
CIMPA-13 Notes , by HGFei
adapted from MACHA11 Notes, August 2011

prepared by Hans G. Feichtinger: www.nuhag.eu

1 Recalling Linear Algebra and Basic MATLABTM

Note: throughout these notes we will follow standard MATLAB routines, sometimes
include NuHAG specific tools (which can be typically downloaded from www.nuhag.eu.
Some of them, such as SHG.M are just convenience tools (calling figure(gcf); in this
case).

1.1 Linear combinations and matrix multiplication

>> a1 = rand(4,1)

a1 =

0.8147

0.9058

0.1270

0.9134

>> a2 = rand(4,1); a3 = rand(4,1);

>> A = [a1,a2,a3]

0.8147 0.9575 0.9572

0.9058 0.9649 0.4854

0.1270 0.1576 0.8003

0.9134 0.9706 0.1419

>> x = rand(3,1)

0.4218

0.9157

0.7922

>> A*x

1.9787

1.6501

0.8319

1.3864

>> x(1)*a1 + x(2)*a2 + x(3)*a3

1.9787

1.6501

0.8319

1.3864
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NuHAG M-files: compnorm.m

>> compnorm(ans, A*x)

\% quotient of norms: norm(x)/norm(y) = 1

\% difference of normalized versions = 0

ans = 0

>> compnorm(1.55 * A*x , A*x)

\% quotient of norms: norm(x)/norm(y) = 1.55

\% difference of normalized versions = 2.22e-016

ans = 2.2204e-016

% what are the properties of these vectors in R^4?

>> rref(A) % running Gauss Elimination

ans =

1 0 0

0 1 0

0 0 1

0 0 0

>> rank(A)

ans = 3

>> null(A) % looking for the null-space

ans = Empty matrix: 3-by-0

NuHAG M-files: COMPNORM : comparing the difference of normalized vectors or
matrices (format independent, as long as the same dimension appears);

1.2 Ordinary Matrix Multiplication

Just let us recall that the usual rules of calculating the product matrices, i.e. to realize
the formal action C := A ∗B is through the formula

c l,j =
n∑
k=1

al,k · bk,j (1) matr-mult

allows different interpretation. First of all the “domino rule” for dimensions (matrices
can only be composed if the formats are correct) indicates that each term is in fact a
scalar product (at least for real vectors). Secondly one can easily see that the action of
A on B is columnwise, i.e. the columns of C (same number as the columns of B!) are
just the images of the columns of B (usually denoted by bk). In this way it is clear that
the columns of C are linear combinations of the columns of A.

Either by applying the same principle to the transpose case Ct = Bt ∗ At, or by
reinterpreting (

matr-mult
1) we can see that one can also fix l first and find out, that each row of A

is undergoing a right matrix multiplication by B, and hence the rows of C are different
linear combinations of the rows of B.

Clear enough, the row-space of C and of B are equal if A is (square and) invertible
(this is what is used permanently during the Gauss elimination process, where one
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multiplies from the left with elementary matrices). Equivalently, multiplication from the
right with invertible matrices B preserves the column space, i.e. the column space of B
equals the column space of A in this case.

1.2.1 Random vectors: uniform distribution in the unit interval

If we are interested in the histogram of the probability distribution of the sum of four
independent variables, all of them with values equidistributed in the interval [−1/2, 1/2]
we can get a good approximation of this by building the following histogram obtained
by the following one-line experiment:
hist(sum(rand(4,1000000)-1/2),48);
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We will work with (random) complex-valued functions as well, and for this reason it
is convenient to have a complex random-number generator, which we call RANDC.M1.

plot(randcn(8),’*’);

Another experiment:

plot(rand(20,3)); grid; axis tight; figure(gcf);
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plot(rand(20,3)); grid; axis tight; figure(gcf);

plot(rand(20,3),’*’); grid; axis([-1,21,-.2,1.4]);

hold on; plot(0:20,zeros(1,21),’k’); plot(0:20,ones(1,21),’b-’); hold off;

figure(gcf); % or figure(1); if figure 1 was the last active figure

1The c will stand most of the time in the future, at the end of M-file names as an indication that
this is a “c”entered version of the standard routine.
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three data sequences plotted using stars

alternative plotting variants

plotting 3 random sequences of length 20

1.3 Linear algebra excercises: Studying ~x 7→ A ∗ ~x
% diary C:\ml5\macha11

\subsubsection{Orthnormal basis and projection}

OA = orth(A)

-0.6211 -0.3528 0.6959

-0.5610 0.1816 -0.4777

-0.2150 -0.7366 -0.5265

-0.5032 0.5477 -0.1015

PA = OA*OA’

0.9946 -0.0480 0.0270 0.0487

-0.0480 0.5759 0.2384 0.4303

0.0270 0.2384 0.8660 -0.2418

0.0487 0.4303 -0.2418 0.5635

norm(PA - PA’, ’fro’)

ans = 0

norm(PA*PA - PA)

ans = 6.5192e-016

norm(PA*A - A)

ans = 1.1844e-015

disp(’This shows that PA is THE orthonormal projection onto the column space’);

This shows that PA is THE orthonormal projection onto the column space

b = rand(4,1);

xb = A\b

1.0257

-0.5661

0.5551

norm(A*xb - b)

ans = 0.2938

norm(A*xb - PA*b)

ans = 1.0370e-015

save macha00A
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(b - PA*b)’ * A

ans = 1.0e-015 *

0.4545 0.4580 -0.0694

disp(’this shows that b - PA*b is perpendicular to the column space of A’);

this shows that b - PA*b is perpendicular to the column space of A

save macha00A

norm(xb - pinv(A)*b)

ans = 5.4328e-014

pinv(A)

-14.4970 10.1652 10.7390 2.4523

13.7472 -9.1951 -10.5685 -1.6743

-0.3734 0.4958 1.4595 -0.3615

norm(A*pinv(A) - PA)

ans =

4.6214e-015

cao = (b - PA*b)/norm(b - PA*b);

cao’ * A

ans = 1.0e-014 *

0.1568 0.1624 -0.0333

size(cao)

ans = 4 1

OA4 = [OA, cao] ;

OA4’ * OA4

1.0000 0.0000 -0.0000 -0.0000

0.0000 1.0000 -0.0000 0.0000

-0.0000 -0.0000 1.0000 -0.0000

-0.0000 0.0000 -0.0000 1.0000

norm( OA4’ * OA4 - eye(4))

ans = 2.2384e-015

disp(’the ONB for COL(A) combined with orthonormal vector is ONB for R^4’);

the ONB for COL(A) combined with orthonormal vector is ONB for R^4

1.4 Alternative orthnormal bases for the COL(A)

OA1 = orth(A(:,3 : -1 : 1))

-0.6211 -0.3528 0.6959

-0.5610 0.1816 -0.4777

-0.2150 -0.7366 -0.5265

-0.5032 0.5477 -0.1015

norm(OA1 - OA)

ans = 1.3605e-015

OA1 = orth(A(:,[1,3,2]))

-0.6211 -0.3528 0.6959

-0.5610 0.1816 -0.4777

-0.2150 -0.7366 -0.5265

-0.5032 0.5477 -0.1015
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norm(OA1 - OA)

ans = 7.7586e-016

OAB = orthbest(A);

norm(OAB - OA)

ans = 2.0000

norm(OAB + OA)

ans = 1.6289

norm( OAB * OAB’ - PA)

ans = 3.0406e-015

norm( OA1 * OA1’ - PA)

ans = 1.4284e-015

ans = 0.5332 0.8109 -0.2

GA = gramsfei(A)

0.5332 0.8109 -0.2295

0.5928 -0.3628 0.3048

0.0831 0.2326 0.8972

0.5978 -0.3959 -0.2223

norm(GA*GA’ - PA)

ans = 1.4886e-014

GAV = gramsfei(A(:,3 : -1 :1))

0.7110 0.0757 -0.6952

0.3605 0.4564 0.4875

0.5945 -0.4974 0.5150

0.1054 0.7339 0.1176

norm(GAV*GAV’ - PA)

ans = 1.6398e-015

It is important to recall the most important concepts related to eigenvalues, the SVD
(Singular value decomposition) and the

A nice demo is the MATLAB routine EIGSHOW, with the following result:
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−0.5

0

0.5

1

Make A*x parallel to x

x

Ax
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The option SVD gives additional insight:

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Make A*x perpendicular to A*y

x

Ax

y

Ay

Assignment: there should be an easy to make SVD plausible, by inspecting the image
of an arbitrary orthonormal basis of the row-space, for a typical 3 × 3-matrix A, such
as A = zeros(3);A(:) = 1 : 9;.

It is contained in the NHGTB as testmat(3). 1 4 7
2 5 8
3 6 9

 (2)

NuHAG M-files: TESTMAT

1.5 Ordinary plotting routines and FFT

Trying to find out that the Fourier transform of the Gauss function is another Gauss
function could be naively be attempted in the following way:

>> bas = linspace(-4,4,360);

>> gaubas = exp(-pi*bas.^2);

>> figfei;

>> plot(bas,gaubas);

>> grid; ax20; plotax; shg;

which produces the following plot:
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Trying to plot the FFT (fast Fourier transform) in a naive way, i.e. by calling plot(fft(gaubas));
results in the following (nice) desaster:

−50 −40 −30 −20 −10 0 10 20 30 40 50
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−0.6
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−0.2

0

0.2

0.4

0.6

0.8

We will try to give detailed explanations later. Basically MATLAB is doing the plot (a
curve) in the complex plane. The commands AX20 (adjusting the axes) and PLOTAX
(adding the plot of the x − y-coordinate system in black) are convenient (and simple)
NuHAG tools.
NuHAG M-files: AX20, PLOTAX

1.6 More on polynomials and plotting

Here derb are the coefficients of the derived (now quadr.) polynomial, cf. below:

>> figure;

>> plot(bas,polyval(b,bas)); hold on; plot(rootsb(1),0,’r*’);

>> grid; hold on; plot(bas,polyval(derb,bas),’k’); hold off; figure(gcf);

>> gtext(’ derivative of polynomial ’);

>> gtext(’ cubic polynomial near zero ’ );

>> title(’polynomial plotting’);
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How has the derivative been determined (using the linear procedure of derivation):

>> DER = diag(n-1 : -1 : 0)

DER =

3 0 0 0

0 2 0 0

0 0 1 0

0 0 0 0

>> DER = DER([n, 1: n-1],:)

0 0 0 0

3 0 0 0

0 2 0 0

0 0 1 0

derb = DER * b;

1.7 Complex numbers and plotting

The polyval-command allows to evaluate polynomials over sequences of points in the
complex point. Of course the values of a (real or complex-valued) polynomial function
over the complex numbers gives complex values, and in this case the

This is a plot of our polynomial (with coefficients b as above) over the unit-roots of
order 96:
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Observe that the curve is not closed at the end, i.e. the points 96 (last point) and
the first point (simply because MATLAB does/cannot know that we have periodic func-
tions/sequences in mind).
NuHAG M-files: PLOTNUM

Using a recent NuHAG routine (called stemcyl: stem command, on the cylinder) one
can show e.g. the real-part of the complex-valued function as a periodic function, i.e.
plotted on a cylinder, so to say a graph on Z96 × R, using the stem command2.
NuHAG M-files: STEMCYL
Task: Check for other ways to plot a function on the unit circle...

2Here Z96 stands for the cylcic group of order 96
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1.8 Function space plots

or in another form

a collection of function spaces

S0

The corresponding MATLAB files may not all be included in our distribution (right
now).
NuHAG M-files: SOPLOT3 (standard), SOPLOT2 (min), SOPLOT4, SOSPACES,
SOPLOTFLI, CFILL

[SO,L2,SOP,CO,LI, LINF,LIFLI, WR, xfli, bas ] = soplotfli;

>> cfill(LIFLI); cfill(SO,’y’);
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1.9 Polynomial Multiplication and Convolution

The convolution operation is quite important in Harmonic Analysis. At first sight one can
say that it corresponds to the multiplication of polynomials. For the continuous domain
one can say that the convolution of f and g, each of them describing the probability
density of a random variable (call it X and Y respectively), then f ∗ g describes the
probability distribution of X + Y (assuming that X and Y are independent variables).

1.10 Polynomials and Vandermode Matrices

The MATLAB command polyval allows to evaluate the values of a polynomial not
only over sequences of points over the real axis, but of course also in the complex
domain. Clearly the mapping from the coefficients (NOTE: a polynomial of degree
k is described by k + 1 coefficients, with the following MATLAB convention: p(t) =
a1t

k + a2t
k−2 + . . . ak+1, i.e. the ordered basis of monomials comes in descreasing order

{tk, tk−1, . . . , t, 1}3.
Soon we will see that there is a command for the multiplication of polynomials (the

so-called convolution or the Cauchy product) which is very much comparable with the
multiplication of long integer numbers.

Experiment: conv([1,2,3],[1,2,3]);
The linear mapping from coefficients of a polynomial to values (at given complex

positions) is a linear mapping, hence there is a matrix describing this linear mapping in
the standard bases. For MATLAB the natural ordered bases describing these mappings
is the (descreasing) monomial basis described above and the standard unit vectors in
Rd, if d samples are taken. Of course the most important case is the situation, where
the number of samples equals the number of unknown coefficients, i.e. order of p(t) =
k + 1. The corresponding matrix is know as Vandermode matrix: V = vander(t), for
~t = [t1, . . . , tk+1].

We will later see that the Fourier matrix (i.e. the matrix describing the FFT, the
fast resp. DFT = discrete Fourier transform) is in fact a Vandermonde matrix, up to
some minor modifications.

 plot(fft(eye(31))); 

3Just like we are used in everyday life to think of 123 as one hundred and two times ten and three
times 1 = 100. The position of the digit determines its value. In fact, 123 == polyval([1, 2, 3], 10)!
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plot(vander(uroots(8)))
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plot(fft(eye(8)));

Comparing the entries (for practical reasons the discussion of the case k = 6, or 7
coefficients, is most appropriate:

>> real(vander(conj(uroots(7))))

ans =

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.6235 -0.2225 -0.9010 -0.9010 -0.2225 0.6235 1.0000

-0.2225 -0.9010 0.6235 0.6235 -0.9010 -0.2225 1.0000

-0.9010 0.6235 -0.2225 -0.2225 0.6235 -0.9010 1.0000

-0.9010 0.6235 -0.2225 -0.2225 0.6235 -0.9010 1.0000

-0.2225 -0.9010 0.6235 0.6235 -0.9010 -0.2225 1.0000

0.6235 -0.2225 -0.9010 -0.9010 -0.2225 0.6235 1.0000

>> real(fft(eye(7)))

and =

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 0.6235 -0.2225 -0.9010 -0.9010 -0.2225 0.6235

1.0000 -0.2225 -0.9010 0.6235 0.6235 -0.9010 -0.2225

1.0000 -0.9010 0.6235 -0.2225 -0.2225 0.6235 -0.9010

1.0000 -0.9010 0.6235 -0.2225 -0.2225 0.6235 -0.9010

1.0000 -0.2225 -0.9010 0.6235 0.6235 -0.9010 -0.2225

1.0000 0.6235 -0.2225 -0.9010 -0.9010 -0.2225 0.6235

This suggests that one has to arrange the sequence in opposite order, hence for compa-
rison let us check:

>> compnorm( vander(conj(uroots(8))), fliplr(fft(eye(8))));

quotient of norms: norm(x)/norm(y) = 1

difference of normalized versions = 6.076e-016

This fliplr command corresponds of course to the MATLAB convention of choosing
the basis of monomials in descreasing order, which as a consequence requires the Van-
dermonde matrix to follow the same rule (in order to be compatible with the polyval

command.
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2 Fourier Analysis: pure frequencies

Obviously Fourier Analysis plays a central role in time-frequency analysis and Gabor
analysis. In a way one can say that time-frequency analysis is a kind of localized Fourier
analysis comparable with the analysis of a musical signal in terms of score. One is not
interested in the sequence of samples (as in principle stored very efficiently, i.e. quantized
and well coded, in order to make the reading of the CD robust against scratches, etc.)
only, or in the frequency distribution of the whole piece of music, but rather in the
melody (in the case of a flute with a pure spectrum it means, what is the dominant
frequency at a given time, when the score is played), and of course also in the timbre,
the characteristic distribution of frequencies (overtones, harmonic sounds) which depend
on the instrument. In fact, one can even do a fine analysis of how the individual accords of
an instrument are changing the energy-distribution over time (e.g. in a piano it decays
after a percussive beginning, for an organ it is more or less constant and produces a
sustained sound as long as the key is pressed, etc.).

The mathematical tool for Fourier analysis (which at the end is also in the background
of the MP3 audio compression algorithm) of finite sequences is the Fourier transform,
which can be seen as a (unitary) change of basis, from the standard orthonormal basis
of unit-vectors in the signal domain to the basis of pure frequencies.

We will try to explain in this section how this system of pure frequencies is generated,
what the analogue is for the 2D-setting (namely plane waves), and how this can be
understood from the algebraic (and of course computational) point of view. In fact,
on any (finite, resp. locally compact) Abelian group the (continuous) eigenvalues of
the shift/translation operator are the characters (also named pure frequencies in signal
processing, in reference to the situation that we have in the 1D = audio context).

EXAMPLE of a SOUND!
In short (and it will become more clear later on) we view vectors in Rn resp. Cn (=

ordered n-tuples, ignoring the view-point of row or column vectors) as functions on finite
groups, preferably on the cyclic group of unit-roots of order n4, denoted by Zn, resp. the
quotient group Z/nZ.

The code for creating the unit-roots is quite simple:

% UROOTS.M - It is the unit roots of order N.

%

% Input : N = order of the unit roots

% l = optional for circular solution ("one" is added again

% at the end

%

% Output : u = unit roots of order N, in the natural (counter

% clockwise sense).

%

% Usage : u = uroots(N,l);

%

% Comments : the optional parameter "l" allows to "close the circle"

%

4Sometimes and without specific meaning our signal length will be N , or L, or anything reasonable!
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% See also: FFT, IFFT

% HGFei, Oct. 1998

% Renewed by : Noha ElAmary, 08 . 1999

function u = uroots(N,l);

if nargin == 0; N = 8; end;

bas = 0 : 1/N : (N-1)/N;

u = exp(2 * pi * i * bas);

if nargin > 1; u = [u,1]; end;

if nargin == 0; plotnum(uroots(8,1)); axis square;

grid;

title(’unit roots of order 8’);

hold; plot(uroots(8,1),’r*’); hold off;

xlabel(’ call: uroots(8,1)’ );

figure(gcf);

end;

In fact, the code coud be just one line: u = exp(2 ∗ pi ∗ i ∗ (0 : 1/N : (N − 1)/N));
The last paragraph is a typical NuHAG-feature: If the routine is called without input
argument it displays a typical instance with a short description. The option of a second
input arguments (enforcing a closed graph) is used to draw e.g. closed circles.

2.1 The monomials over the unit circle

Pure frequencies are the building blocks of Fourier Analysis: They are nothing but the
monimials over the unit circle: Let us look at the pure frequency (four full oscillations)
over the unit circle (here just unit roots of order 96):
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In fact the pure frequencies arise as the eigenvectors of the shift operator T1. Let us
just first look at the eigenvalues. The matrix describing the a cyclic shift is analyzed
(since it is unitary it is normal and hence it can be orthogonally transformed into a
diagonal matrix with eigenvectors on the unit circle):

T1 = eye(31); T1 = rot(T1,-1);

[V1,D1] = eig(T1);

plotnum(diag(D1));
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NuHAG M-files: ROT.M: the cyclic shift operator
UROOTS.M: creating the unit roots of order n, in the mathematical positive sense,
starting at ω0 = 1.

2.2 Further MATLAB routines

F2SP.M in the form f2sp(xx1,xx2) exhibits a signal and its Fourier transform.
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It is a routine that is used frequently for the comparison of (1D)-signals, in order
to see e.g. whether they are orthogonal (e.g. because of disjoint support on one or the
other side), etc.

18



In addition to the shift operator we also have the modulation operators: multiply
with a “pure frequency” (which corresponds to a frequency shift, i.e. a translation on
the Fourier transform side).
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2.3 Properties of the (unitary) Fourier transform

NuHAG M-files: FFTU
FFTU has two functionalities:
y = fftu(x) realizing the operator on a given signal, or FU = fftu(n), providing

the matrix, which describes the (normalized) version of the FFT, in fact, it is just
FU = fft(eye(n))/sqrt(n).

2.4 2D Fourier transform

The 2D Fourier transform is essentially an iterated 1D algorithm. There are natural
reasons for this, namely the fact that the characters of a product group (group homo-
morphisms from G1×G2 into the unit circle or torus U) are naturally (unique) products
of the factor groups, i.e. χ ∈ Ĝ if and only if

χ(x, y) = χ1 ⊗ χ2(x, y) := χ1(x) · χ2(y)

for all x ∈ G1, y ∈ G2.
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NuHAG M-files:
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The standard 2D-Fourier transform can be written as a row-wise and then columnwi-
se (or vice versa, these operations commute!) application of 1D-FFTs provide the answer.

Building the matrix for the action of FFT2 on 7 x 7 matrices in the standard basis

>> for jj= 1:49; U = zeros(7);U(jj) = 1; UF = fft2(U); F2MAT(:,jj) = UF(:); end;

>> size(F2MAT) % ans = 49 49

>> F7 = fft(eye(7));

>> compnorm(kron(F7,F7), F2MAT);

quotient of norms: norm(x)/norm(y) = 1

difference of normalized versions = 0

Visualizing real and imaginary part of the corresponding 49 × 49 matrix gives the
following two pictures.
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3 Shift invariant spaces: spline-type spaces

The theory of shift-invariant spaces is known under a variety of names5 The original
ground-breaking work in this direction was done by DeBoor, Ron, and others (more
recent contributions by Bownik, etc.). We stick with the terminology (mostly standard in
connection with the irregular sampling problem for such spaces) of spline-type spaces,
in order to emphasize that space of cubic splines over the real line R are the most
important case, with the B-spline-basis (shifted copies of basic splines, obtained via
convolution from rectangular functions) obtained by shifting a fixed function along the
integer lattice. An additional property is that BUPU property of this family (to be
discussed later in a more general setting).

3.1 A general PINV-formula

pinv(A) = A′ ∗ pinv(A ∗ A′) = pinv(A′ ∗ A) ∗ A.

3.2 B-spline functions

One can start with a BUPU (e.g. a sequence of shifted triangular functions) and convolve
them with a Gauss function (which is normalized such that the sum of terms is adding
up to one, so obtained by
g = gaussnk(n); g1 = g/sum(k);
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the convolution of the two functions

5One has to be careful with the terminology: while e.g. the space of band-limited functions, with
spec(f) := supp(f̂) ⊆ Ω is a translation invariant subspace (any shifted/translated copy is in the
same space, because shifting the function just corresponds to modulating its Fourier transform, a point-
wise operation = multiplication with a pure frequency, which obviously preserving the support). In
contrast, shift-invariant spaces are supposed to be only invariant under discrete subgroups of all possi-
ble shifts/translations, e.g. Zd ⊂ Rd.
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3.3 Plots showing BUPUs and
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 sum of BUPU−elements added up! 
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 Box functions smoothed with Gaussians, n=540, gabp = 90

For the case that a is an odd divisor of the signal length n (here n = 420 = 3·4·5·7, b =
15), we show that the FT of the window (box of triangular, obtained by convolving the
box of size 15), e.g. bx = flts(420,7)
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3.4 Shift invariant spaces: so-called spline-type spaces

Let us consider the collection of linear combinations of shifted copies of e.g. some Gauss
function:
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 collection of  20 shifted, disrete Gaussians, n = 540, a = 27, n/a = 20 

sum of shifted Gaussians: non−constant, periodic function

It is clear that the shift parameter a has to be an integer which divides the signal
length n, in order to make sure that the family all shift operators involved forms a
group (within the group of all possible cyclic translation parameters), i.e. to assume that
mod(a, n) == 0. Correspondingly the group of shift operators Tka, 0 ≤ k ≤ (n/a)− 1 is
a group of operators, naturally isomorphic to Zn/a.

Just to conform the idea that such a family is invariant under translations by the
elements of this group let us apply a cyclic shift by 3a on the above example, in order
to see (!observe how the colored bump functions are moving to the right, resp. reappear
on the left, as they drop out of the window of view to the right).
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 collection of  20 shifted, disrete Gaussians, n = 540, a = 27, n/a = 20 

sum of shifted Gaussians: non−constant, periodic function

3.5 Approximation of smooth functions

It is no surprising to see that a smooth function is well approximated by step functions.
The best approximation by a step function (the value over each interval is just the
average value of the approximated function):
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3.6 The projection operator

Obviously the operator describing the best approximation of a given signal by elements of
such a spline-type space is a linear operator from Cn onto the n/a dimensional subspace
of Cn generated by the (cyclic) shifts of the generator. Although - from an harmonic
analysis point of view we look at this operator as a mapping from `2(Zn) onto V φ,Λ it
can be described by a matrix.

In order to get a better description of this operator we recall first that it can be
computed in the general case via matrix multiplication with pinv(TRL), where TRL =

trlbas(g,a) describes the collection of shifted copies of the atom g.
There are hence also corresponding elements describing this projection operator.

Since this projection operator (in our case a = 18) is translation invariant, it is just 18
elements. For reasons of symmetry of our (Gaussian) generator it is enough to represent
those generators (in the sense of a reproducing kernel Hilbert space) for the first 9
positions:
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 reproducing kernel, nr. 3  reproducing kernel, nr. 4  reproducing kernel, nr. 5

 reproducing kernel, nr. 6  reproducing kernel, nr. 7  reproducing kernel, nr. 8

 reproducing kernel, nr. 9  reproducing kernel, nr. 10  reproducing kernel, nr. 11

On the spline-type space itself the projection operator acts as identity (RKH-property).
It is just a sum of 18 rank one operators. The question of reconstruction of a signal
from irregular samples in such a spline-type space can therefore be translated back into
a questions, whether the corresponding family of kernels is a generator for the family.
NuHAG M-files: TRLBAS.M: building a collection

Using irregular version of trlbas:

n = 360; a = 18; B = bupuspline(n,a,7,4);

xp = find(rand(1,n) > 0.9); TRLb3 = trlbas(b3,xp); TRLs3 = sum(TRLb3); min(TRLs3)

if this minimum is acceptable on can devide by the sum and obtain a BUPU:

lxp = length(xp); TRLphi3 = TRLb3 .* (ones(lxp,1)*oneover(TRLs3));
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The condition number of the system displayed above is “not so good” (exactly

cond(TRLb3), ans = 161.1546

On the other hand the irregularity is seen easily on the Gram matrix, which shows
variable thickness (broad at those indices, where many bump functions are living close
to each other, i.e. are highly correlated). In contrast, the regular set of centers gives a
circulant Gram matrix (to the right):

the Gram matrix of the system of translates

5 10 15 20 25 30 35

5

10

15

20

25

30

35

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

3.7 Quasi-Interpolation

The quasi-interpolation operator (comparable to Shannon’s sampling theorem) is given
in an abstract way as Given h > 0 and some prescribed function ψ on Rd, such as a
B-spline, the quasi-interpolation Qhf = Qψ

hf of a continuous function f on Rd is defined
by

Qhf(x) =
∑
k∈Z

f(hk)ψ(x/h− k), x ∈ Rd. (3) eqdefQh

For suitable ψ, this formula describes an approximation to f from its samples on the
fine grid hZd ⊂ Rd.

Of course it can be done on general lattice
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The sampling structure (a discrete subgroup, similar to a hexagonal lattice, so we of-
ten speak of quasi-hexagonal lattices) is indicated in the subsequent image (zoomed in
around the center):

In fact, we have adapted the 2D Gauss function in this setting in such a way that it
modified to form a partition of unity (by the division through the periodized version
of the function). Alternatively one could try best approximation (using TRL2AP.M), i.e.
project the given (smooth) signal onto the linear span of the shifted copies of the standard
2D Gauss function (g(:)*g(:).’.
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3.8 Poisson’s formula and Shah distribution

One of the main principles of Fourier analysis is the fact that sampling one one do-
main (say the so-called time-domain) corresponds to periodization on the spectrum (the
Fourier transform), so on the Fourier domain (and vice versa).

It is based on two things:

• The Shah-distributions goes to the Shah-distribution on the Fourier transform side;

• Convolution and pointwise multiplication change their role (the so-called convolu-
tion theorem of Fourier Analysis)6

3.9 Shannon’s Sampling Theorem

Bandlimited functions are exactly reconstructed from the samples using the so-called
SINC-function.

First the effect of sampling in the frequency domain (namely periodization in the
frequency domain) is demonstrated:
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6The best way to understand it is via the polynomial connection: Convolution corresponds to do
the multiplication of polynomial in the form of a Cauchy product, i.e. in the same way as you multiply
integer number!, whereas on the Fourier transform side we do a pointwise multiplication of polynomial
functions over the unit roots of order N .
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Let us now look at the situation describe by the Shannon sampling theorem: A (in
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this case real-valued) bandlimited function is given (signal length n = 360, maximal
frequency maxfr = 10, hence 21 degrees of freedome. Sampling distance a = 15, hence
we obtain 24 = n/a sampling points, marked in black in the plot.
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Let us look at the corresponding family of shifted SINC-functions:
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 the corresponding collection of shifted SINC−functions

The weighted contribution making up the band-limited signal are as follows:
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It is not surprising that this expansion is not at all very localized, due to the bad
localization of the SINC function.

In the continuous case the SINC function has the property that it is a Lagrange
interpolator, i.e. for the integer lattice one has SINC(k) = δ0,k (Kronecker’s delta). In
the discrete (finite) case this is only the case if the length of the plateau function (which
is 2maxfr, so always an integer) is dividing the signal length. The example below shows
the case maxfr = 7, and corresponding sampling rate = n/15 = 24.
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 a SINC−type function, where box−size divides signal length

 up to normalization: Lagrange interpolator

This perfect reconstruction method is in fact much better than just “ordinary quasi-
interpolation” (demonstrated by another example), showing the effect of sampling (pe-
riodization of the spectrum) followed by quasi-interpolation.
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3.10 Better localization using smoothed box-functions

The poor decay of the SINC-functions (the inverse FT of the box function) suggests to
perform the reconstruction (isolation of the main contribution of the series of shifted
copies of the spectrum) using a smooth plateau- function for cutout.

Here I hope that Andreas will provide some input (or later Daniel), based on the
BUPUSPLINE-routine...
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3.11 Irregular Sampling

In practice it is often necessary to recover a signal not just from strictly regular samples,
but one has to deal with irregular samples. A simple (Fourier based) “first generation”
algorithm for recovery is the so-called Voronoi-method (based on nearest neighborhood
interpolation). It is an iterative algorithm, where in each iteration the following procudu-
re is applied: (a) sample (b) do step-function (Voronoi) interpolation (c) do a smoothing
(d) check the remaining sampling error.
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Similar methods can be applied in order to do the recovery of function in spline-type
spaces from irregular samples. (cf. the work of Aldroubi, Feichtinger, Gröchenig).

More recent methods (like the ACT method) are based on ideas from frame theory
and conjugate gradient methods.
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M-file name Action realized

TRL1AP best approx. by translates
TRL1DU dual generator for spline space
TRL1FR S frame operator for frame TRL
TRL1INT interpolating spline generator
TRL1ONB orthonormal basis generator
TRL1REC Lagrange type interpolation function .
TRL2AP 2D best approximation by splines
TRL2BAS family of atoms (stack) !?
TRL2DU dual generator for spline space in 2D
TRL2FR S frame operator for frame TRL 2D
TRL2INT interpolating spline generator in 2D
TRL2ONB orthonormal basis generator in 2D
TRL2REC Lagrange type interpolation function
TRL2SYNT reconstruction = synthesis from cofs.
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4 Gabor Analysis

Gabor Analysis is concerned with the properties of families of functions which are gene-
rated from a single (or a finite set of) atom(s) by the application of a family of TF-shift
operators.

Particularly important are Gabor Riesz Bases (which are imporant for mobile com-
munication), and Gabor Frames (which are used in order to expand arbitrary signals).

For a long time Gabor analysis (names after the idea of D. Gabor, [?]) was considered
an interesting concept allowing to interpret coefficients as the energy contained in a
signal at a given time and at a certain frequency (similar to to a musical score), with
the disadvantage of being difficult to compute and numerically instable.

There is a lot of algebra behind Gabor analysis, and in a discrete setting it is im-
portant to work with signal length which are rich of divisors and hence the fact that the
discrete phase-space ZN × ẐN allows for a large variety of subgroups.

4.1 Basic Time-frequency Operations

Time-shift operators (cyclic shifts in the case of finite, i.e. periodic sequences) and cor-
responding modulation operators (frequency shifts).

4.2 The Short-time Fourier transform

The Short-time Fourier Transform is probably the most important tool for the
analysis of signals, by looking at the spectrogram. It is even built in in the MEDIA
WAVPLAYER, or at a more sophisticated level in the ARI software package STXTM .

4.3 Regular and Irregular Gabor Families

We have different routines to build Gabor families.
First of all let us recall that Gabor families arise by applying a family of TF-shift

operators to a single (later a finite family) of so-called Gabor atoms, or windows.
In order to visualize the corresponding regular or irregular Gabor families let us first

display them in the usually (centered) mode (using the imgc-command).
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For a “good signal size” (such as n = 560 and redundancy 1.75 = 7/4) one finds
altogether 16 nice subgroups with 980 points. We show only a segment of the lattice,
giving an idea about the orientation resp. similarity to hexagonal like atoms.
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The corresponding collection of dual atoms looks as follows:
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Looking at the norms of the imaginary part and the condition numbers we get
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It shows that some (in fact most of those) dual windows are not real-valued, except
for two of them. Let us therefore pick out those two lattices which induce real-valued dual
windows. Maybe not completely surprising we find that these are exactly the lattices
which are more or less like hexagonal lattices, in one or the other orientation:
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If we pick out the most interesting ones we find, that the duals (nr.3 and nr.10) which
are real, and the two which provide the best condition number (nr.6 and nr.7):
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and also to recall once more, let us look for the corresponding sampling pattern:
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One possible way to estimate the quality is to find out, how the “Gaussian density”
behaves, i.e. what the convolution between the given sampling pattern and a standard
2D Gauss function is behaving (whether it is closer to a constant function or having
more oscillation).

oscillation factor = 1.0519
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4.4 Gaborian Riesz Basis

Assume that a regular Gabor family, i.e. a family of TF-shifted copies of an atom along
some lattice, is a Gaborian Riesz basic sequence (i.e. a Riesz basis for its closed linear
span). Then it has a (canonical) biorthogonal system, which turns out to be another
Gabor system.

4.5 Gabor Frames

Each Gabor family which is a frame has a dual frame which IS itself a Gabor frame.
There is also another window which is tight, which is as well a Gabor frame.
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These images show on the left hand side the (Gaussian) window, in the middle row
the tight window, and in the third row the dual window. In the corresponding row on
the right hand side one sees the FT of the corresponding window.

The fact that the Gaussian window is invariant under the unitary version of the FFT
implies that one can also interpret the right hand side as describing the shape if the dual
window for the case (b, a) instead of (a, b).

In the concrete case we have a > b (not much), and hence the inverse dip in the
center of the dual window, while b > a introduces more and more sidelobes.
NuHAG M-files: F3SP, GABDDD or PPDW, GABTGTMH

4.6 The Wexler Raz relation

Theorem (Wexler-Raz Biorthogonality Relations). Assume that the synthesis operators
Dg and Dγ are bounded on `2(Z2d). Then the following conditions are equivalent:

1. Sg,γ = Sγ,g = I on L2(Rd).

2. (αβ)−d
〈
γ,Ml/βTn/αg

〉
= δl,0δn,0 for l, n ∈ Zd.
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Details are in Charly’s book: [5], Theorem 7.3.1.
The following plot is the user-interface for a routine which allows to take a look at

Separable TF−lattices for signal length 560
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Each read symbol ∗ represents a pair of lattice constants, which generates a Gabor
frame for the Gauss-window. The dual window and its Fourier transform (equal to the
dual window for the group with lattice constants (b, a) instead of (a, b)) as well as the
TF-lattice itself are represented:
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The shape of dual atoms is typical. The right lower window is typical for large a compared
to small b, while the left lower (dual) window is typical for large b compared to a. For
both a and b relatively small one has on the one hand high redundancy, but on the
other hand dual windows which look very similar like a suitable normalized version of
the original window itself.
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Exercise: find out, what the optimal scaling of the window is, in order to use it as an
approximate dual window (norms), etc..
NuHAG M-files: SIDEDIGM, SIDE2MAT

TOPIC: alternative (non-separable groups) are easily obtained by applying the group
automorphism by the name SIDEDIGM (and its inverse, named SIDE2MAT) allow to
generate non-separable lattices.

TEST: compnorm( adjlat(sidedigm(LAM)), sidedigm(adjlat(LAM)));

and consequently the same for the inverse transform:
compnorm( adjlat(side2mat(LAM)), side2mat(adjlat(LAM)));

4.7 The Janssen Representation

The frame operator S = Sg,Λ satisfies an important commutation law, namely

π(λ) ◦ S = S ◦ π(λ), ∀λ ∈ Λ (4) commutSLam

This implies that the Gabor frame operator, or more generally operators of the form
x 7→

∑
λ∈Λ〈x, gλ〉γλ have a specific form, which is useful when it comes to solve the linear

equation Sg̃ = g for g̃ (because it means that S has an explicit sparsity structure).
In order to inspect the Gabor frame matrix let us consider Sggam (the operator

described above), which is (using right matrix multiplication) of the form Sggam =
G1′ ∗G2, where G1 and G2 are the collection of row vectors describing the Gabor family
(for g and γ respectively).

4.7.1 Tight Gabor families

Especially for the applications tight Gabor atoms are of great value. They have a number
of advantages over general windows. In particular, they allow to have a symbolic calculus
(i.e. the tranfer of properties from the (so-called upper symbol of a Gabor multiplier to
the properties of the corresponding operator (Anti-Wick operator with weight/symbol
W , or STFT multiplier in the continuous case, or Gabor multiplier, in the phase-space
discretized situation)7.

It is interesting to observe that the composition of Gabor multipliers (i.e. the matrix
multiplication of the corresponding matrices) is resulting in a non-commutative set of
operators. So (in particular), not even the composition of an operator with weight W
with another of the form 1/W (which is supposed to undo the first one) will give the
identity operator, not even for Gaussian windows.

Let us therefore consider some interesting properties of the tight window, and how
to obtain it.

First of all let us note that there are many ways to obtain the tight window, given
the lattice Λ. The canonical description is to say that one is applying the inverse square

7Using the engineers view-point one is multiplying the part of the signal which is going through each
of those channels by number which are allowed to vary continously over time: this is in fact exactly
what an audio-engineer is doing, when he is moving the sliders of his device slowly over time, in order
to adapt e.g. from one style (say rock) to another (say classic), or in order to bring out high frequencies
better at a moment where the orchestra is playing a particular piece, with the main melody in the
flutes.
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root (or the square root of the inverse) of the frame operator, which is positive definite.
There are many ways of doing so. The naive one builds the Gabor matrix and then takes
the square root, applying it to g.

The command f3sp(g,gt,gd); which is part of the GABINIT routine shows how
all three functions look like and confirms that gt is - in terms of shape - halfway between
g and gt.

Since the frame operator has the particular property that its main diagonal is just
the sum of the a-shifted copices of the atom g squared, this must add up to one. But the
tight window for the lattice with parameters (a, b) is also a tight window for the lattice
(b, a), if g is Fourier invariant (as it is the case of the Gaussian).
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tight window  squared and its translates by a
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0.8
the Fourier transform of gt squared, sampled at n/a

Since the BUPU property on the time side corresponds to an interpolating property
on the frequency side, we also have, that the Fourier transform of abs(gt).2 is a Lagrange
interpolator for the orthogonal lattice, i.e. is different from zero at zero an vanishes over
the rest of the orthogonal lattice (which can be obtained in general using the [new]
command orthgrp.

43



100 200 300 400 500 600

0

0.01

0.02

0.03

tight window  squared and its translates by a

−300 −200 −100 0 100 200 300

0

0.2

0.4

0.6

0.8
the Fourier transform of gt squared, sampled at n/a

These plots use the following recent/new M-files:
NuHAG M-files: PLOTSUMS, PLOTCSMP, TRLBAS

There is one more connection between tight Gabor frames and orthonormal Gabor
Riesz basis. While the tight Gabor family is obtained by the Gabor family, the cor-
responding family over the adjoint lattice can be normalized in the most stable way
(implemented in the ORTHBEST routine, which is just a realization of the Loewdin ortho-
normalization.

For general frames one can show, that the approximation of a system of linear vectors
(i.e. a Riesz basic sequence, or a Riesz basis for its closed span) by any orthonormal basis
for the same space is achieved by making use of the inverse square root (= the square
root inverse) of the Gramian matrix. Although in principle one can do this, using the
SQRTM-command, one can think of the obtaining the

TEST: GA = gabbasp(g,n/b,n/a); GAO = orthbest(GA); gat = GAO(1,:);

Then a comparison with gt = gabtgtmh(g,a,b) shows that - up to normalization -
they are equal.

A typical timing would be:
>> tic; g*inv(sqrtm(S)); toc

Elapsed time is 1.526868 seconds.

>> tic; g*inv(sqrtm(S)); toc

Elapsed time is 1.506410 seconds.

>> tic; gabtgtmh(g,a,b); toc

Elapsed time is 0.122223 seconds.

>> tic; gabtgtmh(g,a,b); toc

Elapsed time is 0.045629 seconds.

Note that calling a routine twice tells you more about the execution time, because
the first call may spend significant a fraction of time in searching for the variables and
M-files involved in the command.

Timing can be sometimes (for single calls) be deceptive, as the following simple (but
concrete) example indicates
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>> tic; gabtight(gaussnk(720),18,18); toc

Elapsed time is 0.504355 seconds.

>> tic; gabtight(gaussnk(720),18,18); toc

Elapsed time is 0.050946 seconds.

>> tic; gabtight(gaussnk(720),18,18); toc

Elapsed time is 0.006483 seconds.

This shows that after two calls the procedure is almost 100 times faster!
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4.7.2 Double preconditioning

The idea of the method of double preconditioning is based on the fact, that in many
cases the diagonal part of the frame operator S is dominant (especially when b is not too
big, resp. when the number of channels is high enough). Equivalently the Fourier version
(the description of the matrix in the Fourier basis) can have the same property is a is
relatively small. But this turns out to be equivalent to the idea that the Gabor frame
matrix is well approximated by a convolution matrix. Since preconditioning in general
is the idea of bringing a matrix closer to the identity operator by multiplying it with the
inverse of some simple (simply to invert, to be more correct) matrix close to the orginal
matrix, one can do this in the present case in two ways:

• approximate S by its diagonal part, which is in MATLAB nothing but diag(diag(S)),
so we are forming (at least on paper) the matrix S * diag(oneover(diag(S)))

; but since one has explicit knowledge of the diagonal of the frame operator the
direct way of doing this is to form S * diag(oneover(maindiag(g,a,b))); ,
which is shown in its spreading representation in subplot(2,2,2) below.

• The same can be done either with convolution (one has to invert the nearest
convolution matrix, which is of course obtained by taking the mean over the side-
diagonals, and then invert - using a small FFT - the corresponding circulant matrix,
or alternatively does the diagonal preconditioning trick on the Fourier version of
the frame operator, which one could - just for inspection, do as follows:
FU = fftu(n); FSF = FU * S * FU’; ....

The idea of double preconditioning is then based on the observation that one can apply
both preconditioners. Although the order is having some influence on the result (the
procedures do not commute) the effect in terms of direct improvement is quite compara-
ble and depends on the concrete situation (g, a, b). Since the action of the preconditioner
is easily executed directly on the atom (by pointwise multiplication of the given atom
on the time resp. the Fourier transform by the inverse of a suitable periodicfunction)
this is a quite flexible way. Also, from the operator theoretic point of view the inversion
makes use of commutative subfamilies within the family of all operators (like the Gabor
frame operator) which commute with the family of TF-shifts from the original lattice Λ
determined by (a, b).

Showing the change of the frame operator in the Janssen domain by single and double
preconditioning8.

8cf. below for the details on the spreading domain: The ideal case is the identity operator, which
corresponds in the spreading domain to the Dirac at (0, 0), which is the unitmatrix unitmat(n, 1, 1).
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 spread of frame operator 
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The difference to the identity operator is shown (again in the Janssen domain) looks like
this:
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This is obtained using the NuHAG routine gabprec7.m.
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4.7.3 The Zak transform

One can/should note that for the extreme case b = n/a one has commutative Banach
algebra of matrices, hence by the abstract Gelfand theory a representation as a space of
pointwise multipliers. This is in fact provided by the ZAK transform, which is a very
good tool, included both in the LTFAT toolbox as well as in the NuHAG tools.

A verification that the action of the frame operator corresponding to the family
(g, a, n/a) is just multiplication with the absolute square of the Zak-transform of the
atom g is done as follows (described in row mode):

xx = randcn(1,n); Zxx = zak(xx,a); Zga = zak(g,a);

Sa = gabfrmat(g,a,n/a); xxSa = xx * Sa;

[ here Sa == G’*G; for G = gabbasp(g,a,n/a); ]

ZxxSa = zak(xxSa,a);

>> compnorm( Zxx.* abs(Zga).^2, ZxxSa)

quotient of norms: norm(x)/norm(y) = 0.0015152

difference of normalized versions = 3.8354e-016

ans = 3.8354e-016}

Note the the generators of the corresponding lattice commute:

Ta = tfmatr(n,a,0); Mb = tfmatr(n,0,n/a);

compnorm(Ta*Mb, Mb*Ta);

In fact, one can view the Zak-transform as a function on the whole phase space
(TF-plane), namely as the Short-time Fourier transform with a rather unusual win-
dow, namely the SHAH-distribution for the lattice with lattice constant a (i.e. sha =

shah1(n,a); in the NuHAG TB. Let us take a look at this:
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The periodicity properties of the Shah-distribution go over into corresponding (quasi-
)periodicity properties of the Zak-transform (which are not seen in the display of the
absolute values). Let us therefore look at the phase behavior of the Zak transform (which
has a zero at the midpoint):

The main disadvantage of the so-called critical case is the fact, that one cannot have
a nice Gabor atom (say a Schwartz function) at critical density. In fact, the closer on gets
to critical density the larger the condition number will be. The computation of the dual
Gabor atom (as suggested originally by Martin Bastiaans, around 1978) is possible using
the Zak transform, but the result is a rather unpleasant function (which is bounded, but
not square integrable, not even in any of the Lp-spaces for p < ∞. It looks essentially
like the following example (n = 660, a = 20, b = 33).

49



−300 −200 −100 0 100 200 300

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

dual of critical lattice:  n = 660, a = 22, b = 30 

4.8 Spreading Representation of Matrices

The commutation relation has a very clear and helpful analogue in the spreading func-
tion.

For comparison, let us recall: a function is periodic if and only if its Fourier trans-
form is concentrated on the so-called orthogonal subgroup of the frequency domain.
Alternatively, we can say, a signal does not change under certain time-shifts (describing
the periodicity) if and only if it is built up from frequencies only which share the same
property: these are exactly those of the orthogonal group. Formally we have:

orthgroupdef Definition 1. DEFttt

For TF-analysis also the adjoint group is of relevance.

4.9 Kohn-Nirenberg Symbol of a Matrix

Due to the composition properties of TF-shift operators one has a particular pattern
when intertwining a random matrix with a TF-shift-matrix.

Experimentally this can be verified as follows:

>> etaB = randcn(n); B = spr2mat(etaB,n);

>> tf35 = tfmat(n,3,5);

>> B35 = tf35 * B * tf35’;

>> etaB35 = mat2spr(B35);

>> compimri(etaB.*oneover(etaB35));

which shows clearly that there is a systematic behaviour: one of the symbols is obtain
by a certain pointwise multiplication with a pure frequency. In order to find out which
pure frequency it is one can apply the inverse (2D) Fourier transform to this plane wave
one finds that it gives (up to normalization) a unitvector, at (toroidial) position (−3, 5),
vizualized by the command

50



spyc(abs(ifft2(etaB.*oneover(etaB35))) > .1); grid; plotax; zoom(8);
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the unit vector obtained via IFFT2

It is thus plausible to change the order and the sign of one of the entries (i.e. apply the
operation (5,−3) 7→ (3, 5)) in order to get the position operator (5, 3) (in the x − y-
sense) describing the plane wave. In fact, one has to use the symplectic Fourier transform
instead of the ordinary (inverse) FFT2.

compnorm(ffts(etaB.*oneover(etaB35)) > .1, unitmat(n,6,4));

quotient of norms: norm(x)/norm(y) = 1

difference of normalized versions = 0

Note that the parameters (6, 4) mean that we are in the fifth row below the zero-row,
and in the third column to the right of the zero-column!

Looking at the collection of different representations of an operator.

It exhibits concentration of the operator (both in the time and the Fourier domain)
along the diagonal (with smooth, in fact band-limited side-diagonals). There is concen-
tration to (in this case) a small rectangular box in the spreading domain, while (since
one is going from spreading to KNS via a symplectic Fourier transform) the KNS-symbol
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of the underspread operator (representing a slowly varying linear system) is a smooth,
in fact 2D bandlimited function over the TF-plane (also called phase-space).

In the case of the Gauss function once can find that the absolute value of the KNS
of the projection operator Pg : f 7→ 〈g, g〉 (assuming that ‖g‖2 = 1) is just the simple
2D Gaussian g(:) ∗ g(:).′. begincenter includegraphics [width=8cm,height=8cm] PDFS
KNSgauPg1.jpg endcenter

4.10 Changing the lattice constant

The plot below shows, how the (shape) of the dual window changes, when a runs through
the sequence 2, 4, 5, 6, 8, 10, 12, 15, 18, from the left upper to the right lower corner. The
choice a = 18 = b corresponds at a signal length n = 360 to a redundancy factor
n/324 = 1.1111 or 11% (only).
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4.11 Summary of Gabor commands

Action taken NuHAG filename LTFAT filename

Building a Gabor family GABBAS, GABBASP TFMAT(’gabor’) ??
Gabor analysis mapping STFT DGT
Gabor synthesis GABSYN IDGT
Dual Gabor window GABDDD, PPDW xxx
tight Gabor window GABTGTMH xxx
Gabor multiplier GABMULHF, GABMULMH xxx
spreading function MAT2SPR SPREADFUN
operator from spr. symb. SPR2MAT xxx
Kohn-Nirenb. symb. MAT2KNS xxx
matrix from KNS KNS2MAT xxx
Janssen coefficients JANSCOF xxx
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4.12 Gabor Multipliers

Gabor multipliers are linear operators (resp. matrices) which correspond to multiplica-
tion operators in the STFT-domain.

We will explain how the built them.

4.13 Gabor analysis of images

Reference to the master thesis of S. Paukner ( [7]) and the article published in the
Handbook of Imaging ( [?], in [9]).

Typical example: the zebra image.
Topics: Problem of sorting the Gabor coefficients which are now labeled by a lattice

in FOUR dimensions, namely the phase space Z2 × Ẑ2.
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Finally some impression about the Gabor coefficients of the zebra:

One can easily see that this compression is much more pleasant than the one obtained
by the orthonormal system coming from box functions:

The standard compression method would be using the DCT (discrete cosine trans-
form); The following plot can be obtained by observing that the building block of an
orthogonal transform (like the DCT) is obtained by taking the inverse transform of a
unit vector. In our case it is unit-matrices in the sense of a matrix (of size 8) having
exactly one entry equal to 1 (and zero elsewhere), sorted according to positions.

for jj = 1:8;

for kk=1:8;

subplot(8,8, (jj-1)*8 + kk);

imagesc(abs(idct2(unitmat(8,jj,kk))));

end;

end;
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In fact, it is a separable transform based on the 1-dimensional DCT.

They are in fact obtained by pairing pure frequencies if length 2n− 1 (the following
plot shows the first 9 of them for larger n):
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Just consider the first n coordinates of this family.

5 MATLAB toolboxes at NuHAG

In the course of this workshop we will use a number of MATLAB tools, which have been
used at NuHAG for a long time, so most of them are very well tested. Some of them are
just convenience tools, others are heavily used in order to do experimental work.

Detailed instructions of how to use them and where to download them will be given
later.

NOTE: The initiator of these toolboxes (Hans G. Feichtinger, or for short hgfei)
likes to work with collections of 1D-signals given as rows of a matrix (natural way
of inspecting a sequence of signals, one by one, and hence occasionally one will see
right matrix multiplication. In fact, if B is a collection of row vectors with rows r1, ,̇rm
and y ∈ Cm is another row vector, then matrix multiplication y ∗B provides us with
the linear combination of row vectors, namely the output

∑m
k=1 ckrk. In fact, everything

done/known for column vectors can be transported into statements about row vectors by
transposition (exactly), or (most of the time, equivalently, e.g. for the case of real-valued
date), using the command A 7→ A′ (MATLAB transpose conjugate), since obviously
one has

(A ∗B)′ = B′ ∗A′. (5) transpmatrmul
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[?, 5, 8]

5.1 Minor auxiliary routines

ROTRC.M rotates in a two-dimensional way:

A =


1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

 (6)

B = rotrc(A,1,2) gives

B =


20 25 5 10 15
16 21 1 6 11
17 22 2 7 12
18 23 3 8 13
19 24 4 9 14

 (7)

i.e. it rotates the matrix, viewed as a double periodic function (so to say a function on a
finite version of the 2D-torus) first in the direction of rows (“rotate rows and columns”)
and then in the direction of columns (to the right).

57



Observe that action of rotrc(A,1,1) is the same as conjugating with the matrix
representing a shift operator:

T1 =

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

>> T1 * A * T1’

ans =

25 5 10 15 20

21 1 6 11 16

22 2 7 12 17

23 3 8 13 18

24 4 9 14 19

>> rotrc(A,1,1)

ans =

25 5 10 15 20

21 1 6 11 16

22 2 7 12 17

23 3 8 13 18

24 4 9 14 19

Checking for the compatibility with other opertions:

>> XX = randcn(n);

>> compnorm( rotrc( invol(XX),-2,3), invol(rotrc(XX,2,-3)))

>> compnorm( fft2(invol(XX)), conj(fft2(XX)));

In fact, in 1D we have

>> compnorm( conj(fliplr( rot(xx,-1))), invol(xx));

quotient of norms: norm(x)/norm(y) = 1

difference of normalized versions = 0

5.2 SURPRISING OBSERVATIONS

>> which shg

C:\Program Files\MATLAB\R2011a\toolbox\matlab\graphics\shg.m

>> help shg

SHG.M HGFei, 1998: just replacement of "figure(gcf)"

works in the same war as the official file! hgfei

>> type shg

% SHG.M HGFei, 1998: just replacement of "figure(gcf)"

figure(gcf);
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TEST PLOT
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 plot(fft(eye(17))); 

TESTCODE:
NuHAG M-files: FFTS.M
LTFAT M-files: DSFT.M

6 Tools and helper files

6.1 Rows versus columns

One of the perhaps disturbing conventions with the original NuHAG toolbox (as used by
hgfei) is the fact that collections of 1D signals are presented as collection of row vectors.
In this way the idea is, that the signals are viewed/displayed one after the other, as in
the following plot:
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Another choice (spline-type basis):
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There are various advantages (and the main advantage, that this is in conflict with
the usual interpretation of matrices as operators, which act from the left on column
vectors).

In order to mitigate the problem9 we have introduced a GLOBAL variable named
ROWCOLMODE.
NuHAG M-files: RCR.M, RCC.M, RCM.M

• RCR: set ROWCOLMODE to rows

• RCC: set ROWCOLMODE to cols

• RCM: show the ROWCOLMODE

In order to make code independent from these two interpretations we are typically
using code of the following form:

global ROWCOLMODE

if isempty(whos(’global’,’ROWCOLMODE’)) == 0;

else

ROWCOLMODE = ’cols’ ;

end;

if strcmp(ROWCOLMODE,’cols’) == 1;

trl = trl.’; % act of transposition

end;

Sometimes it is required to add some information to all the subplots in a given
rectangular display, e.g. of format hh × ww. For such situations (e.g. putting colorbars
by setting todo =′ colorbar′)

9But as a mental exercise we think it is a healthy training, like driving occasionally in UK or New
Zealand.
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% DOALL.M HGFei Marburg, Aug. 2011

%

% Usage: doall(’todo’,hh,ww);

function doall(todo,hh,ww);

disp(todo);

for jj=1:hh*ww;

subplot(hh,ww,jj);

eval(todo);

end;

figure(gcf);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.2 Rules for help parts

There are many ways to make programs useful for easy use, either by the person who
has written the code, or for another person using it later. In many cases even our own
code looks strange after a longer period. Hence good documentation and certain basic
rules are very important for the long-term usability of code (in fact, independent of the
software used).

Some of the recommendations I (hgfei) can give, are the following ones:

• provide not only a written documentation in the help-part of the M-file, but provide
also (ideally close to the end of the M-file) a line of the format
Usage: output = actionfile(input1,input2);

so that, whenever standard names are used, the file can be called using copy-and-
paste (instead of retyping a long list of complicated variable names);

• It is highly important to use the theoretical background, which requires a number
of (strict = analytic) equalities. If different implementations of the same operator
(for example) provide the same (consistent) output for random (complex) signals,
then there are good chances, that the formulas are correct;

• If M-files produces a signal, it may be more instructive to show the output in the
format of an image, e.g. by plotting the function; (cf. LOWSIGN below)

• use filenames which are allowing some systematic reading, so they should not be
too short (there are few short names, and after a short while confusion arises), nor
to long (that requires too much typing);

• provide DEMOS and TUTORIALS

6.3 File names and their actions/use

There is a rich variety of MATLAB files, see

http://www.mathworks.de/help/techdoc/ref/importdata.html
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providing information as part of R2011a Documentation for MATLAB.

We have the following NuHAG specific tools to offer:

M-file name Action realized Comment and Application

PLOTC.M plot in centered mode functions on ZN
IMGC.M absolute image, centered function on ZN × ZM
SPYC.M centered SPY command inspecting point sets

F2SP.M comparing 2 signals shows functions and spectra
COMPNORM.M compare normed signals format independent

SECMATC.M show SECtions of matrix showing RC by RC
SECSTF.M show STF of SECtions one by one-mode
SECSTFM.M show STF of SECtions !Multiple plot-windows

M-file name Action realized Comment and Application

PLOTC.M plot in centered mode functions on ZN
PLOTRI.M plot real/imag. part standard plot, index 1 . . . N ,
PLOTNUM.M plots numbers with values ...
PLOTST.M plots stars
PLOTV.M useful to show frames in R2 zero to point in C

Demonstration of these different plot commands:
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 plotnum(uu); 
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 plotst(uu);  
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 plotri(uu); 
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 plot(uu);   plotv(cpl2re(uu));   
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6.4 Generating Functions and Signals

M-file name Action realized Comment and Application

GAUSSNK Gauss function (a la NK) FFT-u invariant
FLTS filter - symmetric I: length and half-width
LOWSIGN low-pass signal I: length and max. frequ.
LOWSIGN low-pass signal (2D) smooth images (four par.)
PLATCOS cos-slope plateau constant one on a set
FLTRECS filter rectang. symm. standard rect. filter
FLTC circular filter in 2D ..
UNITMAT unit matrix standard basis for matr.
UNITVEC unit vector standard basis for 1D

Example of the output with empty argument (cf. section xxx above):
lowsign; delivers as output an illustration
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  plotri(lowsign(360,15));    imagesc(abs(lowsign(360,360,10,30)));   
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6.5 Generating Families of Signals

Building Riesz bases for spline-type spaces, or Gabor families is achieved using the
following commands:

M-file name Action realized Comment and Application

TRLBAS collection of shifted generator for SP-T spaces
BUPUSPLINE B-spline BUPUS B-splines shift bases
TRL1NBAS multiwindow spline basis generator for MW-SP-T
GABBASP collection of TF-shifts product lattice
GABBAS collection of TF-shifts irregular case

6.6 Generating Matrices and Operators

Transforms and Operators
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M-file name Action realized Comment and Application

Unitary FFT FFTU DFT
Symplectic FFT FFTS DSFT
Convolution ma-
trix

CONVMAT

Circulant rotati-
on

ROT

Modulation MODUL
Time-frequency-
shift

ROTMOD

TF-shift matrix TFMATR

6.7 Refined auxiliary tools

M-file name Action realized Comment and Application

MAT2TEX MATLAB to LATEX convenient transfer
SAVEJPG saving to PDF-dir convenience tool
SAVEEPSC saving as EPSC-file includes conversion
DEPFUNWRITE dependent M-file listing concrete paths

FIGPLACE opening a window at given posi-
tion

TESTSUITExxx various test suites maybe not yet provided
SHOWEX shows number of examples good for series experiments
SHOW10 provides info regularly during long computations
SHOW7 shows 7× 7 submatrix depends on resolution

6.8 Hermite Functions as eigenvalues of STFT-multipliers

We need the following type of radial weight on the (discrete) 2D-torus:
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radial weight in Z
N

 × Z
N
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NuHAG M-files: RADWGH.M
The code is in fact quite simple, once one has understood the Euclidean structure of

the metric:

function radMat = radwgh(m,n)

if nargin < 2; n = m; n = n; end;

dm=min(0:m-1, m:-1:1); % calculating minimum distance along the row

dn=min(0:n-1, n:-1:1); % calculating minimum distance across column

radMat= sqrt((ones(m,1)*dn).^2+((dm(:)*ones(1,n)).^2))+1;

The following image shows the TF-concentration of these Hermite functions:
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and they are real-valued functions with an increasing
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They are eigenvectors for the Fourier transform and they can used in order to defi-
ne a fractional Fourier transform, which corresponds more or less to a rotation of the
spectrogram with respect to a discrete Gauss-function.

Let us take a look at the the first 24 Hermite functions once more:

They are quite similar to the eigenvectors of certain product-convolution operators,
which concentrated in a similar way, and known as prolate spheroidal functions:
(citations!, to come). They look roughly like this:
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prolate nr. 1

−200 0 200

−200

0

200

−200

0

prolate nr. 2

−200 0 200

−200

0

200

−200

0

prolate nr. 3

−200 0 200

−200

0

200

−200

0

prolate nr. 4

−200 0 200

−200

0

200

−200

0

prolate nr. 5

−200 0 200

−200

0

200

−200

0

prolate nr. 6

−200 0 200

−200

0

200

−200

0

prolate nr. 7

−200 0 200

−200

0

200

−200

0

prolate nr. 8

−200 0 200

−200

0

200

−200

0

prolate nr. 9

−200 0 200

−200

0

200

−200

0

Similar functions appear as eigenvectors of rectangular TF-filter!
A = gabmulhf(fltrecs(n,n,21,21),g);
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Using the following code:

FILT = flts(n,21); % a box function, with 43 = 2*21+1 ones

FU = fftu(n); % the unitary version of the Fourier matrix

OP = diag(FILT) * FU * diag(FILT) * FU * diag(FILT);
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6.9 Refined Linear Algebra Tools

M-file name Action realized Comment and Application

EIGSORT eigenvalues in decreasing order second output: eigenvalues
ORTHBEST symmetric orthonormalization Loewdin method
GRAMSFEI Gram-Schmidt geometric view (hgfei)

6.10 Further comparison tools

M-file name Action realized Comment and Application

COMPSPYC compare two pointsets centered SPY-mode
COMPIMRI compare complex images Re/Im-part separately
SHOWTFTF time, frequency and TF different representations
SHOWMAT4 showing matrix: 4 FORMS KNS, spreading, etc.
CONTC centered contour plot comparable with IMGC
IMAGGRAY gray image display standard black & white
SPIRAL3 3-D plot of complex fct. graph in C× R
———— —————– —————–
ZOOMAX zoom into maximum of signal real/imag/abs. value

Demonstration of the action of an underspread operator on a collection of well sepa-
rated Gauss functions (as they are used in mobile communication systems):

The overlap of closely related signals with random phase may cause serious cancelations
in some places, as seen from the image.
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6.11 Auxiliary functions

6.11.1 Finding dependent files

Finding out, what the file are which may/can be called from the file names GADPRE-
CLFR.M we have/use a script file named DEPFUNWRITE.M which is based on the
(MATLAB) DEPFUN Routine, e.g. filename = ’gadprclfr’ , or ’gadprclfr.m’, then calling
>> depfunwrite, gives:

EXAMPLE:

---------- DEPFUNWRITE.TXT

’C:\ml5\gabml\wks01\gadpreclfr.m’

’C:\ml5\gabml\wks01\gapavg.m’

’C:\ml5\gabml\wks01\preclf.m’

’C:\ml5\gabml\wks01\preclfr.m’

’C:\ml5\gabml\wks01\preclfr1.m’

’C:\ml5\gabml\wks01\preclfr2.m’

’C:\ml5\gabml\wks01\rotfr.m’

’C:\ml5\gabml\wks01\trlbasfr.m’

’C:\ml5\select\gaussnk.m’

’C:\ml5\select\modul.m’

’C:\ml5\select\oneover.m’

’C:\ml5\select\rot.m’

’C:\ml5\select\rotmod.m’

’C:\ml5\select\rotrc.m’

WEXRPL.M REQUIRES

---------- DEPFUNWRITE.TXT

’C:\ml5\gabml\wks01\wexrpl.m’

’C:\ml5\gabml\gabtb1\blockn.m’

’C:\ml5\gabml\gabtb1\blocknon.m’

’C:\ml5\gabml\gabtb1\gaus.m’

’C:\ml5\gabml\gabtb2\fullfull.m’

’C:\ml5\gabml\gabtb2\gabddd.m’

’C:\ml5\select\alldiv.m’

’C:\ml5\select\block.m’

’C:\ml5\select\pz.m’

’C:\ml5\select\rot.m’

’C:\ml5\select\schach.m’

’C:\ml5\select\showmat.m’

’C:\ml5\select\suniq.m’

In order to find out, how much time is used within a given routine, the MATLAB
profiler is quite useful.

profile on;
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ACTION ...

profile off;

profile report;

provides a list of files that have been called together with a statistics (CPU-times, etc.)
spent within the different routines. It is a very good method to find out, which parts of
the algorithm may need most of the time. Sometimes it appears, that a mathematically
interesting step can be improved by some very sophisticated twist, but then it may turn
out, that the effect of this improvement is minimal, because the part of the code in
questions requires only a minimal part of the overall timing.

6.12 Saving pictures and plots

NuHAG M-files: SAVEJPG, SAVEEPSC
These two simple routines make sure, that one does not need to click a number of

timers in order to create an image within a standard directory, but allows to do so from
the command line. A typical call is simple

savejpg(’filename2’);

but it produces also an output-string (ready for copy and paste) to be used in the
corresponding LATEX environment.

6.13 Consistency tests based on identities

OUTPUT of the first test-suite (due to Vlad and Nico, 2004):
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 no errors found
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The scaling indicates that all errors are at the level of the numerical precision of the
system, so they are fine, and since ALL the tests are successful the file indicates that
everything is OK at the end.

Otherwise it gives the tests which are a problem, and one could easily (in most cases)
find the reason, i.e. the file which is causing the problem (assuming that the test is OK).

NOTE: We should agree on a standard format, so that only a sequence of individual
TEST-blocks has to be created that one could use for individual tests and contributions
to the overall system, and then put it together to TEST-suites, like this one.
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7 LTFAT comments and useful things

Comparing the NuHAG tools with LTFAT (P.Soendergaard):

>> compnorm(pgauss(n), gaussnk(n));

quotient of norms: norm(x)/norm(y) = 1

difference of normalized versions = 2.2176e-016

NuHAG M-files: GAUSSNK
LTFAT M-files: PGAUSS (allows additional paramters)

In the sequel you see the MATLAB command, based on LTFAT.

g1 = firwin(’hann’,128);

g2 = fir2long(g1,512);

g3 = firwin(’bartlett’,128);

g4 = firwin(’blackman’,128);

subplot(2,2,1); plotc(g1); title(’Hann window of 128 samples length’);

subplot(2,2,2); plotc(g2); title(’Hann window zeropadded to 512 samples’);

subplot(2,2,3); plotc(g3); title(’Bartlett window of 128 samples length’);

subplot(2,2,4); plotc(g4); title(’Blackman window of 128 samples length’);

axfour20; % adjustment of plots: hgfei

OUTPUT produced in this way:
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Blackman window of 128 samples length

There have been also some name-conflicts between LTFAT and the NuHAG tools,
which have mostly been eliminated. For the future we think that it is a good idea to
keep names separately. So far in those few cases where the output was different we have
decided to respect the LTFAT terminology and choose variations of our original names.

72



7.1 Name conflicts

In principle the subsequent remarks are only relevant for those who might be involved
(run, read, etc.) earlier NuHAG MATLAB code and find a conflict with LTFAT.

By example: LTFAT uses the name for matrices representing a transform by a given
name, as described in the help file:

function F=tfmat(ttype,p2,p3,p4,p5)

%TFMAT Matrix of transform / operator

% Usage: F=tfmat(’fourier’,L);

% F=tfmat(’dcti’,L);

% F=tfmat(’dgt’,g,a,M);

% F=tfmat(’dwilt’,g,M);

% F=tfmat(’wmdct’,g,M);

% F=tfmat(’zak’,L,a);

% F=tfmat(’gabmul’,sym,a);

% F=tfmat(’spread’,c);

In contrast, TFMAT in the NuHAG context was referring to the MATRIX repre-
senting a TF-shift, so to say the analog of the abstract symbol π(λ) = MωTt, for

λ = (t, ω) ∈ Rd × R̂d in the abstract descriptions. Consequently the name (in NHGTB)
has been changed to TFMATR.M.
NuHAG M-files: TFMATR.M
LTFAT M-files: TFMAT.M

7.2 Timing of algorithms

Timing is always a critical and sometimes important business.

7.3 APPENDICES: Concrete CODE for various M-files

7.4 APPENDIX: GABINIT.M Initialization routine

NOTE: This is a NuHAG file which works in ROW-mode, i.e. collections of signals
are collections of row-vectors [this has various advantages, but also the disadvantage
of incompatibility with the Standard MATLAB convention (Matrices are collections of
column vectors, and plotting etc. is done from this point of view, also eigenvectors are
delivered as orthonormal collections of column vectors, etc.).

GABINIT

% GABINIT.M Gabor Initialization hgfei, last modified 22.7.2010 NZ

%---------------------------------------------------------------

% Setting the stage for quick Gabor demonstrations.

% Typically n is given, and the rest is computed, like a natural

% choice of (a,b), with reasonable redundancy (but typically a different

% from b, to show effects from this), dual and tight Gabor atom, frame

% operator S, Gabor family G etc.

%---------------------------------------------------------------
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%

% AUTHOR(s) : Hans G. Feichtinger Nov. 1st, 2007 (upload)

%

% COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA

% http://nuhag.eu/

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

% EXTERNALS :

% SEE ALSO :

% GABINIT.M - Gabor initialization file, assumes only n = length to be given

%

% Input: Man kann vorher n,a,b festlegen - Programm nimmt Bezug darauf

% Vorsicht vor unbeabsichtigten definierten Variablen "a" oder "b"

%

% Output: G GD S alph b f fs gd mx1 red xpa

% GA GT a ans divs ffs g gt n s xpo

% new ldiv ndrich

%

% Usage: n vorher festlegen; gabinit2?

% Man bentigt die Packete: gabmin, gabtb1, gabtb2, gabtgt

if exist(’n’) == 0; n = 480; else disp([’n = ’, num2str(n)]); end;

for jj=1:3*n; ldiv(jj) = length(alldiv(jj)); end;

ndrich = find(ldiv > 16);

alph = alldiv(n); alph = alph(:)’;

mx1 = max(find(alph <= sqrt(n)));

divs = alph(1:mx1),

if exist(’a’) ==0; a = alph(mx1), else

disp([’a = ’, num2str(a) ]); end;

if exist(’b’) ==0; b = alph(mx1-1), else

disp([’b = ’, num2str(b) ]); end;

red = n/(a*b)

xpo = lattp(n,a,b);

xpa = lattp(n,n/b,n/a);

if abs(length(’g’) - n) > 0; g = gaussnk(n); end;

gd = ppdw(g,a,b);

disp(’calculating dual atom and tight atom’);

gt = gabtgtmh(g,a,b);

disp(’using Mario Hampejs routine for tight Gabor atom’);

disp(’alternative method would be gabtgtgj, G.Janssen-method’);

disp(’’);

who ,

figure(’position’, [400,80,900,550]);

f3sp(g,gt,gd);
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disp(’now establishing G,GD,GT and other matrices’); % pause(1);

if red*n < 1111; G = gabbasp(g,a,b);

GD = gabbasp(gd,a,b); GT = gabbasp(gt,a,b); S = G’*G;

GA = gabbasp(g,n/b,n/a);

else disp(’..’);

disp(’.................!! red*n is too large to automatically establish matrices’);

disp(’..’);

end;

75



8 Guide to the literature

Of course the book by Charly Gröchenig is the fundamental reference for those who are
interested in the full theory, the analytic background, etc. ( [5]).

Those who want to start from the linear algebra and come to Gabor analysis from
this point of view are well served by browsing through [4]. It is downloadable from
http://univie.ac.at/nuhag-php/bibtex/open files/feluwe05 FGabsingFinal.pdf

The necessary background to return from the linear algebra case to the case of
continuous variables is provided by the method of Banach Gelfand Triples (which are
already a good tool to describe the Fourier transform in a simple, distributional setting,
but also the (unitary) mapping between the kernel of an operator (our matrix), endowed
with the standard Euclidean structure of CN2

. A summary on this is provided by [?]. It
is downloadable from
http://univie.ac.at/nuhag-php/bibtex/open files/felu05 0503364.pdf

Those who are more interested in the algebraic aspects of Gabor analysis we can
recommend the paper: Gabor Analysis over finite Abelian groups ( [2]). It s downloadable
from http://univie.ac.at/nuhag-php/bibtex/open files/133 fekolu08a.pdf .

The role of the underlying function spaces for the validity of integral identities (such
as Wexler-Raz, etc.) is described in detail in the paper: Wiener amalgam spaces for the
Fundamental Identity of Gabor Analysis ( [3]). It is downloadable from
http: http://univie.ac.at/nuhag-php/bibtex/open files/felu05 0503364.pdf

There are also books concerning Fourier Analysis on Finite Abelian Groups, such as
the one by Bao Luong ( [6]), but his approach (also making use of basic principles of
linear algebra and group theory) is still rather abstract and might be well complemented
by some of the ideas (or MATLAB experiments) as presented in this course.
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9 Excercises and Small Projects

For now the numbers are not yet fixed!!

1. In order show how natural the FFT2 is, show that the set of eigenvectors for
(suitable) 2D-shifts on Z8×Z9 are just the plane waves (shift operators are realized
using ROTRC.M). Questions: which shift parameters can be used (and why exactly
those), and what is specific about the numbers 8 and 9 (aside from the fact that
both are not too big). LIT: [1];

2. Show/verify experimentally, that the adjoint group Λ◦ describes just the set of

all points in phase space ZN × ẐN which commute with all the TF-shifts from the
original lattice Λ (or equivalently, a set of generators from Λ. The routine adjlat.m
calculates the adjoint lattice using the symplectic Fourier transform;

NuHAG M-files: ADJLAT.M

3. y
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10 Algebraic Afterthoughts

In this section we plan to mostly present material related to ideas from algebra. Examp-
les:

The pairing between a sub-group H in G, and the corresponding orthogonal group
H⊥ in Ĝ, or the (symmetric) relationship between subgroups H of G× Ĝ and their

adjoint subgroups H◦ in G× Ĝ. SSSS
It is so to say “trivial” that isomorphic groups have isomorphic dual groups and hence

being able to carry out TF-analysis on one realization allows (at least in principle) to
do it in the other context (the note [1] is an early example of this principle).

11 APPENDIX: The Code of TESTGABFORMU-

LAF.M
% TESTGABFORMULAF.M

% TESTGABFORLULAC.M - tests the NuHAG Gabor formulas...

%

% ---------------------------------------------------------------

%

% COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA

% http://nuhag.eu/

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

%

% TESTGABFORLULAC.M - tests the NuHAG Gabor formulas...

% Nicolae Tecu \& Vlad Vicol

% Created: July 2004

% please reffer to the PDF file for formulas...

i = sqrt(-1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% check ->contains all the results of the tests.

% wrong -> contains all the elements of check that are bigger than tresh.

% isinverse -> checks whether the routines ar consistent with their inverses

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% INITIAL DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

check = zeros(1,39);

wrong = zeros(1,7);

tresh = 1000 * eps;

isinverse = zeros(1,10);

n = 144;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% THE ISINVERSE TESTS

X = randcn(n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% WHICH FUNCTIONS ARE WE USING ?

which ffts

which stft

which istft

which mat2spr

which spr2mat

which mat2kns

which kns2mat

which modrot

which rotmod

which tfconj

which tfconjdir

which tfmat
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which rotrc

which inp

which unitmat

which purfr

which purfr2

which isunitm

which ispurfr

which twistcon

which lattp

which testadjlat

which gabmulmh

which gabmul

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

isinverse(1) = compnorm(X, ffts(ffts(X)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f = randcn(1,n);

g = rand(1,n); % it does not work for complex window yet

isinverse(2) = compnorm(f, istft(stft(f,g),g));

isinverse(3) = compnorm(f, istft(stft(f,g,3,4),g));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

isinverse(4) = compnorm(X, mat2spr(spr2mat(X)));

isinverse(5) = compnorm(X, spr2mat(mat2spr(X)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

isinverse(6) = compnorm(X, mat2kns(kns2mat(X)));

isinverse(7) = compnorm(X, kns2mat(mat2kns(X)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SECTION 1

% TESTS REGARDING THE TF-OPERATORS, TF-CONJUGATION,...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

freq = floor(rand(1) *(n-1) ) ;

shift = floor(rand(1) * (n-1) );

x = randcn(1,n);

disp(’testing formula (1)’);

check(1) = compnorm( exp(-2*pi*i*freq*shift/n) * rotmod(x,shift,freq) , modrot(x,freq,shift) );

%%%%%%%%%%%%%%

M = randcn(n);

N = tfmat(n,shift,freq);

P = rotmod(M,shift,freq);

disp(’testing formula (2)’);

check(2) = compnorm(M*N, P);

%%%%%%%%%%%%%

freq2 = floor(rand(1) * n ) - 1;

shift2 = floor(rand(1) * n ) - 1 ;

mat1 = rotmod(rotmod(M,shift,freq), shift2,freq2);

mat2 = exp( - 2 * pi * i * shift2 * freq /n) * rotmod(M, shift+shift2, freq+freq2) ;

disp(’testing formula (3)’);

check(3) = compnorm(mat1, mat2);

%%%%%%%%%%%%

mat1 = rotmod(rotmod(M,shift,freq), shift2,freq2);

mat2 = rotmod(rotmod(M,shift2,freq2), shift,freq);

mat2 = mat2 * exp( 2 * pi * i * shift * freq2 /n) * exp( - 2 * pi * i * shift2 * freq /n) ;

disp(’testing formula (4)’);

check(4) = compnorm(mat1,mat2);

%%%%%%%%%%%%%

mat1 = tfconj(tfconj(M,shift,freq),shift2,freq2);

mat2 = tfconj(M,shift+shift2, freq + freq2);

disp(’testing formula (5)’);
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check(5) = compnorm(mat1, mat2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SECTION 2

% TESTS REGARDING THE SYMPLECTIC FOURIER TRANSFORM (FFTS)...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A = randcn(n);

disp(’testing formula (6)’);

check(6) = compnorm(A ,ffts(ffts(A)));

%%%%%%%%%%%%%%

f = randcn(1,n);

g = randcn(1,n);

gh = fft(g.’);

A = gh*f;

B = ffts(A);

disp(’testing formula (7)’);

check(7) = compnorm(B , fft(f.’)*g);

%%%%%%%%%%%%%

a = randcn(n);

b = randcn(n);

disp(’testing formula (8)’);

check(8) = compnorm(ffts(ifft2(fft2(a).*fft2(b))),ffts(a).*ffts(b));

%%%%%%%%%%%%%

a = randcn(n);

b = randcn(n);

fa = ffts(a);

fb = ffts(b);

disp(’testing formula (9)’);

check(9) = compnorm( inp(a,b), inp(fa,fb)) ;% where inp is the L2 inner product for 2-dim

%%%%%%%%%%%%%%

f = randcn(n);

Fsf = ffts(f);

F2f = fft2(f);

F2fnew = zeros(n);

for j = 1:n;

F2fnew(:,j) = F2f(mod(-(j-1),n)+1,:).’;

end;

disp(’testing formula (10)’);

check(10) = compnorm(Fsf, F2fnew);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SECTION 3

% TESTS REGARDING THE SPREADING FUNCTION, KOHN-NIERENBERG SYMBOL, SYMPLECTIC FOURIER TRANSFORM (FFTS)...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’testing formula (11)’);

check(11) = compnorm(inp(a,b),inp(mat2kns(a),mat2kns(b))) ;

disp(’testing formula (12)’);

check(12) = compnorm(inp(a,b),inp(mat2spr(a),mat2spr(b))) ;% check normalization

disp(’testing formula (13)’);

check(13) = compnorm(inp(mat2kns(a),mat2kns(b)),inp(mat2spr(a),mat2spr(b))) ;% check normalization of mat2spr it needs and 1/sqrt(n) factor

disp(’testing formula (14)’);

check(14) = compnorm(mat2kns(eye(n)) , ones(n)) ;%check normalization

disp(’testing formula (15)’);

check(15) = compnorm(mat2spr(eye(n)) , unitmat(n,1,1)); % check normalization

%%%%%%%%%%%%%%

disp(’testing formula (16)’);

a1 = spr2mat(randcn(n));

check(16) = compnorm( ffts(mat2kns(a1)), mat2spr(a1) );

%%%%%%%%%%%%%%

disp(’testing formula (17)’);

check(17) = compnorm(mat2spr(tfmat(n,shift, freq)), unitmat(n,freq+1,shift+1));

%%%%%%%%%%%%%%%%%
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disp(’testing formula (18)’);

check(18) = compnorm(mat2kns(tfconj(M,shift, freq)), rotrc(mat2kns(M),freq,shift));

%%%%%%%%%%%%%%%%%%

disp(’testing formula (19)’);

l1 = floor( rand(1) * (n-1) ) + 1;

l2 = floor( rand(1) * (n-1) ) + 1;

H = randcn(n);

HA = mat2spr(tfconj(H,l1,l2));

HC = mat2spr(H);

%HB = zeros(n);

%HD = zeros(n);

% %%%%%%%%%%%%%%%%%%%%% pairwise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % also work but is slower

%

% for j=1:n

% for k=1:n

% HB(j,k) = exp( 2* pi * i * ((l2)*(k-1) - (l1)* (j-1)) / n) * HC(j,k);

% %% why does the role of k and j exchange here ?

% HD(j,k) = exp( 2* pi * i * ((l2)*(k-1) - (l1)* (j-1)) / n);

% end;

% end;

%

% check19b = compnorm(HA,HB)

% %%%%%%%%%%%%%%%%%%%%% using purfr2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% [ok,row,col,quot] = ispurfr(D);

%

% check19b = 1-ok

HE = purfr2(n,n,n-l1,l2);

%% why n-l1 and not n-l1+2 (which should correcpond to -l1 in theory)

check(19) = compnorm(HA,HE.*HC);

%%%%%%%%%%%%%%%

f = randcn(1,n);

g = randcn(1,n);

R = zeros(n);

gf = fft(g);

for j =1:n;

for k = 1:n;

R(k,j) = f(j)*conj(gf(k)*exp(2*pi*i*(k-1)*(j-1)/n));

end;

end;

disp(’testing formula (20)’);

check(20) = compnorm( R , mat2kns(g’ * f) );

%%%%%%%%%%%%%%%%%%%%%%%%

G = randcn(n);

H = randcn(n);

disp(’testing formula (21)’);

check(21) = compnorm( mat2spr(G*H), twistcon(mat2spr(G),mat2spr(H)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SECTION 4

% TESTS REGARDING THE SHORT-TIME FOURIER TRANSFORM & CONNECTIONS TO THE

% ABOVE....

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g = randcn(1,n);

f = randcn(1,n);

disp(’testing formula (22)’);

check(22) = compnorm(mat2spr(g’*f), stft(f,g)) ;

%%%%%%%%%%%%%%%

f = randcn(1,n);

g = randcn(1,n);

R = zeros(n);

gf = fft(g.’).’;

for j =1:n;

for k = 1:n;

R(k,j) = f(j)*conj(gf(k)*exp(2*pi*i*(k-1)*(j-1)/n));

end;

end;

disp(’testing formula (23)’);

check(23) = compnorm(R, ffts(stft(f,g))) ;

% please note that this formula works, but in the

% definition of R above, the k,j are reversed as compared with the formula

% given in the second column on the second page, in the Gabor Formulae. If

% we put it like there it doesn’t work anymore. Maybe it is because in
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% Matlab row actually means frequency, and column means time....

%%%%%%%%%%%

% testing further formulae for STFT

disp(’testing formula (24)’);

f = randcn(1,n);

g = randcn(1,n);

STF1 = stft(conj(f),g);

STF2 = stft(g,conj(f));

R = zeros(n);

for k = 1:n;

for j = 1:n;

R(k,j) = conj(exp(2*pi*i*(k-1)*(j-1)/n) * STF2(mod(-(k-1),n)+1,mod(-(j-1),n)+1));

end;

end;

check(24) = compnorm(STF1, R);

%%%%%%%%%%%%%%%%%%%%%%%%

a = randcn(1,n);

b = randcn(1,n);

c = randcn(1,n);

d = randcn(1,n);

f1 = stft(a,b);

f2 = stft(c,d);

z1 = f1(:)’ * f2(:);

z2 = conj(a*c’);

z3 = b*d’;

disp(’testing formula (25)’);

check(25) = compnorm(z1/n , z2 * z3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f = randcn(1,n);

g = randcn(1,n);

ftilde = f(mod(-([1:n]-1),n)+1);

gtilde = g(mod(-([1:n]-1),n)+1);

s1= stft(ftilde,g);

s21= stft(f,gtilde);

s2 = s21;

for k = 1:n;

for j = 1:n;

s2(k,j) = s21(mod(-(k-1),n)+1,mod(-(j-1),n)+1);

end;

end;

disp(’testing formula (26)’);

check(26) = compnorm(s1, s2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1 = stft(conj(f),g);

s21 = stft(f,conj(g));

s2 = zeros(n);

for j = 1:n;

s2(j,:) = s21(mod(-(j-1),n)+1,:);

end;

disp(’testing formula (27)’);

check(27) = compnorm(s1 , conj(s2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% testing fundamental time-frequency identity%%%

f = randcn(1,n);

g = randcn(1,n);

STF1 = stft(f,g);

STF2 = stft(fft(f),fft(g))/n;

STF2new = zeros(n);

FACTSTF = zeros(n);

disp(’testing formula (28)’);

for j = 1:n;

STF2new(:,j) = STF2(mod(-(j-1),n)+1,:).’ .* (exp(-2*pi*i*(j-1)*[0:n-1]/n)).’;

FACTSTF(:,j) = (exp(-2*pi*i*(j-1)*[0:n-1]/n)).’;

end;

check(28) = compnorm(STF1,STF2new);

check(29) = compnorm(fft(eye(n)),FACTSTF);

%%%%%%%%%%%%%%%%%%%%

a = randcn(1,n);

b = randcn(1,n);
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c = randcn(1,n);

d = randcn(1,n);

disp(’testing formula (29)’);

check(30) = compnorm(twistcon(stft(a,b),stft(c,d)),a*d’*stft(c,b));

disp(’testing formula (30)’);

check(31) = compnorm(twistcon(stft(a,b),stft(c,d)),mat2spr((b’*a) * (d’*c)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SECTION 5

% ADDITIONAL TESTS -> MAT2SPR, ADJLAT, GABMULMH

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A = randcn(n);

a = floor(rand(1) * (n-1));

b = floor(rand(1) * (n-1));

x = mat2spr(tfmat(n,a,b));

y = unitmat(n,b+1,a+1);

check(32) = 1- isunitm(x);

check(33) = compnorm(x,y);

p = mat2spr(A);

r = mat2spr(tfconj(A,a,b));

q = p./r;

[ch,rows, cols,qu] = ispurfr(q);

check(34) = 1 - ch;

s = purfr2(n,n,rows,cols);

check(35) = compnorm(q,s);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xpo = lattp(144,12,16);

xp1 = adjlat3(xpo);

check(36) = compnorm(xp1,lattp(144,144/16,144/12));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% same test as above, but more general lattice, i.e. xpo =

% sidedigm(lattp(n,a,b)) for two functions...

check(37) = norm(testadjlat(24,6,8,’adjlat’));

check(38) = norm(testadjlat(24,6,8,’adjlat3’));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g = randcn(1,n);

a = 1; b = 1;

W = randcn(n,n) .* randcn(n,n);

A = W(1:b:n,1:a:n);

disp(’ comparison between GABMULMH, GABMUL ’);

% GM=gabmulmh(W,g,a,b); % old version

% new version:

GM = gabmulmh(g,W(1:b:n,1:a:n));

% size(W),

% GM2 = gabmul(W(1:b:n,1:a:n),g,g,a,b); %HGFei: does not work!!!

% check(41) = compnorm(GM,GM2);

%disp(’check 41 has been removed!!!!’);

%check(41) = 0;

% pause;

sprGM = mat2spr(GM);

fW = ffts(W);

fW(1:b:n,1:a:n);

check(39) = compnorm(sprGM , fW(1:b:n,1:a:n).*stft(g,g,a,b));

% this works, but _only_ for a = b = 1; I think it should work

% for general a = b, even for general a, b.

M = randcn(12);

disp(’comparing TFCONJ and TFCONJDIR ’);

check(40) = compnorm( tfconjdir(M,3,5), tfconj(M,3,5))

disp(’check41 has been already done: GABMUL versus GABMULMH ’);

n = 480; a = 6; b =8;

W = randcn(n); g1 = randcn(1,n);

tic;GM1 = gabmul(W(1:b:n,1:a:n),g1,g1,a,b);toc

% tic;GM2 = gabmulmh(W,g1,a,b); toc

% tic; GM2 = gabmulmh(g,W(1:b:n,1:a:n)); toc;
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%% check(42) = compnorm(GM1,GM2);

% removed HGFei

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

wrong = find( check > tresh & check-1 >0 );

% finds all the checks that are bigger than tresh and that are not 1 (i.e.

% ispurfr(x) )

% figure;

subplot(211); semilogy(isinverse,’b*’);

%stem(check);

title(’isinverse’); grid;

subplot(212);

semilogy(check,’r*’); grid;

wrong

if length(wrong) > 0

title([’Errors occur at coordinatds: ’ vec2str(wrong)]);

else

title(’ no errors found’ );

end;

figure(gcf);

FU = fftu(n); F = fft(eye(n)); IF = F’/n; XX = randcn(n);

compnorm(ffts(XX), F*(IF*XX).’);

% quotient of norms: norm(x)/norm(y) = 1

% difference of normalized versions = 8.2583e-016

%

compnorm(ffts(XX), FU*(FU’*XX).’);

% quotient of norms: norm(x)/norm(y) = 1

% difference of normalized versions = 8.2976e-016

%

compnorm(ffts(XX).’, FU’*XX*FU.’);

% quotient of norms: norm(x)/norm(y) = 1

% difference of normalized versions = 8.3003e-016

%

compnorm(ffts(XX).’, IF*XX*F.’);

% quotient of norms: norm(x)/norm(y) = 1

% difference of normalized versions = 8.3473e-016
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12 Left over material

T = 0 : 1/50E3 : 10E-3;

D = [0 : 1/1E3 : 10E-3 ; 0.8.^(0:10)]’;

Y = pulstran(T,D,@gauspuls,10E3,.5); plot(T,Y)

provides the following plot:
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  Y = pulstran(T,D,@gauspuls,10E3,.5); plot(T,Y) 

Using saveepsc.m it took about 3 minutes to produce this page (hgfei, Aug. 19th, 2011).

DIGITAL METHODS in our daily life!
TO BE REPLACED by low resolution image!
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