all v € ker A.
Then, for v € ker A and S € [N] with |S| <'s,

sl < s*7YPllvslp < s*HP|Iv]lp < dsTHP s,

P

1\
Choose s =~ (ﬂ) *~' to derive the null space property of order s.
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Lemma
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N .
There exists n > (4—) ? subsets S1,...,S" of size s such that
s

\5j05k|<§ forall1 <j#k<n.

Define s-sparse vectors x*

; /s ifies
JY). — )
(x)'_{o if i ¢S,

.., X" by

Note that ||¥/||; =1 and ||¥ —xK||; > 1forall1<j+#k<n.
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Insight 2: ¢1-recovery and number of measurements
For A € R™N suppose that every 2s-sparse vector x € RV is a
minimizer of ||z||; subject to Az = Ax.

In the quotient space /)'/ ker A, this means

IIx]]| := veiEefrA IIx — vz = [|x|l1 for all 2s-sparse x € RV.
In particular,

I =1 and [¥]—[x1>1 alll<j#k<n.
The size of this 1-separating set of the unit sphere satisfies

(L)} <ns(142)" =

Taking the logarithm yields
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