A Tutorial on Compressive Sensing

Simon Foucart Drexel University / University of Georgia

CIMPA13 New Trends in Applied Harmonic Analysis Mar del Plata, Argentina, 5-16 August 2013

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Part 3: Uniform and Nonuniform Recovery, Optimality

This lecture draws attention to the difference between uniform and nonuniform guarantees in sparse recovery. We give a number of nonuniform results concerning ℓ_1 -minimization and we introduce partial Fourier matrices in passing. We also show that the uniform results from Compressive Sensing are essentially optimal. This relies on a close connection with the geometry of Banach spaces, in particular with properties of the unit balls of ℓ_1 -spaces.

Uniform vs. Nonuniform Guarantees

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Empirical Performances: HTP and ℓ_1 -Minimization

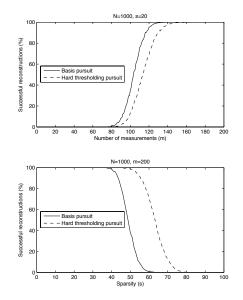
Empirical Performances: HTP and ℓ_1 -Minimization

Gaussian matrices with Rademacher then with Gaussian vectors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Empirical Performances: HTP and ℓ_1 -Minimization

Gaussian matrices with Rademacher then with Gaussian vectors



し (▲ 臣) ▲ 臣) 三臣) のへ()

Empirical Performances: Phase Transitions

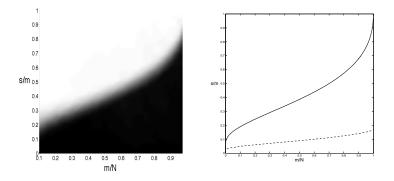


Figure: L: empirically observed weak threshold R: strong (dashed) and weak (solid) thresholds (courtesy of J. Tanner)

イロト 不得 トイヨト イヨト

э

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

When A is a random matrix, uniform results read

 $\mathbb{P}(\forall s \text{-sparse } \mathbf{x}, \text{ recovery of } \mathbf{x} \text{ is successful using } A) \geq 1 - \varepsilon$,

When A is a random matrix, uniform results read

 $\mathbb{P}(\forall s \text{-sparse } \mathbf{x}, \text{ recovery of } \mathbf{x} \text{ is successful using } A) \geq 1 - \varepsilon,$ while nonuniform results have the form

 $\forall s$ -sparse **x**, $\mathbb{P}(\text{recovery of } \mathbf{x} \text{ is successful using } A) \geq 1 - \varepsilon$.

When A is a random matrix, uniform results read

 $\mathbb{P}(\forall s \text{-sparse } \mathbf{x}, \text{ recovery of } \mathbf{x} \text{ is successful using } A) \geq 1 - \varepsilon,$

while nonuniform results have the form

 $\forall s$ -sparse **x**, $\mathbb{P}(\text{recovery of } \mathbf{x} \text{ is successful using } A) \geq 1 - \varepsilon$.

Using Gaussian matrices, nonuniform *s*-sparse recovery results hold for exactly *s* iterations of OMP in the regime $m \ge cs \ln(N/s)$, but uniform results do not hold in this regime.

 A necessary and sufficient condition for the recovery of a fixed x ∈ C^N supported on S via ℓ₁-minimization is

$$\left|\sum_{j\in S}\overline{\operatorname{sgn}(x_j)}v_j\right| < \|\mathbf{v}_{\overline{S}}\|_1 \quad \text{for all } \mathbf{v}_{\neq \mathbf{0}} \in \ker A.$$

A necessary and sufficient condition for the recovery of a fixed x ∈ C^N supported on S via ℓ₁-minimization is

$$\left|\sum_{j\in S}\overline{\operatorname{sgn}(x_j)}v_j\right| < \|\mathbf{v}_{\overline{S}}\|_1 \quad \text{for all } \mathbf{v}_{\neq \mathbf{0}} \in \ker A.$$

► This is implied by (in the real case, equivalent to) the injectivity of A_S and the existence of h ∈ C^m such that

$$(A^*\mathbf{h})_j = \operatorname{sgn}(x_j), \ j \in S, \qquad \left| (A^*\mathbf{h})_\ell \right| < 1, \ \ell \in \overline{S}.$$

A necessary and sufficient condition for the recovery of a fixed x ∈ C^N supported on S via ℓ₁-minimization is

$$\left|\sum_{j\in S}\overline{\operatorname{sgn}(x_j)}v_j\right| < \|\mathbf{v}_{\overline{S}}\|_1 \quad \text{for all } \mathbf{v}_{\neq \mathbf{0}} \in \ker A.$$

► This is implied by (in the real case, equivalent to) the injectivity of A_S and the existence of h ∈ C^m such that

$$(A^*\mathbf{h})_j = \operatorname{sgn}(x_j), \ j \in S, \qquad |(A^*\mathbf{h})_\ell| < 1, \ \ell \in \overline{S}.$$

The latter is in turn implied by

$$\left|\langle \mathsf{A}_{\mathcal{S}}^{\dagger}\mathbf{a}_{\ell}, \operatorname{sgn}(\mathbf{x}_{\mathcal{S}})
angle
ight| < 1 \qquad ext{for all } \ell \in \overline{\mathcal{S}}.$$

 A necessary and sufficient condition for the recovery of a fixed x ∈ C^N supported on S via ℓ₁-minimization is

$$\left|\sum_{j\in S}\overline{\operatorname{sgn}(x_j)}v_j\right| < \|\mathbf{v}_{\overline{S}}\|_1 \quad \text{ for all } \mathbf{v}_{\neq \mathbf{0}} \in \ker A.$$

► This is implied by (in the real case, equivalent to) the injectivity of A_S and the existence of h ∈ C^m such that

$$(A^*\mathbf{h})_j = \operatorname{sgn}(x_j), \ j \in S, \qquad \left| (A^*\mathbf{h})_\ell \right| < 1, \ \ell \in \overline{S}.$$

The latter is in turn implied by

$$\left|\langle A_{\mathcal{S}}^{\dagger} \mathbf{a}_{\ell}, \operatorname{sgn}(\mathbf{x}_{\mathcal{S}})
angle
ight| < 1 \qquad ext{for all } \ell \in \overline{\mathcal{S}}.$$

 \blacktriangleright For subgaussian matrices, this occurs with probability $\geq 1-\varepsilon$ provided

$$m\gtrsim 2s\ln(2N/arepsilon)$$

 A necessary and sufficient condition for the recovery of a fixed x ∈ C^N supported on S via ℓ₁-minimization is

$$\left|\sum_{j\in S}\overline{\operatorname{sgn}(x_j)}v_j\right| < \|\mathbf{v}_{\overline{S}}\|_1 \quad \text{ for all } \mathbf{v}_{\neq \mathbf{0}} \in \ker A.$$

► This is implied by (in the real case, equivalent to) the injectivity of A_S and the existence of h ∈ C^m such that

$$(A^*\mathbf{h})_j = \operatorname{sgn}(x_j), \ j \in S, \qquad \left| (A^*\mathbf{h})_\ell \right| < 1, \ \ell \in \overline{S}.$$

The latter is in turn implied by

$$\left|\langle A_{\mathcal{S}}^{\dagger} \mathbf{a}_{\ell}, \operatorname{sgn}(\mathbf{x}_{\mathcal{S}})
angle
ight| < 1 \qquad ext{for all } \ell \in \overline{\mathcal{S}}.$$

 \blacktriangleright For subgaussian matrices, this occurs with probability $\geq 1-\varepsilon$ provided

$$m\gtrsim 2s\ln(2N/arepsilon)$$

(which is replaced by $m \gtrsim 2s \left(\sqrt{\ln(eN/s)} + \sqrt{\ln(1/\varepsilon)/s}\right)^2$ for Gaussian matrices using Gordon's escape through the mesh).

Let $\mathcal{D} \in \mathbb{R}^d$ be endowed with a probability measure ν . A bounded orthonormal system (BOS) with constant $K \ge 1$ is a system (ϕ_1, \ldots, ϕ_N) of function of \mathcal{D} satisfying

$$\int_{\mathcal{D}} \phi_j(t) \overline{\phi_k(t)} d\nu(t) = \delta_{j,k},$$

$$\sup_{1 \le j \le N} \sup_{t \in \mathcal{D}} |\phi_j(t)| \le K.$$

Let $\mathcal{D} \in \mathbb{R}^d$ be endowed with a probability measure ν . A bounded orthonormal system (BOS) with constant $K \ge 1$ is a system (ϕ_1, \ldots, ϕ_N) of function of \mathcal{D} satisfying

$$\int_{\mathcal{D}} \phi_j(t) \overline{\phi_k(t)} d
u(t) = \delta_{j,k}, \ \sup_{1 \leq j \leq N} \sup_{t \in \mathcal{D}} |\phi_j(t)| \leq K.$$

1. trigonometric polynomials:

take
$$\phi_k(t) = e^{i2\pi kt}$$
 for $t \in \mathcal{D} = [0,1]$, $d
u(t) = dt$,

Let $\mathcal{D} \in \mathbb{R}^d$ be endowed with a probability measure ν . A bounded orthonormal system (BOS) with constant $K \ge 1$ is a system (ϕ_1, \ldots, ϕ_N) of function of \mathcal{D} satisfying

$$\int_{\mathcal{D}} \phi_j(t) \overline{\phi_k(t)} d
u(t) = \delta_{j,k},$$

 $\sup_{1 \le j \le N} \sup_{t \in \mathcal{D}} |\phi_j(t)| \le K.$

- 1. trigonometric polynomials: take $\phi_k(t)=e^{i2\pi kt}$ for $t\in\mathcal{D}=[0,1]$, d
 u(t)=dt,
- 2. discrete orthonormal systems let $U \in \mathbb{C}^{N \times N}$ be a unitary matrix with $\sqrt{N}|U_{k,j}| \leq K$ for all $k, j \in \{1, ..., N\}$ (e.g. Fourier or Hadamard matrix): take $\phi_k(t) = \sqrt{N}U_{k,t}$ for $t \in \{1, ..., N\}$, $\nu(B) = \frac{\operatorname{card}(B)}{N}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

For
$$f = \sum_{j=1}^N x_j \phi_j$$
, the samples of f at $t_1, \ldots, t_m \in \mathcal{D}$ are
 $f(t_k) = \sum_{j=1}^N x_j \phi_j(t_k) = (A\mathbf{x})_k$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where the sampling matrix $A \in \mathbb{C}^{m \times N}$ have entries (1) $A_{k,j} = \phi_j(t_k).$

For
$$f = \sum_{j=1}^N x_j \phi_j$$
, the samples of f at $t_1, \ldots, t_m \in \mathcal{D}$ are
 $f(t_k) = \sum_{j=1}^N x_j \phi_j(t_k) = (A\mathbf{x})_k,$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where the sampling matrix $A \in \mathbb{C}^{m \times N}$ have entries (1) $A_{k,j} = \phi_j(t_k).$

Let an *s*-sparse $\mathbf{x} \in \mathbb{C}^N$ be fixed.

For
$$f = \sum_{j=1}^N x_j \phi_j$$
, the samples of f at $t_1, \ldots, t_m \in \mathcal{D}$ are $f(t_k) = \sum_{j=1}^N x_j \phi_j(t_k) = (A\mathbf{x})_k$,

where the sampling matrix $A \in \mathbb{C}^{m \times N}$ have entries (1) $A_{k,j} = \phi_j(t_k).$

Let an *s*-sparse $\mathbf{x} \in \mathbb{C}^N$ be fixed. Let sampling points t_1, \ldots, t_m be randomly selected according to ν , and let $A \in \mathbb{C}^{m \times N}$ be the sampling matrix (1).

For
$$f = \sum_{j=1}^N x_j \phi_j$$
, the samples of f at $t_1, \ldots, t_m \in \mathcal{D}$ are $f(t_k) = \sum_{j=1}^N x_j \phi_j(t_k) = (A\mathbf{x})_k$,

where the sampling matrix $A \in \mathbb{C}^{m \times N}$ have entries (1) $A_{k,j} = \phi_j(t_k).$

Let an *s*-sparse $\mathbf{x} \in \mathbb{C}^N$ be fixed. Let sampling points t_1, \ldots, t_m be randomly selected according to ν , and let $A \in \mathbb{C}^{m \times N}$ be the sampling matrix (1). If

$$m \geq C \, K^2 s \ln(N) \ln(\varepsilon^{-1}),$$

then **x** is the unique minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ with probability at least $1 - \varepsilon$.

うせん 御 (前) (日) (日) (日)

For
$$f = \sum_{j=1}^N x_j \phi_j$$
, the samples of f at $t_1, \ldots, t_m \in \mathcal{D}$ are $f(t_k) = \sum_{j=1}^N x_j \phi_j(t_k) = (A\mathbf{x})_k$,

where the sampling matrix $A \in \mathbb{C}^{m \times N}$ have entries (1) $A_{k,j} = \phi_j(t_k).$

Let an *s*-sparse $\mathbf{x} \in \mathbb{C}^N$ be fixed. Let sampling points t_1, \ldots, t_m be randomly selected according to ν , and let $A \in \mathbb{C}^{m \times N}$ be the sampling matrix (1). If

$$m \geq C \, K^2 s \ln(N) \ln(\varepsilon^{-1}),$$

then **x** is the unique minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ with probability at least $1 - \varepsilon$.

(Proof based on the golfing scheme).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Let $A \in \mathbb{C}^{m \times N}$ be the random sampling matrix associated to a BOS with constant $K \ge 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $A \in \mathbb{C}^{m \times N}$ be the random sampling matrix associated to a BOS with constant $K \ge 1$. For $\delta \in (0, 1)$, if

$$m \ge C \, K^2 \delta^{-2} s \ln^4(N),$$

then, with probability at least $1 - N^{-\ln^3(N)}$, the matrix $\frac{1}{\sqrt{m}}A$ has a restricted isometry constant satisfying $\delta_s \leq \delta$.

Let $A \in \mathbb{C}^{m \times N}$ be the random sampling matrix associated to a BOS with constant $K \ge 1$. For $\delta \in (0, 1)$, if

$$m \ge C \, K^2 \delta^{-2} s \ln^4(N),$$

then, with probability at least $1 - N^{-\ln^3(N)}$, the matrix $\frac{1}{\sqrt{m}}A$ has a restricted isometry constant satisfying $\delta_s \leq \delta$.

(Proof uses Dudley's inequality, empirical method of Maurey, etc.)

Given q ≥ p ≥ 1, a pair (A, Δ) is mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C > 0 if

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_q \leq rac{C}{s^{1/p-1/q}} \, \sigma_s(\mathbf{x})_p \qquad ext{for all } \mathbf{x} \in \mathbb{C}^N.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given q ≥ p ≥ 1, a pair (A, Δ) is mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C > 0 if

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_q \leq rac{C}{s^{1/p-1/q}} \, \sigma_s(\mathbf{x})_p \qquad ext{for all } \mathbf{x} \in \mathbb{C}^N.$$

• Let $A \in \mathbb{R}^{m \times N}$.

Given q ≥ p ≥ 1, a pair (A, Δ) is mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C > 0 if

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_q \leq rac{C}{s^{1/p-1/q}} \sigma_s(\mathbf{x})_p \qquad ext{for all } \mathbf{x} \in \mathbb{C}^N.$$

Let A ∈ ℝ^{m×N}. If there exists Δ making (A, Δ) mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C, then

(2)
$$\|\mathbf{v}\|_q \leq \frac{C}{s^{1/p-1/q}}\sigma_{2s}(\mathbf{v})_p$$
 for all $\mathbf{v} \in \ker A$.

Given q ≥ p ≥ 1, a pair (A, Δ) is mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C > 0 if

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_q \leq rac{C}{s^{1/p-1/q}} \sigma_s(\mathbf{x})_p \qquad ext{for all } \mathbf{x} \in \mathbb{C}^N.$$

Let A ∈ ℝ^{m×N}. If there exists Δ making (A, Δ) mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C, then

(2)
$$\|\mathbf{v}\|_q \leq \frac{C}{s^{1/p-1/q}}\sigma_{2s}(\mathbf{v})_p$$
 for all $\mathbf{v} \in \ker A$.

Conversely, if (2) holds, then there exists Δ making (A, Δ) mixed (ℓ_q, ℓ_p) -instance optimal of order *s* with constant 2*C*.

Given q ≥ p ≥ 1, a pair (A, Δ) is mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C > 0 if

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_q \leq rac{C}{s^{1/p-1/q}} \sigma_s(\mathbf{x})_p \qquad ext{for all } \mathbf{x} \in \mathbb{C}^N.$$

Let A ∈ ℝ^{m×N}. If there exists Δ making (A, Δ) mixed (ℓ_q, ℓ_p)-instance optimal of order s with constant C, then

(2)
$$\|\mathbf{v}\|_q \leq \frac{C}{s^{1/p-1/q}}\sigma_{2s}(\mathbf{v})_p$$
 for all $\mathbf{v} \in \ker A$.

Conversely, if (2) holds, then there exists Δ making (A, Δ) mixed (ℓ_q, ℓ_p) -instance optimal of order *s* with constant 2*C*.

► If there is an ℓ₂-instance optimal pair of order s ≥ 1 with constant C, then

$$m \ge c N$$

for some constant *c* depending only on *C*.

<ロ>

Uniform $\ell_2\text{-instance}$ optimality may be irrelevant, but nonuniform $\ell_2\text{-instance}$ optimality is quite relevant...

Uniform $\ell_2\text{-instance}$ optimality may be irrelevant, but nonuniform $\ell_2\text{-instance}$ optimality is quite relevant...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let an *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed.

Uniform ℓ_2 -instance optimality may be irrelevant, but nonuniform ℓ_2 -instance optimality is quite relevant...

Let an s-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with ind $\mathcal{N}(0, m^{-1/2})$ entries.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uniform ℓ_2 -instance optimality may be irrelevant, but nonuniform ℓ_2 -instance optimality is quite relevant...

Let an s-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with ind $\mathcal{N}(0, m^{-1/2})$ entries. If $N \ge c_2 m$ and $m \ge c_3 s \ln(N/m)$, then

$$\|\mathbf{x} - \Delta_1(A\mathbf{x} + \mathbf{e})\|_2 \le C \,\sigma_s(\mathbf{x})_2 + D \,\|\mathbf{e}\|_2$$

holds for all $\mathbf{e} \in \mathbb{R}^m$ with probability at least $1 - 5 \exp(-c_1 m)$.

Uniform ℓ_2 -instance optimality may be irrelevant, but nonuniform ℓ_2 -instance optimality is quite relevant...

Let an s-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with ind $\mathcal{N}(0, m^{-1/2})$ entries. If $N \ge c_2 m$ and $m \ge c_3 s \ln(N/m)$, then

$$\|\mathbf{x} - \Delta_1(A\mathbf{x} + \mathbf{e})\|_2 \le C \sigma_s(\mathbf{x})_2 + D \|\mathbf{e}\|_2$$

holds for all $\mathbf{e} \in \mathbb{R}^m$ with probability at least $1 - 5 \exp(-c_1 m)$.

This uses the ℓ_1 -quotient property of A with constant d relative to the ℓ_2 -norm $\|\cdot\|$ on \mathbb{R}^m , which is expressed in one of the forms:

Uniform ℓ_2 -instance optimality may be irrelevant, but nonuniform ℓ_2 -instance optimality is quite relevant...

Let an s-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with ind $\mathcal{N}(0, m^{-1/2})$ entries. If $N \ge c_2 m$ and $m \ge c_3 s \ln(N/m)$, then

$$\|\mathbf{x} - \Delta_1 (A\mathbf{x} + \mathbf{e})\|_2 \le C \, \sigma_s(\mathbf{x})_2 + D \, \|\mathbf{e}\|_2$$

holds for all $\mathbf{e} \in \mathbb{R}^m$ with probability at least $1 - 5 \exp(-c_1 m)$.

This uses the ℓ_1 -quotient property of A with constant d relative to the ℓ_2 -norm $\|\cdot\|$ on \mathbb{R}^m , which is expressed in one of the forms:

▶ for all $\mathbf{e} \in \mathbb{R}^m$, there exists $\mathbf{u} \in \mathbb{R}^N$ with

$$A\mathbf{u} = \mathbf{e}$$
 and $\|\mathbf{u}\|_1 \leq d\sqrt{s_*}\|\mathbf{e}\|, \quad s_* := m/\ln(N/m),$

Uniform ℓ_2 -instance optimality may be irrelevant, but nonuniform ℓ_2 -instance optimality is quite relevant...

Let an s-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with ind $\mathcal{N}(0, m^{-1/2})$ entries. If $N \ge c_2 m$ and $m \ge c_3 s \ln(N/m)$, then

$$\|\mathbf{x} - \Delta_1(A\mathbf{x} + \mathbf{e})\|_2 \le C \sigma_s(\mathbf{x})_2 + D \|\mathbf{e}\|_2$$

holds for all $\mathbf{e} \in \mathbb{R}^m$ with probability at least $1 - 5 \exp(-c_1 m)$.

This uses the ℓ_1 -quotient property of A with constant d relative to the ℓ_2 -norm $\|\cdot\|$ on \mathbb{R}^m , which is expressed in one of the forms:

▶ for all $\mathbf{e} \in \mathbb{R}^m$, there exists $\mathbf{u} \in \mathbb{R}^N$ with

$$A\mathbf{u} = \mathbf{e}$$
 and $\|\mathbf{u}\|_1 \le d\sqrt{s_*}\|\mathbf{e}\|, \quad s_* := m/\ln(N/m),$

 $\blacktriangleright \ \|[\mathbf{e}]\|_{\ell_1/\ker A} \leq d\sqrt{s_*}\|\mathbf{e}\| \quad \text{for all } \mathbf{e} \in \mathbb{R}^m,$

Uniform ℓ_2 -instance optimality may be irrelevant, but nonuniform ℓ_2 -instance optimality is quite relevant...

Let an s-sparse $\mathbf{x} \in \mathbb{R}^N$ be fixed. Let $A \in \mathbb{R}^{m \times N}$ be a matrix with ind $\mathcal{N}(0, m^{-1/2})$ entries. If $N \ge c_2 m$ and $m \ge c_3 s \ln(N/m)$, then

$$\|\mathbf{x} - \Delta_1(A\mathbf{x} + \mathbf{e})\|_2 \le C \sigma_s(\mathbf{x})_2 + D \|\mathbf{e}\|_2$$

holds for all $\mathbf{e} \in \mathbb{R}^m$ with probability at least $1 - 5 \exp(-c_1 m)$.

This uses the ℓ_1 -quotient property of A with constant d relative to the ℓ_2 -norm $\|\cdot\|$ on \mathbb{R}^m , which is expressed in one of the forms:

▶ for all $\mathbf{e} \in \mathbb{R}^m$, there exists $\mathbf{u} \in \mathbb{R}^N$ with

$$A\mathbf{u} = \mathbf{e}$$
 and $\|\mathbf{u}\|_1 \le d\sqrt{s_*}\|\mathbf{e}\|, \quad s_* := m/\ln(N/m),$

 $\|[\mathbf{e}]\|_{\ell_1/\ker A} \le d\sqrt{s_*} \|\mathbf{e}\| \quad \text{for all } \mathbf{e} \in \mathbb{R}^m, \\ \|\mathbf{e}\|_* \le d\sqrt{s_*} \|A^*\mathbf{e}\|_{\infty} \quad \text{for all } \mathbf{e} \in \mathbb{R}^m.$

Optimality of Uniform Guarantees

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

<ロ> <@> < E> < E> E のQの

For a subset K of a normed space X, define

$$E^{m}(\mathcal{K},X) := \inf \left\{ \sup_{\mathbf{x} \in \mathcal{K}} \|\mathbf{x} - \Delta(A\mathbf{x})\|, \ A : X \stackrel{\text{linear}}{\to} \mathbb{R}^{m}, \Delta : \mathbb{R}^{m} \to X \right\}$$

For a subset K of a normed space X, define

$$E^m(K,X) := \inf \left\{ \sup_{\mathbf{x} \in K} \|\mathbf{x} - \Delta(A\mathbf{x})\|, \ A : X \stackrel{ ext{linear}}{ o} \mathbb{R}^m, \Delta : \mathbb{R}^m o X
ight\}$$

The Gelfand m-width of K in X is

$$d^m(\mathcal{K},X) := \inf \left\{ \sup_{\mathbf{x} \in \mathcal{K} \cap L^m} \|\mathbf{x}\|, \ L^m \text{ subspace of } X, \operatorname{codim}(L^m) \leq m
ight\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For a subset K of a normed space X, define

$$E^m(K,X) := \inf \left\{ \sup_{\mathbf{x} \in K} \|\mathbf{x} - \Delta(A\mathbf{x})\|, \ A : X \stackrel{ ext{linear}}{ o} \mathbb{R}^m, \Delta : \mathbb{R}^m o X
ight\}$$

The Gelfand m-width of K in X is

$$d^m(\mathcal{K},X) := \inf \left\{ \sup_{\mathbf{x} \in \mathcal{K} \cap L^m} \|\mathbf{x}\|, \ L^m \text{ subspace of } X, \operatorname{codim}(L^m) \leq m
ight\}$$

If -K = K, then

$$d^m(K,X) \leq E^m(K,X),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For a subset K of a normed space X, define

$$E^m(K,X) := \inf \left\{ \sup_{\mathbf{x} \in K} \|\mathbf{x} - \Delta(A\mathbf{x})\|, \ A : X \stackrel{ ext{linear}}{ o} \mathbb{R}^m, \Delta : \mathbb{R}^m o X
ight\}$$

The Gelfand m-width of K in X is

$$d^m(\mathcal{K}, X) := \inf \left\{ \sup_{\mathbf{x} \in \mathcal{K} \cap L^m} \|\mathbf{x}\|, \ L^m \text{ subspace of } X, \operatorname{codim}(L^m) \leq m
ight\}$$

If -K = K, then

$$d^m(K,X) \leq E^m(K,X),$$

and if in addition $K + K \subseteq a K$, then

$$E^m(K,X) \leq a d^m(K,X).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Let $A \in \mathbb{R}^{m \times N}$ with $m \approx c s \ln(eN/m)$ be such that $\delta_{2s} < 1/2$.

Let $A \in \mathbb{R}^{m \times N}$ with $m \approx c s \ln(eN/m)$ be such that $\delta_{2s} < 1/2$. Let $\Delta_1 : \mathbb{R}^m \to \mathbb{R}^N$ be the ℓ_1 -minimization map.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $A \in \mathbb{R}^{m \times N}$ with $m \approx c s \ln(eN/m)$ be such that $\delta_{2s} < 1/2$. Let $\Delta_1 : \mathbb{R}^m \to \mathbb{R}^N$ be the ℓ_1 -minimization map. Given $1 , for any <math>\mathbf{x} \in B_1^N$,

$$\|\mathbf{x} - \Delta_1(A\mathbf{x})\|_p \leq rac{C}{s^{1-1/p}} \sigma_s(\mathbf{x})_1 \leq rac{C}{s^{1-1/p}} pprox rac{C'}{(m/\ln(eN/m))^{1-1/p}}.$$

Let $A \in \mathbb{R}^{m \times N}$ with $m \approx c s \ln(eN/m)$ be such that $\delta_{2s} < 1/2$. Let $\Delta_1 : \mathbb{R}^m \to \mathbb{R}^N$ be the ℓ_1 -minimization map. Given $1 , for any <math>\mathbf{x} \in B_1^N$,

$$\|\mathbf{x} - \Delta_1(A\mathbf{x})\|_p \leq rac{C}{s^{1-1/p}} \sigma_s(\mathbf{x})_1 \leq rac{C}{s^{1-1/p}} pprox rac{C'}{(m/\ln(eN/m))^{1-1/p}}.$$

This gives an upper bound for $E^m(B_1^N, \ell_p^N)$,

Let $A \in \mathbb{R}^{m \times N}$ with $m \approx c s \ln(eN/m)$ be such that $\delta_{2s} < 1/2$. Let $\Delta_1 : \mathbb{R}^m \to \mathbb{R}^N$ be the ℓ_1 -minimization map. Given $1 , for any <math>\mathbf{x} \in B_1^N$,

$$\|\mathbf{x} - \Delta_1(A\mathbf{x})\|_p \leq rac{C}{s^{1-1/p}} \sigma_s(\mathbf{x})_1 \leq rac{C}{s^{1-1/p}} pprox rac{C'}{(m/\ln(eN/m))^{1-1/p}}.$$

This gives an upper bound for $E^m(B_1^N, \ell_p^N)$, and in turn

$$d^m(B_1^N,\ell_p^N)\leq C\min\left\{1,rac{\ln(eN/m)}{m}
ight\}^{1-1/p}.$$

Gelfand Widths of ℓ_1 -Balls: Lower Bound The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}$.

Gelfand Widths of ℓ_1 -Balls: Lower Bound The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}$.

Once established, this will show the optimality of the CS results.

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_p \leq rac{C}{s^{1-1/p}} \sigma_s(\mathbf{x})_1$$
 for all $\mathbf{x} \in \mathbb{R}^N$.

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq \frac{C}{s^{1-1/p}} \ \sigma_{s}(\mathbf{x})_{1} \leq \frac{C}{s^{1-1/p}} \ \|\mathbf{x}\|_{1} \qquad \text{for all } \mathbf{x} \in \mathbb{R}^{N}.$$

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1}$$
 for all $\mathbf{x} \in \mathbb{R}^{N}$.

Then,

$$c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N, \ell_p^N) \leq E^m(B_1^N, \ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1}$$
 for all $\mathbf{x} \in \mathbb{R}^{N}$.

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1}$$
 for all $\mathbf{x} \in \mathbb{R}^{N}$.

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c' \min \left\{ 1, \frac{\ln(eN/m)}{m} \right\} \leq \frac{1}{s}.$

We derive either $s \leq 1/c'$ or $m \geq c' s \ln(eN/m)$,

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1}$$
 for all $\mathbf{x} \in \mathbb{R}^{N}$.

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

We derive either $s \leq 1/c'$ or $m \geq c' s \ln(eN/m)$, in which case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq \frac{C}{s^{1-1/p}} \ \sigma_{s}(\mathbf{x})_{1} \leq \frac{C}{s^{1-1/p}} \ \|\mathbf{x}\|_{1} \qquad \text{for all } \mathbf{x} \in \mathbb{R}^{N}.$$

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

$$m \ge c' s \ln\left(\frac{eN}{s}\right) + c' s \ln\left(\frac{s}{m}\right)$$

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1} \qquad ext{for all } \mathbf{x} \in \mathbb{R}^{N}.$$

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

We derive either $s \leq 1/c'$ or $m \geq c' s \ln(eN/m)$, in which case

$$m \ge c' s \ln\left(\frac{eN}{s}\right) + c' m \frac{s}{m} \ln\left(\frac{s}{m}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq \frac{C}{s^{1-1/p}} \ \sigma_{s}(\mathbf{x})_{1} \leq \frac{C}{s^{1-1/p}} \ \|\mathbf{x}\|_{1} \qquad \text{for all } \mathbf{x} \in \mathbb{R}^{N}.$$

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

$$m \ge c' s \ln\left(\frac{eN}{s}\right) + c' m \underbrace{\frac{s}{m} \ln\left(\frac{s}{m}\right)}_{\ge -1/e}$$

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1} \qquad ext{for all } \mathbf{x} \in \mathbb{R}^{N}.$$

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

$$m \ge c' s \ln\left(\frac{eN}{s}\right) + c' m \underbrace{\frac{s}{m} \ln\left(\frac{s}{m}\right)}_{\ge -1/e} \ge \cdots$$

The Gelfand width of B_1^N in ℓ_p^N , p > 1, also satisfies $d^m(B_1^N, \ell_p^N) \ge c \min\left\{1, \frac{\ln(eN/m)}{m}\right\}^{1-1/p}.$

Once established, this will show the optimality of the CS results. Indeed, suppose the existence of (A, Δ) such that

$$\|\mathbf{x} - \Delta(A\mathbf{x})\|_{p} \leq rac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} \leq rac{C}{s^{1-1/p}} \|\mathbf{x}\|_{1}$$
 for all $\mathbf{x} \in \mathbb{R}^{N}$.

Then,

$$c\min\left\{1,\frac{\ln(eN/m)}{m}\right\}^{1-1/p} \leq d^m(B_1^N,\ell_p^N) \leq E^m(B_1^N,\ell_p^N) \leq \frac{C}{s^{1-1/p}},$$

in other words $c'\min\left\{1, \frac{\ln(eN/m)}{m}
ight\} \leq rac{1}{s}.$

$$m \ge c' s \ln\left(\frac{eN}{s}\right) + c' m \underbrace{\frac{s}{m} \ln\left(\frac{s}{m}\right)}_{\ge -1/e} \ge \cdots \ge c'' s \ln\left(\frac{eN}{s}\right).$$

▶ small width implies ℓ_1 -recovery of *s*-sparse vectors for large *s*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

small width implies ℓ_1 -recovery of *s*-sparse vectors for large *s*.

• ℓ_1 -recovery of *s*-sparse vectors only possible for moderate *s*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ small width implies ℓ_1 -recovery of *s*-sparse vectors for large *s*.

There is a matrix $A \in \mathbb{R}^{m \times N}$ such that every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ for

$$s \approx \left(\frac{1}{2d^m(B_1^N,\ell_p^N)}\right)^{\frac{p}{p-1}}$$

• ℓ_1 -recovery of *s*-sparse vectors only possible for moderate *s*.

▶ small width implies ℓ_1 -recovery of *s*-sparse vectors for large *s*.

There is a matrix $A \in \mathbb{R}^{m \times N}$ such that every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ for

$$s \approx \left(\frac{1}{2d^m(B_1^N,\ell_p^N)}\right)^{rac{p}{p-1}}$$

l₁-recovery of s-sparse vectors only possible for moderate s.

For $s \ge 2$, if $A \in \mathbb{R}^{m \times N}$ is a matrix such that every *s*-sparse vector **x** is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$, then

$$m \ge c_1 s \ln\left(\frac{N}{c_2 s}\right),$$

small width implies ℓ_1 -recovery of *s*-sparse vectors for large *s*.

There is a matrix $A \in \mathbb{R}^{m \times N}$ such that every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ for

$$s \approx \left(\frac{1}{2d^m(B_1^N,\ell_p^N)}\right)^{rac{p}{p-1}}$$

l₁-recovery of s-sparse vectors only possible for moderate s.

For $s \ge 2$, if $A \in \mathbb{R}^{m \times N}$ is a matrix such that every *s*-sparse vector **x** is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$, then

$$m \ge c_1 s \ln\left(\frac{N}{c_2 s}\right), \qquad c_1 \ge 0.45, \ c_2 = 4.$$

Suppose that $d^m(B_1^N,\ell_p^N)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Suppose that $d^m(B_1^N, \ell_p^N) < (c\mu)^{1-1/p}/2$, where $\mu := \min\left\{1, \frac{\ln(eN/m)}{2}\right\} < 1.$

$$\mu := \min\left\{1, \frac{m(en/m)}{m}\right\} \le 1$$

Setting $s \approx 1/(c\mu) \geq 2$,

Suppose that $d^m(B_1^N,\ell_p^N) < (c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors.

Suppose that $d^m(B^N_1,\ell^N_p) < (c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 s \ln\left(\frac{N}{c_2 s}\right)$$

Suppose that $d^m(B^N_1,\ell^N_p)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 s \ln\left(\frac{N}{c_2 s}\right) \ge c_1 s \ln\left(\frac{N}{c_2' m}\right)$$

Suppose that $d^m(B_1^N,\ell_p^N)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 s \ln\left(\frac{N}{c_2 s}\right) \ge c_1 s \ln\left(\frac{N}{c_2' m}\right) \ge c_1' s \ln\left(\frac{eN}{m}\right)$$

Suppose that $d^m(B_1^N,\ell_p^N)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 \, s \, \ln\left(\frac{N}{c_2 s}\right) \ge c_1 \, s \, \ln\left(\frac{N}{c_2' m}\right) \ge c_1' \, s \, \ln\left(\frac{eN}{m}\right)$$
$$\ge \frac{c_1'}{c} \frac{\ln(eN/m)}{\min\left\{1, \frac{\ln(eN/m)}{m}\right\}}$$

Suppose that $d^m(B_1^N,\ell_p^N)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 \, s \, \ln\left(\frac{N}{c_2 s}\right) \ge c_1 \, s \, \ln\left(\frac{N}{c_2' m}\right) \ge c_1' \, s \, \ln\left(\frac{eN}{m}\right)$$
$$\ge \frac{c_1'}{c} \frac{\ln(eN/m)}{\min\left\{1, \frac{\ln(eN/m)}{m}\right\}} \ge \frac{c_1'}{c} m$$

Suppose that $d^m(B_1^N,\ell_p^N)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 \, s \, \ln\left(\frac{N}{c_2 s}\right) \ge c_1 \, s \, \ln\left(\frac{N}{c_2' m}\right) \ge c_1' \, s \, \ln\left(\frac{eN}{m}\right)$$
$$\ge \frac{c_1'}{c} \frac{\ln(eN/m)}{\min\left\{1, \frac{\ln(eN/m)}{m}\right\}} \ge \frac{c_1'}{c} m > m,$$

provided c is chosen small enough.

Suppose that $d^m(B^N_1,\ell^N_p)<(c\mu)^{1-1/p}/2$, where

$$\mu := \min\left\{1, \frac{\ln(eN/m)}{m}\right\} \le 1.$$

Setting $s \approx 1/(c\mu) \ge 2$, there exists $A \in \mathbb{R}^{m \times N}$ allowing ℓ_1 -recovery of all *s*-sparse vectors. Therefore

$$m \ge c_1 \, s \, \ln\left(\frac{N}{c_2 s}\right) \ge c_1 \, s \, \ln\left(\frac{N}{c_2' m}\right) \ge c_1' \, s \, \ln\left(\frac{eN}{m}\right)$$
$$\ge \frac{c_1'}{c} \frac{\ln(eN/m)}{\min\left\{1, \frac{\ln(eN/m)}{m}\right\}} \ge \frac{c_1'}{c} m > m,$$

provided c is chosen small enough. This is a contradiction.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Every s-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order s holds,

Every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order *s* holds, i.e.,

 $\|\mathbf{v}_S\|_1 \leq \|\mathbf{v}_{\overline{S}}\|_1 \quad \text{ for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s.$

Every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order *s* holds, i.e.,

 $\|\mathbf{v}_S\|_1 \le \|\mathbf{v}\|_1/2$ for all $\mathbf{v} \in \ker A$ and all $S \in [N]$ with $|S| \le s$.

Every s-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order s holds, i.e.,

 $\|\mathbf{v}_{S}\|_{1} \leq \|\mathbf{v}\|_{1}/2 \text{ for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s.$ Setting $d := d^{m}(B_{1}^{N}, \ell_{p}^{N})$, there exists $A \in \mathbb{R}^{m \times N}$ such that $\|\mathbf{v}\|_{p} \leq d\|\mathbf{v}\|_{1}$ for all $\mathbf{v} \in \ker A$.

Every s-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order s holds, i.e.,

 $\|\mathbf{v}_{S}\|_{1} \leq \|\mathbf{v}\|_{1}/2 \text{ for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s.$ Setting $d := d^{m}(B_{1}^{N}, \ell_{p}^{N})$, there exists $A \in \mathbb{R}^{m \times N}$ such that $\|\mathbf{v}\|_{p} \leq d\|\mathbf{v}\|_{1}$ for all $\mathbf{v} \in \ker A$. Then, for $\mathbf{v} \in \ker A$ and $S \in [N]$ with $|S| \leq s$,

Every s-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order s holds, i.e.,

 $\|\mathbf{v}_{S}\|_{1} \leq \|\mathbf{v}\|_{1}/2 \text{ for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s.$ Setting $d := d^{m}(B_{1}^{N}, \ell_{p}^{N})$, there exists $A \in \mathbb{R}^{m \times N}$ such that $\|\mathbf{v}\|_{p} \leq d\|\mathbf{v}\|_{1}$ for all $\mathbf{v} \in \ker A$.

Then, for $\mathbf{v} \in \ker A$ and $S \in [N]$ with $|S| \leq s$,

 $\|\mathbf{v}_S\|_1 \leq s^{1-1/p} \|\mathbf{v}_S\|_p$

Every s-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order s holds, i.e.,

 $\begin{aligned} \|\mathbf{v}_{S}\|_{1} &\leq \|\mathbf{v}\|_{1}/2 \quad \text{for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s. \end{aligned}$ Setting $d := d^{m}(B_{1}^{N}, \ell_{p}^{N})$, there exists $A \in \mathbb{R}^{m \times N}$ such that $\|\mathbf{v}\|_{p} \leq d\|\mathbf{v}\|_{1} \quad \text{for all } \mathbf{v} \in \ker A. \end{aligned}$

Then, for $\mathbf{v} \in \ker A$ and $S \in [N]$ with $|S| \leq s$,

$$\|\mathbf{v}_{\mathcal{S}}\|_1 \leq s^{1-1/p} \|\mathbf{v}_{\mathcal{S}}\|_p \leq s^{1-1/p} \|\mathbf{v}\|_p$$

Every s-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order s holds, i.e.,

$$\begin{split} \|\mathbf{v}_{S}\|_{1} &\leq \|\mathbf{v}\|_{1}/2 \quad \text{for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s. \\ \text{Setting } d &:= d^{m}(B_{1}^{N}, \ell_{p}^{N}), \text{ there exists } A \in \mathbb{R}^{m \times N} \text{ such that} \\ \|\mathbf{v}\|_{p} &\leq d\|\mathbf{v}\|_{1} \quad \text{ for all } \mathbf{v} \in \ker A. \end{split}$$

Then, for $\mathbf{v} \in \ker A$ and $S \in [N]$ with $|S| \leq s$,

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq s^{1-1/p} \|\mathbf{v}_{\mathcal{S}}\|_{p} \leq s^{1-1/p} \|\mathbf{v}\|_{p} \leq ds^{1-1/p} \|\mathbf{v}\|_{1}.$$

Every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order *s* holds, i.e.,

$$\begin{split} \|\mathbf{v}_{S}\|_{1} &\leq \|\mathbf{v}\|_{1}/2 \quad \text{for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s. \\ \text{Setting } d &:= d^{m}(B_{1}^{N}, \ell_{p}^{N}), \text{ there exists } A \in \mathbb{R}^{m \times N} \text{ such that} \\ \|\mathbf{v}\|_{p} &\leq d\|\mathbf{v}\|_{1} \quad \text{ for all } \mathbf{v} \in \ker A. \end{split}$$

Then, for $\mathbf{v} \in \ker A$ and $S \in [N]$ with $|S| \leq s$,

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq s^{1-1/p} \|\mathbf{v}_{\mathcal{S}}\|_{p} \leq s^{1-1/p} \|\mathbf{v}\|_{p} \leq ds^{1-1/p} \|\mathbf{v}\|_{1}.$$

Choose $s \approx \left(\frac{1}{2d}\right)^{\frac{p}{p-1}}$

Every *s*-sparse $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$ if and only if the null space property of order *s* holds, i.e.,

$$\begin{split} \|\mathbf{v}_{S}\|_{1} &\leq \|\mathbf{v}\|_{1}/2 \quad \text{for all } \mathbf{v} \in \ker A \text{ and all } S \in [N] \text{ with } |S| \leq s. \\ \text{Setting } d &:= d^{m}(B_{1}^{N}, \ell_{p}^{N}), \text{ there exists } A \in \mathbb{R}^{m \times N} \text{ such that} \\ \|\mathbf{v}\|_{p} &\leq d\|\mathbf{v}\|_{1} \quad \text{ for all } \mathbf{v} \in \ker A. \end{split}$$

Then, for $\mathbf{v} \in \ker A$ and $S \in [N]$ with $|S| \leq s$,

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq s^{1-1/p} \|\mathbf{v}_{\mathcal{S}}\|_{p} \leq s^{1-1/p} \|\mathbf{v}\|_{p} \leq ds^{1-1/p} \|\mathbf{v}\|_{1}.$$

Choose $s \approx \left(\frac{1}{2d}\right)^{\frac{p}{p-1}}$ to derive the null space property of order s.

Lemma

There exists
$$n \ge \left(\frac{N}{4s}\right)^{\frac{s}{2}}$$
 subsets S^1, \dots, S^n of size s such that
 $|S^j \cap S^k| < \frac{s}{2}$ for all $1 \le j \ne k \le n$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Lemma

There exists
$$n \ge \left(\frac{N}{4s}\right)^{\frac{s}{2}}$$
 subsets S^1, \dots, S^n of size s such that
 $|S^j \cap S^k| < \frac{s}{2}$ for all $1 \le j \ne k \le n$.

Define s-sparse vectors $\mathbf{x}^1, \dots, \mathbf{x}^n$ by

$$(\mathbf{x}^j)_i = \begin{cases} 1/s & \text{if } i \in S^j, \\ 0 & \text{if } i \notin S^j. \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Lemma

There exists
$$n \ge \left(\frac{N}{4s}\right)^{\frac{s}{2}}$$
 subsets S^1, \dots, S^n of size s such that
 $|S^j \cap S^k| < \frac{s}{2}$ for all $1 \le j \ne k \le n$.

Define s-sparse vectors $\mathbf{x}^1, \dots, \mathbf{x}^n$ by

$$(\mathbf{x}^j)_i = \begin{cases} 1/s & \text{if } i \in S^j, \\ 0 & \text{if } i \notin S^j. \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Note that $\|\mathbf{x}^j\|_1 = 1$

Lemma

There exists
$$n \ge \left(\frac{N}{4s}\right)^{\frac{s}{2}}$$
 subsets S^1, \dots, S^n of size s such that
 $|S^j \cap S^k| < \frac{s}{2}$ for all $1 \le j \ne k \le n$.

Define s-sparse vectors $\mathbf{x}^1, \dots, \mathbf{x}^n$ by

$$(\mathbf{x}^j)_i = \begin{cases} 1/s & \text{if } i \in S^j, \\ 0 & \text{if } i \notin S^j. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that $\|\mathbf{x}^j\|_1 = 1$ and $\|\mathbf{x}^j - \mathbf{x}^k\|_1 > 1$ for all $1 \le j \ne k \le n$.

Insight 2: ℓ_1 -recovery and number of measurements

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Insight 2: ℓ_1 -recovery and number of measurements For $A \in \mathbb{R}^{m \times N}$, suppose that every 2*s*-sparse vector $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$.

Insight 2: ℓ_1 -recovery and number of measurements

For $A \in \mathbb{R}^{m \times N}$, suppose that every 2*s*-sparse vector $\mathbf{x} \in \mathbb{R}^N$ is a minimizer of $\|\mathbf{z}\|_1$ subject to $A\mathbf{z} = A\mathbf{x}$. In the quotient space $\ell_1^N / \ker A$, this means

$$\|[\mathbf{x}]\| := \inf_{\mathbf{v} \in \ker A} \|\mathbf{x} - \mathbf{v}\|_1$$

$$\| [\mathbf{x}] \| := \inf_{\mathbf{v} \in \ker A} \| \mathbf{x} - \mathbf{v} \|_1 = \| \mathbf{x} \|_1$$
 for all 2*s*-sparse $\mathbf{x} \in \mathbb{R}^N$.

$$\|[\mathbf{x}]\| := \inf_{\mathbf{v} \in \ker A} \|\mathbf{x} - \mathbf{v}\|_1 = \|\mathbf{x}\|_1 \quad \text{ for all } 2s\text{-sparse } \mathbf{x} \in \mathbb{R}^N.$$

In particular,

 $\|[\mathbf{x}^j]\| = 1$

$$\| [\mathbf{x}] \| := \inf_{\mathbf{v} \in \ker A} \| \mathbf{x} - \mathbf{v} \|_1 = \| \mathbf{x} \|_1$$
 for all 2*s*-sparse $\mathbf{x} \in \mathbb{R}^N$.

In particular,

$$\|[\mathbf{x}^j]\| = 1$$
 and $\|[\mathbf{x}^j] - [\mathbf{x}^k]\| > 1$, all $1 \le j \ne k \le n$.

$$\| [\mathbf{x}] \| := \inf_{\mathbf{v} \in \ker A} \| \mathbf{x} - \mathbf{v} \|_1 = \| \mathbf{x} \|_1$$
 for all 2*s*-sparse $\mathbf{x} \in \mathbb{R}^N$.

In particular,

$$\|[\mathbf{x}^j]\| = 1$$
 and $\|[\mathbf{x}^j] - [\mathbf{x}^k]\| > 1$, all $1 \le j \ne k \le n$.

The size of this 1-separating set of the unit sphere satisfies

$$n \leq \left(1 + \frac{2}{1}\right)^m$$

$$\| [\mathbf{x}] \| := \inf_{\mathbf{v} \in \ker A} \| \mathbf{x} - \mathbf{v} \|_1 = \| \mathbf{x} \|_1$$
 for all 2*s*-sparse $\mathbf{x} \in \mathbb{R}^N$.

In particular,

$$\|[\mathbf{x}^j]\| = 1$$
 and $\|[\mathbf{x}^j] - [\mathbf{x}^k]\| > 1$, all $1 \le j \ne k \le n$.

The size of this 1-separating set of the unit sphere satisfies

$$n \le \left(1 + \frac{2}{1}\right)^m = 3^m.$$

$$\|[\mathbf{x}]\| := \inf_{\mathbf{v} \in \ker A} \|\mathbf{x} - \mathbf{v}\|_1 = \|\mathbf{x}\|_1 \qquad \text{for all } 2s\text{-sparse } \mathbf{x} \in \mathbb{R}^N.$$

In particular,

$$\|[\mathbf{x}^j]\| = 1$$
 and $\|[\mathbf{x}^j] - [\mathbf{x}^k]\| > 1$, all $1 \le j \ne k \le n$.

The size of this 1-separating set of the unit sphere satisfies

$$\left(\frac{N}{4s}\right)^{\frac{s}{2}} \le n \le \left(1 + \frac{2}{1}\right)^m = 3^m$$

$$\|[\mathbf{x}]\| := \inf_{\mathbf{v} \in \ker A} \|\mathbf{x} - \mathbf{v}\|_1 = \|\mathbf{x}\|_1 \qquad \text{for all } 2s\text{-sparse } \mathbf{x} \in \mathbb{R}^N.$$

In particular,

$$\|[\mathbf{x}^j]\| = 1$$
 and $\|[\mathbf{x}^j] - [\mathbf{x}^k]\| > 1$, all $1 \le j \ne k \le n$.

The size of this 1-separating set of the unit sphere satisfies

$$\left(\frac{N}{4s}\right)^{\frac{s}{2}} \leq n \leq \left(1+\frac{2}{1}\right)^m = 3^m.$$

Taking the logarithm yields

$$m \geq \frac{s}{\ln 9} \ln \left(\frac{N}{4s} \right).$$

Applied and Numerical Harmonic Analysis

 $\int f(\gamma) = \int f(x) e^{-2\pi i x \gamma} dx$

Simon Foucart Holger Rauhut

A Mathematical Introduction to Compressive Sensing

🕲 Birkhäuser

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ