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Part 2: The Restricted Isometry Property

In this lecture, the coherence is replaced by the concept of
restricted isometry constant. This allows one to prove the robust
null space property, which is equivalent to the robustness of
`1-minimization for sparse reconstruction. It is also shown that the
restricted isometry property guarantees the success of other
algorithms such as Iterative Hard Thresholding and Orthogonal
Matching Pursuit. Finally, the existence of matrices satisfying the
restricted isometry property is established.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈ c(δ∗)

c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)

c

δ2∗
s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)

c

δ2∗
s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.



RIP-based Recovery Guarantees



Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ ker A \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk )〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.
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Stable and Robust Sparse Recovery via `1-Minimization

Objective: for p ∈ [1, 2], for all x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η:

‖x−∆(Ax + e)‖p ≤

stability︷ ︸︸ ︷
C

s1−1/p
min

xs s−sparse
‖x− xs‖1 +

robustness︷ ︸︸ ︷
D s1/p−1/2 η,

where ∆(y) = ∆1,η(y) := argmin ‖z‖1 subject to ‖Az− y‖2 ≤ η.

Taking x = v ∈ CN , e = −Av ∈ Cm, and η = ‖Av‖2 gives

‖v‖p ≤
C

s1−1/p
‖vS‖1 + D s1/p−1/2‖Av‖2

for all S ⊆ [N] with card(S) = s.
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Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN .

The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 0.62.
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Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:
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Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.
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Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{

jn := argmaxj
∣∣(A∗(y − Axn−1)

)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.

I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?



Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{

jn := argmaxj
∣∣(A∗(y − Axn−1)

)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.

I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?



Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{

jn := argmaxj
∣∣(A∗(y − Axn−1)

)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.
I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s

iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?



Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{

jn := argmaxj
∣∣(A∗(y − Axn−1)

)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.

I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?



Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{

jn := argmaxj
∣∣(A∗(y − Axn−1)

)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.
I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s

iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?



Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{

jn := argmaxj
∣∣(A∗(y − Axn−1)

)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.
I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s

iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?



RIP for Random Matrices



Concentration Inequality

I Let A ∈ Rm×N be a random matrix with entries

ai ,j =
gi ,j√

m
where the gi ,j are independent N (0, 1).

I For a fixed x ∈ RN , note that (Ax)i =
∑N

j=1 ai ,jxj , hence

E
(
(Ax)2i

)
= V

(∑
ai ,jxj

)
=
∑

x2
j V(ai ,j) =

‖x‖22
m

,

E
(
‖Ax‖22

)
= ‖x‖22.

I In fact, ‖Ax‖22 concentrates around its mean: for t ∈ (0, 1),

(CI) P(
∣∣‖Ax‖22 − ‖x‖22∣∣ > t‖x‖22) ≤ 2 exp(−ct2m).
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Covering Arguments

Suppose that the random matrix A ∈ Rm×N satisfies (CI).
Let S ⊆ [N] with card(S) = s. Then

P
(
‖A∗SAS − Id‖2→2 > δ

)
≤ 2 exp(−cδ2m)

provided

m ≥ c ′

δ2
s.

The argument relies on the following fact:

A subset U of the unit ball of Rk relative to a norm ‖ · ‖ has
covering and packing numbers satisfying

N (U, ‖ · ‖, t) ≤ P(U, ‖ · ‖, t) ≤
(

1 +
2

t

)k

.
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Restricted Isometry Property

I Suppose that the random matrix A ∈ Rm×N satisfies (CI).
Then

P(δs > δ) ≤ 2 exp(−cδ2m)

provided

m ≥ c ′

δ2
s ln(eN/s).

I The arguments are also valid for subgaussian matrices
(e.g. Bernoulli matrices), since these satisfy (CI), too.

I For Gaussian matrices, more powerful techniques can provide
an explicit value for c ′.
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Summary

The RI conditions for s-sparse recovery are of the type

δκs < δ∗.

They guarantee stable and robust reconstructions in the form, say,

(1) ‖x−∆(Ax+e)‖2 ≤
C√

s
σs(x)1+D‖e‖2 for all x and all e.

Random matrices fulfill the RI conditions with high probability as
soon as

(2) m ≥ c s ln(N/s).

Next, we will see that this number of measurement is optimal, in
the sense that estimates of type (1) require (2) to hold. We will
also examine the gain in replacing for all x in (1) by for a fixed x.
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