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Part 3: Uniform and Nonuniform Recovery, Optimality

This lecture draws attention to the difference between uniform and
nonuniform guarantees in sparse recovery. We give a number of
nonuniform results concerning `1-minimization and we introduce
partial Fourier matrices in passing. We also show that the uniform
results from Compressive Sensing are essentially optimal. This
relies on a close connection with the geometry of Banach spaces,
in particular with properties of the unit balls of `1-spaces.



Uniform vs. Nonuniform Guarantees



Empirical Performances: HTP and `1-Minimization

Gaussian matrices with Rademacher then with Gaussian vectors
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Empirical Performances: Phase Transitions
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Figure: L: empirically observed weak threshold
R: strong (dashed) and weak (solid) thresholds (courtesy of J. Tanner)



Uniform vs. Nonuniform Sparse Recovery

When A is a random matrix, uniform results read

P(∀ s-sparse x, recovery of x is successful using A) ≥ 1− ε,

while nonuniform results have the form

∀ s-sparse x, P(recovery of x is successful using A) ≥ 1− ε.

Using Gaussian matrices, nonuniform s-sparse recovery results hold
for exactly s iterations of OMP in the regime m ≥ cs ln(N/s), but
uniform results do not hold in this regime.
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Nonuniform Recovery via BP when m & 2s ln(N/s)

I A necessary and sufficient condition for the recovery of a fixed
x ∈ CN supported on S via `1-minimization is∣∣∣∣∑

j∈S
sgn(xj)vj

∣∣∣∣ < ‖vS‖1 for all v6=0 ∈ ker A.

I This is implied by (in the real case, equivalent to) the
injectivity of AS and the existence of h ∈ Cm such that

(A∗h)j = sgn(xj), j ∈ S ,
∣∣(A∗h)`

∣∣ < 1, ` ∈ S .

I The latter is in turn implied by∣∣〈A†Sa`, sgn(xS)〉
∣∣ < 1 for all ` ∈ S .

I For subgaussian matrices, this occurs with probability ≥ 1− ε
provided

m & 2s ln(2N/ε)

(which is replaced by m & 2s
(√

ln(eN/s) +
√

ln(1/ε)/s
)2

for
Gaussian matrices using Gordon’s escape through the mesh).
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Bounded Orthonormal Systems

Let D ∈ Rd be endowed with a probability measure ν. A bounded
orthonormal system (BOS) with constant K ≥ 1 is a system
(φ1, . . . , φN) of function of D satisfying∫

D
φj(t)φk(t)dν(t) = δj ,k ,

sup
1≤j≤N

sup
t∈D
|φj(t)| ≤ K .

1. trigonometric polynomials:
take φk(t) = e i2πkt for t ∈ D = [0, 1], dν(t) = dt,

2. discrete orthonormal systems — let U ∈ CN×N be a unitary
matrix with

√
N|Uk,j | ≤ K for all k , j ∈ {1, . . . ,N}

(e.g. Fourier or Hadamard matrix):

take φk(t) =
√

NUk,t for t ∈ {1, . . . ,N}, ν(B) =
card(B)

N
.
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Nonuniform Recovery for BOS

For f =
∑N

j=1 xjφj , the samples of f at t1, . . . , tm ∈ D are

f (tk) =
N∑
j=1

xjφj(tk) = (Ax)k ,

where the sampling matrix A ∈ Cm×N have entries

(1) Ak,j = φj(tk).

Let an s-sparse x ∈ CN be fixed. Let sampling points t1, . . . , tm
be randomly selected according to ν, and let A ∈ Cm×N be the
sampling matrix (1). If

m ≥ C K 2s ln(N) ln(ε−1),

then x is the unique minimizer of ‖z‖1 subject to Az = Ax with
probability at least 1− ε.

(Proof based on the golfing scheme).
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Restricted Isometry Property for BOS

Let A ∈ Cm×N be the random sampling matrix associated to a
BOS with constant K ≥ 1. For δ ∈ (0, 1), if

m ≥ C K 2δ−2s ln4(N),

then, with probability at least 1− N− ln3(N), the matrix 1√
m

A has a

restricted isometry constant satisfying δs ≤ δ.

(Proof uses Dudley’s inequality, empirical method of Maurey, etc.)
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Stability: Uniform Setting

I Given q ≥ p ≥ 1, a pair (A,∆) is mixed (`q, `p)-instance
optimal of order s with constant C > 0 if

‖x−∆(Ax)‖q ≤
C

s1/p−1/q
σs(x)p for all x ∈ CN .

I Let A ∈ Rm×N .

If there exists ∆ making (A,∆) mixed
(`q, `p)-instance optimal of order s with constant C , then

(2) ‖v‖q ≤
C

s1/p−1/q
σ2s(v)p for all v ∈ ker A.

Conversely, if (2) holds, then there exists ∆ making (A,∆)
mixed (`q, `p)-instance optimal of order s with constant 2C .

I If there is an `2-instance optimal pair of order s ≥ 1 with
constant C , then

m ≥ c N

for some constant c depending only on C .
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Stability: Nonuniform Setting

Uniform `2-instance optimality may be irrelevant, but nonuniform
`2-instance optimality is quite relevant...

Let an s-sparse x ∈ RN be fixed. Let A ∈ Rm×N be a matrix with
ind N (0,m−1/2) entries. If N ≥ c2m and m ≥ c3s ln(N/m), then

‖x−∆1(Ax + e)‖2 ≤ C σs(x)2 + D ‖e‖2

holds for all e ∈ Rm with probability at least 1− 5 exp(−c1m).

This uses the `1-quotient property of A with constant d relative to
the `2-norm ‖ · ‖ on Rm, which is expressed in one of the forms:

I for all e ∈ Rm, there exists u ∈ RN with

Au = e and ‖u‖1 ≤ d
√

s∗‖e‖, s∗ := m/ ln(N/m),

I ‖[e]‖`1/ kerA ≤ d
√

s∗‖e‖ for all e ∈ Rm,

I ‖e‖∗ ≤ d
√

s∗‖A∗e‖∞ for all e ∈ Rm.
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Optimality of Uniform Guarantees



Gelfand Widths

For a subset K of a normed space X , define

Em(K ,X ) := inf

{
sup
x∈K
‖x−∆(Ax)‖, A : X

linear→ Rm,∆ : Rm → X

}

The Gelfand m-width of K in X is

dm(K ,X ) := inf

{
sup

x∈K∩Lm
‖x‖, Lm subspace of X , codim(Lm) ≤ m

}
If −K = K , then

dm(K ,X ) ≤ Em(K ,X ),

and if in addition K + K ⊆ a K , then

Em(K ,X ) ≤ a dm(K ,X ).
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Gelfand Widths of `1-Balls: Upper Bound

Let A ∈ Rm×N with m ≈ c s ln(eN/m) be such that δ2s < 1/2.
Let ∆1 : Rm → RN be the `1-minimization map. Given 1 < p ≤ 2,
for any x ∈ BN

1 ,

‖x−∆1(Ax)‖p ≤
C

s1−1/p
σs(x)1 ≤

C

s1−1/p
≈ C ′

(m/ ln(eN/m))1−1/p
.

This gives an upper bound for Em(BN
1 , `

N
p ), and in turn

dm(BN
1 , `

N
p ) ≤ C min

{
1,

ln(eN/m)

m

}1−1/p
.
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Gelfand Widths of `1-Balls: Lower Bound

The Gelfand width of BN
1 in `Np , p > 1, also satisfies

dm(BN
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The lower estimate for dm(BN
1 , `

N
p ): two key insights

I small width implies `1-recovery of s-sparse vectors for large s.

There is a matrix A ∈ Rm×N such that every s-sparse x ∈ RN

is a minimizer of ‖z‖1 subject to Az = Ax for

s ≈
(

1

2dm(BN
1 , `

N
p )

) p
p−1

.

I `1-recovery of s-sparse vectors only possible for moderate s.

For s ≥ 2, if A ∈ Rm×N is a matrix such that every s-sparse
vector x is a minimizer of ‖z‖1 subject to Az = Ax, then

m ≥ c1 s ln
( N

c2s

)
, c1 ≥ 0.45, c2 = 4.
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Deriving the lower estimate

Suppose that dm(BN
1 , `

N
p ) < (cµ)1−1/p/2, where

µ := min

{
1,

ln(eN/m)

m

}
≤ 1.

Setting s ≈ 1/(cµ) ≥ 2, there exists A ∈ Rm×N allowing
`1-recovery of all s-sparse vectors. Therefore

m ≥ c1 s ln
( N

c2s

)
≥ c1 s ln

( N

c ′2m

)
≥ c ′1 s ln

(eN

m

)
≥ c ′1

c

ln(eN/m)

min
{

1,
ln(eN/m)

m

} ≥ c ′1
c

m > m,

provided c is chosen small enough. This is a contradiction.
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Insight 1: width and `1-recovery

Every s-sparse x ∈ RN is a minimizer of ‖z‖1 subject to Az = Ax if
and only if the null space property of order s holds, i.e.,

‖vS‖1 ≤ ‖vS‖1‖v‖1/2 for all v ∈ ker A and all S ∈ [N] with |S | ≤ s.

Setting d := dm(BN
1 , `

N
p ), there exists A ∈ Rm×N such that

‖v‖p ≤ d‖v‖1 for all v ∈ ker A.

Then, for v ∈ ker A and S ∈ [N] with |S | ≤ s,

‖vS‖1 ≤ s1−1/p‖vS‖p ≤ s1−1/p‖v‖p ≤ ds1−1/p‖v‖1.

Choose s ≈
( 1

2d

) p
p−1

to derive the null space property of order s.
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A combinatorial lemma

Lemma

There exists n ≥
(N

4s

) s
2

subsets S1, . . . ,Sn of size s such that

|S j ∩ Sk | < s

2
for all 1 ≤ j 6= k ≤ n.

Define s-sparse vectors x1, . . . , xn by

(xj)i =

{
1/s if i ∈ S j ,

0 if i 6∈ S j .

Note that ‖xj‖1 = 1 and ‖xj − xk‖1 > 1 for all 1 ≤ j 6= k ≤ n.
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Insight 2: `1-recovery and number of measurements

For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.

In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1

= ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1

and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies

(N

4s

) s
2 ≤

n ≤
(

1 +
2

1

)m

= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies

(N

4s

) s
2 ≤

n ≤
(

1 +
2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.



Insight 2: `1-recovery and number of measurements
For A ∈ Rm×N , suppose that every 2s-sparse vector x ∈ RN is a
minimizer of ‖z‖1 subject to Az = Ax.
In the quotient space `N1 / ker A, this means

‖[x]‖ := inf
v∈kerA

‖x− v‖1 = ‖x‖1 for all 2s-sparse x ∈ RN .

In particular,

‖[xj ]‖ = 1 and ‖[xj ]− [xk ]‖ > 1, all 1 ≤ j 6= k ≤ n.

The size of this 1-separating set of the unit sphere satisfies(N

4s

) s
2 ≤ n ≤

(
1 +

2

1

)m
= 3m.

Taking the logarithm yields

m ≥ s

ln 9
ln
(N

4s

)
.




