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This minicourse acts as an invitation to the elegant theory of
Compressive Sensing. It aims at giving a solid overview of the
fundamental mathematical aspects. Its content is partly based
on a recent textbook coauthored with Holger Rauhut:



Part 1: The Standard Problem and First Algorithms

The lecture introduces the question of sparse recovery, establishes
its theoretical limits, and presents an algorithm achieving these
limits in an idealized situation. In order to treat more realistic
situations, other algorithms are necessary. Basis Pursuit (that is,
`1-minimization) and Orthogonal Matching Pursuit make their first
appearance. Their success is proved using the concept of
coherence of a matrix.
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The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.
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A Selection of Applications

I Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

I Sampling theory
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I Error correction
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`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.
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Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.
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Exact s-Sparse Recovery from 2s Fourier Measurements

Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s.

Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s.

The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s).

This determines p̂, hence p, then S , and finally x.



Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.



Optimization and Greedy Strategies



`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program
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Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.
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Orthogonal Matching Pursuit

Starting with S0 = ∅ and x0 = 0, iterate

Sn+1 = Sn ∪
{
jn+1 := argmax

j∈[N]

{
|(A∗(y − Axn))j |

}}
,(OMP1)

xn+1 = argmin
z∈CN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
.(OMP2)

I The norm of the residual decreases according to

‖y − Axn+1‖22 ≤ ‖y − Axn‖22 −
∣∣(A∗(y − Axn))jn+1

∣∣2.
I Every vector x 6=0 supported on S , card(S) = s, is recovered

from y = Ax after at most s iterations of OMP if and only if
AS is injective and

(ERC) max
j∈S
|(A∗r)j | > max

`∈S
|(A∗r)`|

for all r 6=0 ∈
{
Az, supp(z) ⊆ S

}
.
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First Recovery Guarantees



Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames

I Deterministic matrices with coherence µ ≤ c/
√
m exist
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Recovery Conditions using Coherence

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via at
most s iterations of OMP provided

µ <
1

2s − 1
.

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via
Basis Pursuit provided

µ <
1

2s − 1
.

I In fact, the Exact Recovery Condition can be rephrased as

‖A†SAS‖1→1 < 1,

and this implies the Null Space Property.
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Summary

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

Next, we will introduce new tools to break this quadratic barrier
(with random matrices).
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