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Abstract We investigate the properties of several classes of new parameters issued
from multifractal analysis and used in image analysis and classification. They share
the following common characteristics: They are derived from local quantities based
on wavelet coefficients; at each scale, lp averages of these local quantities are per-
formed and exponents are deduced form a regression through the scales on a log-log
plot. This yields scaling functions, which depend on the parameter p, and are used
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for model selection and classification. We expose possible variants, and their pros
and cons. We relate the values taken by these scaling functions with the determina-
tion of the regularity of the image in some classes of function spaces, and we show
that looking for richer criteria naturally leads to the introduction of new classes of
function spaces. We will show which type of additional information this information
yields for the initial image.

1 Introduction

Tools supplied by fractal geometry have been widely used in image processing in or-
der to derive parameters of fractal nature, which can be used for classification, model
selection and parameter fitting. Fractal objects often present two related aspects:
One is analytic, and consists in scale invariance properties, and the other is geomet-
ric and is expressed by a fractional dimension: For instance, the one-dimensional
Brownian motion is scale invariant: B(ax) has the same law as a1/2B(x), and its
sample paths have fractional dimension 3/2.

Similarly, the Weierstrass-Mandelbrot functions

Wa,b(x) =
+∞

∑
n=−∞

sin(anx)
bn (0 < 1/b < a < 1)

are selfsimilar of exponent α = −loga/logb since Wa,b(bx) = bαWa,b(x), and the
box dimensions of their graphs (see definition below) is 2−α .

Let us consider the geometric aspect, which is supplied by fractal dimensions.
The simplest notion of dimension which can be used is the box dimension:

Definition 1 Let A be a bounded subset of Rd; if ε > 0, let Nε(A) denote the smallest
number of balls of radius ε required to cover A.

The upper and lower box dimension of A are respectively given by

dimB(A) = limsup
ε→0

logNε(A)
− logε

, and dimB(A) = liminf
ε→0

logNε(A)
− logε

.

The following important feature makes this notion useful in practical applica-
tions: If both limits coincide, then the box dimension can be computed through a
regression on a log-log plot (logNε(A) vs. logε):

dimB(A) = lim
ε→0

logNε(A)
− logε

. (1)

As such, this tool has a rather narrow field of applications in image processing;
indeed, it applies only when a particular “fractal” set can be isolated in the image,
with a sufficient resolution. However, the fact that the limit exists in (1) points to-
wards another possible feature, which is much more common: Some quantities dis-
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play an approximate power-law behavior through the scales. Such a property may
hold for many other quantities than Nε(A) and the associated power-law exponents
can thus yield parameters which can be used in image classification; this points
towards the “analytic aspect” that we mentioned. The study of such quantities is
usually referred to as multifractal analysis; the purpose of this field is:

• To introduce new quantities which present such power-law behaviors,
• to study their mathematical properties, and relate them with scales of function

spaces,
• to determine geometric implications, as regards the presence of “fractal features”

in the image.

This paper is divided as follows: In Section 2 we review the different quanti-
ties which are related with function spaces, and have been used for signal or image
classification. We explain their relationships with function space indicators, and in
particular with Sobolev and Besov spaces. Section 3 deals with new classes of pa-
rameters, which are built using quantities related with different types of pointwise
regularity criteria: The local Lq behavior of the function (Section 3.1), the regular-
ization performed by fractional integration (Section 3.2), or a mixture of both ap-
proaches (Section 3.3). Finally Section 4 deals with some general results concerning
grand canonical formalisms, which are required when one takes into account simul-
taneously two different pointwise criteria. We will develop the case where one of
the exponents is a regularity index, and the other measures the local oscillations of
f near a point, see Section 4.1.

2 Scaling functions and function spaces

Let us now briefly review the different quantities which have been used up to now
as possible candidates for scale invariance features. First, these quantities usually
depend on (at least) one auxiliary parameter p (see e.g. (2) below), and therefore
the exponents which are derived are not given by one real number (or a few), but
are functions of this parameter p, hence the term scaling functions used in order to
characterize these collections of exponents. Note that the use of a whole function in
order to perform classification yields a potentially much richer tool than the use of
one single number.

Let us now be more specific and start with what was historically the first example
of a scaling function. It was introduced by N. Kolmogorov in the context of fully
developed turbulence, with a motivation which was quite similar to ours, see [43]:
Take advantage of the (expected) scale invariance of fully developed turbulence in
order to derive a collection of “universal” parameters which could be computed on
experimental data, and used for the validation of turbulence models.

Let f : Rd → R. The Kolmogorov scaling function of f is the function η f (p)
which satisfies
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| f (x+h)− f (x)|pdx ∼ |h|η f (p). (2)

This is mathematically formalized by

η f (p) = liminf
|h|→0

− 1
log |h|

log
(∫
| f (x+h)− f (x)|pdx

)
. (3)

As in the case of the box dimension, we have to draw a distinction between the
mathematical definition, whose purpose is to make sense in a general setting (e.g.
whenever f is locally bounded), and the numerical evaluation of η f (p) which re-
quires that the liminf is a real limit and, in practice, that one can make a precise
regression on the scales available in the data. Note that the mathematical hypothe-
ses bearing on f such that such scaling invariance holds are far from being well
understood.

This first scaling function has a function space interpretation which will serve
several purposes. First, it allows to derive several of its mathematical properties, but
its main advantage will be to point the way towards variants and extensions of this
scaling function which yield sharp information on the singularities present in the
signal. This last motivation had unexpected consequences: For instance such new
scaling functions allow to show the presence of “oscillating singularities” in the
data, which was an important open issue in several applications, see [5, 30].

The most straightforward function space interpretation of the scaling function is
obtained through the use of the spaces Lip(s,Lp) defined as follows.

Definition 2 Let s ∈ (0,1), and p ∈ [1,∞]; f ∈ Lip(s,Lp(Rd)) if

f ∈ Lp and ∃C > 0, ∀h > 0,
∫
| f (x+h)− f (x)|pdx≤C|h|sp. (4)

It follows from (2) and this definition that, if η f (p) < p, then

η f (p) = sup{s : f ∈ Lip(s/p,Lp(Rd))}. (5)

In other words, the scaling function allows to determine which spaces Lip(s,Lp)
contain the signal for s ∈ (0,1), and p ∈ [1,∞]. This reformulation has several ad-
vantages:

• Using classical embeddings between function spaces, one can derive alterna-
tive formulations of the scaling function which, though they are mathematically
equivalent to (2) or (5), allow a better numerical implementation,

• It has extensions outside of the range s ∈ (0,1), and therefore applies to signals
which are either smoother or rougher than allowed by this range,

• extensions of these function spaces to p < 1 lead to a scaling function defined for
p < 1, and therefore supply a richer tool for classification.

The simplest setting for these extension is supplied by Besov spaces; they offer
the additional advantage of yielding a wavelet reformulation of the scaling function,
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which is simple and robust, see [1, 3, 4, 34]. In order to define these spaces, we need
to recall the notion of wavelet bases.

2.1 Orthonormal and biorthogonal wavelet bases

Orthonormal wavelet bases are a privileged tool to study multifractal functions for
several reasons. A first one, exposed in this section, is that classical function spaces
(such as Besov or Sobolev spaces) can often be characterized by conditions bearing
on the wavelet coefficients, see Section 2.2. We will only recall the properties of
orthonormal and biorthogonal wavelet bases that will be useful in the sequel. We
refer the reader for instance to [15, 16, 36, 37] for detailed expositions.

Orthonormal wavelet bases are of the following form: There exists a function
ϕ(x) and 2d−1 functions ψ(i) with the following properties: The functions ϕ(x−k)
(k ∈ Zd) and the 2d j/2ψ(i)(2 jx− k) (k ∈ Zd , j ∈ Z) form orthonormal wavelet basis
of L2(Rd). This basis is r-smooth if ϕ and the ψ(i) are Cr and if the ∂ α ϕ , and the
∂ α ψ(i), for |α| ≤ r, have fast decay.

Therefore, ∀ f ∈ L2,

f (x) = ∑
k∈Zd

c(0)
k ϕ(x− k)+

∞

∑
j=0

∑
k∈Zd

∑
i

ci
j,kψ

(i)(2 jx− k); (6)

the ci
j,k and c(0)

k are called the wavelet coefficients of f and given by

ci
j,k = 2d j

∫
Rd

f (x)ψ(i)(2 jx− k)dx, and c(0)
k =

∫
Rd

f (x)ϕ(x− k)dx.

Note that the computation of these coefficients makes sense with very little as-
sumption on f (a wide mathematical setting is supplied by tempered distributions).
A natural setting for functions is supplied by the space L1 with slow growth which
is defined as follows.

Definition 3 Let f be a locally integrable function defined over Rd; f belongs to
L1

SG(Rd) if

∃C,N > 0 such that
∫

Rd
| f (x)|(1+ |x|)−Ndx≤C.

The wavelet expansion of a function f ∈ L1
SG(Rd) converges a.e.; in particular at

Lebesgue points, it converges towards the Lebesgue value

lim
r→0

1
Vol(B(x0,r))

∫
B(x0,r)

f (x)dx.

Furthermore, let CSG(Rd) be the set of locally bounded and continuous functions
which satisfy
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∃C,N > 0 : | f (x)| ≤C(1+ |x|)N .

Then, if f ∈CSG(Rd), then its wavelet expansion converges uniformly on compact
sets.

We will also need decompositions on biorthogonal wavelet bases, which are a
useful extension of orthonormal wavelet bases. Recall that a Riesz basis of a sepa-
rable Hilbert space H is a collection of vectors (en) such that the finite linear expan-
sions ∑

N
n=1 anen are dense in H and

∃C,C′ > 0 : ∀N, ∀an, C
N

∑
n=1
|an|2 ≤

∣∣∣∣∣
∣∣∣∣∣ N

∑
n=1

anen

∣∣∣∣∣
∣∣∣∣∣
2

H

≤C′
N

∑
n=1
|an|2. (7)

Two collections of functions (en) and ( fn) form biorthogonal bases if each col-
lection is a Riesz basis, and if 〈en| fm〉 = δn,m. When this is the case, any element
f ∈ H can be written f = ∑〈 f | fn〉en (where the series converges in H). Biorthogo-
nal wavelet bases are couples of Riesz bases of L2 which are of the following form:
On one side,

ϕ(x− k), (k ∈ Zd) and 2d j/2
ψ

(i)(2 jx− k), (k ∈ Zd , j ∈ Z)

and, on the other side,

ϕ̃(x− k) (k ∈ Zd) and 2d j/2
ψ̃

(i)(2 jx− k), (k ∈ Zd , j ∈ Z).

Therefore, ∀ f ∈ L2,

f (x) = ∑
k∈Zd

c(0)
k ϕ(x− k)+

∞

∑
j=0

∑
k∈Zd

∑
i

ci
j,kψ

(i)(2 jx− k); (8)

where

ci
j,k = 2d j

∫
Rd

f (x)ψ̃(i)(2 jx− k)dx, and c(0)
k =

∫
Rd

f (x)ϕ̃(x− k)dx. (9)

We will use more compact notations for indexing wavelets. Instead of using the
three indices (i, j,k), we will use dyadic cubes. Since i takes 2d −1 values, we can
assume that it takes values in {0,1}d− (0, . . . ,0); we introduce

λ (= λ (i, j,k)) =
k
2 j +

i
2 j+1 +

[
0,

1
2 j+1

)d

,

and, accordingly: cλ = ci
j,k and ψλ (x) = ψ(i)(2 jx− k). Indexing by dyadic cubes

will be useful in the sequel because the cube λ indicates the localization of the
corresponding wavelet. Note that this indexing is injective: if (i, j,k) 6= (i′, j′,k′),
then λ (i, j,k) 6= λ (i′, j′,k′). Dyadic cubes have the remarkable property that two of
them are either disjoint, or one is included in the other.
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The wavelet ψλ is essentially localized near the cube λ ; more precisely, when the
wavelets are compactly supported, then, ∃C > 0 such that when ψ(i)⊂ [−C/2,C/2]d

then ψλ ⊂ 2− jk +2− j[−C/2,C/2]⊂ 2Cλ .
Remarks: Two classes of orthonormal wavelet bases play a prominent role: For

theoretical purposes, the wavelets introduced by Y. Meyer and P.-G. Lemarié, which
belong to the Schwartz class (but are not compactly supported), and Daubechies
wavelets which are compactly supported, but of limited regularity (the size of the
support essentially is a linear function of the regularity of the wavelet), see [36, 37,
17].

In order to have a common notation for wavelets and functions ϕ , when j = 0,
we note ψλ the function ϕ(x− k) (where λ is, in this case, the unit cube shifted by
k), and by cλ the corresponding coefficient.

Finally, Λ j will denote the set of dyadic cubes λ which index a wavelet of scale
j, i.e., wavelets of the form ψλ (x) = ψ(i)(2 jx− k) (note that Λ j is a subset of the
dyadic cubes of side 2 j+1), and Λ will denote the union of the Λ j for j ≥ 0.

2.2 The wavelet scaling function

A remarkable property of wavelet bases is that they supply bases for most function
spaces that are used in analysis. The case of Besov spaces is typical:

Definition 4 Let s ∈ R and p,q ∈ (0,∞]. Let ψλ be an r-smooth wavelet basis with
r > sup(|s|, |s|+d( 1

p −1)). A distribution f belongs to the Besov space Bs,q
p (Rd) if

and only if its wavelet coefficients satisfy

∑
j≥0

 ∑
λ∈Λ j

[
2(s−d/p) j|cλ |

]p

q/p

< ∞ (10)

(using the usual convention for l∞ when p or q in infinite).

Remarks: Historically, this was not the first definition of Besov spaces, since
they were initially introduced as interpolation spaces between Sobolev spaces. How-
ever, this very simple characterization has opened the way to an extensive use of
Besov spaces in many fields, including image processing and statistics, so that it
is now rather taken as a definition, see [37]. Informally, it essentially means that f
and its fractional derivative of order s belong to Lp (and, indeed, Bs,2

2 coincides with
the Sobolev space Hs), see [37] for precise embeddings with Sobolev spaces. Let
s ∈ (0,1), and p ∈ [1,∞]; then the following embeddings hold:

Bs,1
p ↪→ Lip(s,Lp(Rd)) ↪→ Bs,∞

p . (11)

Furthermore, if s≥ 0, p > 0 and 0 < q1 < q2, then we have the embeddings
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∀ε > 0, Bs+ε,∞
p ↪→ Bs,q1

p ↪→ Bs,q2
p ↪→ Bs,∞

p , (12)

which allow to redefine Kolmogorov’s scaling function for p≥ 1 by,

η f (p) = sup{s : f ∈ Bs/p,∞
p }. (13)

There are two advantages in doing so: on one hand, it extends the scaling function
to all values of p > 0, on the other hand, it suggests an alternative way to compute
it, through a regression based on wavelet coefficients. Indeed, it follows from (10)
and (13) that the scaling function of f is

∀p > 0, η f (p) = liminf
j→+∞

−1
j

log2

2−d j
∑

λ∈Λ j

|cλ |p
. (14)

We will use the same notation for the Kolmogorov scaling function and the wavelet
scaling function since they coincide for a range of values; this slight abuse of no-
tations will lead to no confusion. From now on, we take (14) for definition of the
wavelet scaling function, and also, as a practical way to compute it through a re-
gression on a log-log plot. Note that its interpretation in terms of function spaces
implies that it is independent of the (smooth enough) wavelet basis. A similar for-
mula was previously introduced by A. Arneodo, E. Bacry and J.-F. Muzy, using the
continuous wavelet transform, see for instance [9]. An additional advantage of us-
ing (14) as a definition is that the scaling function is well defined even if f is not a
function (in the most general case, it can be a tempered distribution); a large degree
of flexibility may prove necessary: Indeed, a picture is a discretization of the light
intensity, which is a non-negative quantity. Therefore the most general mathematical
modeling which takes into account only this a priori information amounts to make
the assumption that f is a measure (indeed non-negative distributions necessarily
are measures, by a famous theorem of L. Schwartz); a posteriori estimation of the
smoothness of images using the wavelet scaling function showed that, indeed, some
types of natural images are not smoother than measures are, see [2, 48].

2.3 The uniform Hölder exponent

We consider now the particular case of Besov spaces with p = q = +∞, which
will play an important role in the following: f belongs to Bs,∞

∞ (Rd) if and only if
(c(0)

k ) ∈ l∞ and
∃C, ∀λ ∈Λ , |cλ | ≤C2−s j. (15)

The spaces Bs,∞
∞ coincide with the Lipschitz spaces Cs(Rd) when s /∈N (for instance,

if s = 1, then (15) characterizes function in the Zygmund class, see [37]); it follows
that, if 0 < s < 1, f ∈ Bs,∞

∞ (Rd) if f is bounded and ∃C, ∀x,y, | f (x)− f (y)| ≤
C|x− y|s.
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The uniform Hölder exponent of f is

Hmin
f = sup{s : f ∈Cs(Rd)}. (16)

It yields an additional parameter for image processing and classification that will
prove important for additional reasons: Its determination will be a mandatory step
for multifractal analysis; note that Hmin

f is related with the scaling function according
to Hmin

f = lim
p→+∞

η
′
f (p), see [26]. In practice, it is derived directly from the wavelet

coefficients of f through a simple regression on a log-log plot ; indeed, it follows
from (16) and the wavelet characterization of the Besov spaces Bs,∞

∞ that

Hmin
f = liminf

j→+∞
−1

j
log2

(
sup

λ∈Λ j

|cλ |

)
. (17)

Note that the determination of Hmin
f does not require any a priori assumption on

f and that, in practice, it allows to settle if f is bounded or not. Indeed, it follows
from (16) that

• if Hmin
f > 0, then f is locally bounded,

• if Hmin
f < 0, then f /∈ L∞

loc.

We will meet several situations where this a priori information is needed.
Let us consider now two simple models of random fields. The first one will show

no bias in the estimation of Hmin
f , and the other will show one.

The first model is supplied by Lacunary Wavelet Series (LWS) Xα,γ of type
(α,γ), see [24]; they are random fields defined on [0,1]d (for α > 0 and γ < d)
as follows: A biorthogonal wavelet basis in the Schwartz class is used for the con-
struction. One draws at random (uniformly) 2γ j locations λ among the 2d j dyadic
cubes of width 2− j included in [0,1]d , and the corresponding wavelet coefficients
are set to the value 2−α j, whereas the others are set to 0. In order to define LWS on
the whole Rd , one repeats this construction on all cubes of width 1. In this case it
follows from (17) that Hmin

f = α and (17) yields α exactly at each scale.

The second example falls in the general model of Random Wavelet Series. Let
us describe the particular case that we consider now.

Definition 5 Let ψλ be a biorthogonal wavelet basis in the Schwartz class. A Uni-
form Random Wavelet Series (URWS) of type (α,β ) is a random field of the form

X = ∑2−α jXλ ψλ ,

where the Xλ are IID with common law, which is a non-vanishing random variable
satisfying a tail estimate of the form

P(|X | ≥ A)∼C exp(−B|A|β ),
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and C,B and β are positive constants.

Note that this model includes the Fractional Brownian Motion (FBM) of ex-
ponent γ ∈ (0,1). Indeed, if s ∈ R, let ψ̂s(ξ ) = |ξ |−sψ̂(ξ ), where ψ is generat-
ing an orthonormal wavelet basis (ψs is the fractional integral of ψ of order s). If
ψ ∈S (R), then ψs is a wavelet and the 2 j/2ψs(2 jx− k) and the 2 j/2ψ−s(2 jx− k)
form biorthogonal bases, see e.g. [26]. If t ∈ [0,1] then

Bγ(t) =
∞

∑
j=0

∑
k∈Z

2−γ j
ξ j,k ψγ+1/2(2

jt− k)+R(t) (18)

where R(t) is a C∞ random process, and the ξ j,k are I.I.D. standard centered Gaus-
sians, see [6, 40].

If β > 1, then the model supplied by URWS yields a random field, with a constant
Hölder exponent α , see [11]. Since the Xλ are independent, one obtains that

P

(
sup

λ∈Λ j

|Xλ | ≤ A

)
∼ 1−C exp( j log2−BAα);

therefore, the quantity sup
λ∈Λ j

|Xλ | is asymptotically equivalent to C j1/α . It follows

that

−1
j

log2

(
sup

λ∈Λ j

|cλ |

)
= α− log2 j

α j
(1+o(1));

therefore the statistical estimator of Hmin
f supplied by −log2 (sup |cλ |)/ j is biased

by a term equivalent to (log2 j)/ j.

Note that, from the point of view of statistical estimation, the case of the deter-
mination of Hmin is quite different from the determination of the scaling function.
Indeed, for URWS, if Cp = E(|X |p), then

E
(

2−d j
∑ |Cλ |p

)
= Cp2−α j and Var

(
2−d j

∑ |Cλ |p
)

= 2−d jC2p2−2α j.

It follows that no such bias exists for the estimation of the scaling function of
URWS: It is at most C/ j, i.e., smaller than for the uniform Hölder exponent by
a logarithmic term.

2.4 Scaling functions for image model validation

We start by recalling a general problem posed by function-space modeling when ap-
plied to real-life signals: Data are always available with a finite resolution; therefore,
assuming that images are functions (or perhaps distributions) continuously defined
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on R2 (or a subset of R2 such as a square or a rectangle) is an idealization which
may be convenient for mathematical modeling, but should not mask the fact that
real-life images are sampled and given by a finite array of numbers. Therefore, the
problem of finding which function spaces contain a particular image is ill-posed:
Indeed, given any “classical” space of functions defined on a square, and such an
array of numbers, one can usually find a function in this space that will have the pre-
assigned values at the corresponding points of the grid. For instance, a commonly
met pitfall is that an image is given by grey-levels, and thus takes values in [0,1].
Therefore, it may seem appropriate to use a modeling by bounded functions. We
will see that wavelet techniques allow to discuss this assumption, and show that it is
not satisfied for large classes of natural textures.

The resolution of these problems requires the use of multiscale techniques as
supplied by wavelet analysis. Let us consider for instance the last example we men-
tioned: Starting with a discrete image, given by an array of 1024× 1024 numbers
all lying between 0 and 1, how can we decide that it can be modeled or not by a
bounded function? It is clear that, if we consider the image at only one scale (the
finest scale in order to lose no information), then the answer seems to be affirma-
tive. One way to solve the difficulty is to consider the image simultaneously at all
the scales available and inspect if certain quantities behave through this range of
scales as bounded functions do. The practical recipe in this case is to use (17) in
order to determine numerically the value of Hmin

f , through a regression on a log-log
plot; if Hmin

f < 0, then the image is not bounded, and if Hmin
f > 0, then the image

is bounded. Of course, if the numerical value obtained for Hmin
f is close to 0 (i.e.,

if 0 is contained in the confidence interval which can be obtained using statistical
methods such as the bootstrap, see [46, 48]) then the issue remains unsettled.

The wavelet scaling function yields an extensive information on the function
spaces which contain a particular signal. As an example of its use, we will discuss
the assumption that real-life images can be modeled as a sum of a function u ∈ BV
and another term v which will model noise and texture parts. There is no consen-
sus on which regularity should be assumed for the second term v. The first “u + v
model” (introduced by Rudin, Osher and Fatemi [44]) assumed that v ∈ L2; how-
ever, the very strong oscillations displayed by some textures suggested that such
components do not have a small L2 norm, but might have a small norm in spaces of
negative regularity index (i.e., spaces of distributions). Therefore the use of spaces
such as divergences of L∞ functions (or divergences of L2 functions) were proposed
by Y. Meyer, see [39], followed by several other authors, see [12, 42] and references
therein. More sophisticated models also aim at separating noise from texture, and
therefore split the image into three components (u+ v+w models, see [12]).

The Rudin-Osher-Fatemi algorithm consists in obtaining the regular component
u of an image f by minimizing the functional J(u) =‖ u ‖BV +t ‖ f −u ‖2

2, where t is
a scale parameter which has to be tuned. In 2001, Y. Meyer proposed to minimize the
alternative functional J(u) =‖ u ‖BV +t ‖ f −u ‖G, where ‖ f ‖G= infg: f =∇·g ‖ g ‖∞ .
More recently, in 2003, Osher, Solé and Vese proposed another model which uses
for the texture and noise component a space of distributions easier to handle, the
Sobolev space H−1. The corresponding functional is J(u) =‖ u ‖BV +t ‖ f −u ‖2

H−1 .
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More recently, several variants have been proposed, based on the same funda-
mental ideas, but using alternative function spaces. The relevance of one particular
function space is usually advocated using either theoretical arguments derived from
functional analysis, or practical arguments motivated by the algorithmic implemen-
tation. The fundamental problem of determining to which function spaces a given
image (or a part of a given image) belongs to has been rarely considered (see how-
ever [20] where the authors question the fact that natural images belong to BV ). A
first motivation for this question rises implicitly from the short review we just per-
formed: The function spaces used in modeling should fit the data. Another motiva-
tion is that, if these function spaces depend strongly on the image that is considered,
then this information might prove useful in image classification. The knowledge of
the scaling function allows to settle the issues we raised concerning the function
spaces which contain a given image. The following result is a direct consequence
of the embeddings (11) and (12) between Besov spaces and other classical function
spaces, and allows to settle, for a given image, if the models mentioned above fit the
data.

Corollary 1 Let f be a tempered distribution defined on R2. Then, the values taken
by η f (p) and by Hmin

f have the following interpretation:

• If η f (1) > 1, then f ∈ BV , and if η f (1) < 1, then f /∈ BV
• If f is a measure, then η f (1)≥ 0, and, if η f (1) > 0, then f belongs to L1.
• If η f (2) > 0, then f ∈ L2 and if η f (2) < 0, then f /∈ L2.
• If η f (2) >−2, then f ∈ H−1 and if η f (2) <−2, then f /∈ H−1.
• If Hmin

f > 0, then f is bounded and continuous, and if Hmin
f < 0, then f /∈ L∞.

• If Hmin
f >−1, then f ∈ G and if Hmin

f <−1, then f /∈ G.
• If f is a measure, then Hmin

f ≥−2.

2.5 Multifractal formalism

Later refinements and extensions of the wavelet scaling function were an indirect
consequence of its interpretation in terms of fractal dimensions of Hölder singular-
ities, proposed by G. Parisi and U. Frisch in their seminal paper [43]. In order to
explain their argumentation, we first recall the definition associated with pointwise
regularity. The most widely used one is supplied by Hölder regularity.

Definition 6 Let f : Rd→R be a locally bounded function, x0 ∈Rd and let α ≥ 0;
f belongs to Cα(x0) if there exist C > 0, R > 0 and a polynomial P of degree less
than α such that, if |x− x0| ≤ R, then | f (x)−P(x− x0)| ≤C|x− x0|α .

The Hölder exponent of f at x0 is: h f (x0) = sup{α : f is Cα(x0)} .
The isohölder sets are: EH = {x0 : h f (x0) = H}.

Note that Hölder exponents met in signal processing often lie between 0 and 1, in
which case the Taylor polynomial P(x− x0) boils down to f (x0) and the definition
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of the Hölder exponent means that, heuristically, | f (x)− f (x0)| ∼ |x−x0|h f (x0). The
loose idea which lies at the starting point of the derivation proposed in [43] is that,
if f is not smooth on a large set of locations, then, at a given scale h, the increments
f (x + h)− f (x) will bring a large contribution to (2), and therefore the knowledge
of the scaling function should yield some information of the size of the sets where
f has a given Hölder regularity. A statistical physics argument leads to a precise
statement, usually referred to as the multifractal formalism concerning the size of
the sets of singularities of f . In order to recall it, we start by giving the notion of
“size” which is adapted to this problem, see [18].

Definition 7 Let A⊂ Rd . If ε > 0 and δ ∈ [0,d], we denote

Mδ
ε = inf

R

(
∑

i
|Ai|δ

)
,

where R is an ε-covering of A, i.e., a covering of A by bounded sets {Ai}i∈N of
diameters |Ai| ≤ ε . The infimum is therefore taken on all ε-coverings.

For any δ ∈ [0,d], the δ -dimensional Hausdorff measure of A is mesδ (A) =
lim
ε→0

Mδ
ε . There exists δ0 ∈ [0,d] such that ∀δ < δ0, mesδ (A) = +∞ and ∀δ > δ0,

mesδ (A) = 0. This critical δ0 is called the Hausdorff dimension of A, and is denoted
by dim(A) (by convention, dim( /0) = 0).

If f is locally bounded, then the function H → dim(EH) is called the spectrum
of singularities of f . Note that, in distinction with the box dimension, the Hausdorff
dimension cannot be computed via a regression on a log-log plot; therefore it can be
estimated on experimental data only through indirect methods. We will see that the
use of the multifractal formalism is one of them.

The formula proposed by Paris and Frisch is

dim(EH) = inf
p∈R

(
d +H p−η f (p)

)
, (19)

see [43]. However, it meets severe limitations: Many natural processes used in sig-
nal or image modeling, are counterexamples, see [1]; additionally, the only result
relating the spectrum of singularities and the scaling function in all generality is
partial, and stated below, see [23, 26].

Theorem 1 Let f : Rd → R be such that Hmin
f > 0. Define p0 by the condition:

η f (p0) = d p0,

then
dim(EH)≤ inf

p>p0

(
d +H p−η f (p)

)
. (20)
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2.6 Wavelet leaders

A natural line of research is to look for an “improved” scaling function, i.e., one
such that (19) would have a wider range of validity, and for which the upper bound
supplied by Theorem 1 would be sharper. This led to the construction of the wavelet
leader scaling function, which we now recall. The “basic ingredients” in this for-
mula are no more wavelet coefficients, but wavelet leaders, i.e., local suprema of
wavelet coefficients. The reason is that pointwise smoothness can be expressed
much more simply in terms of wavelet leaders than of wavelet coefficients.

Let λ be a dyadic cube; 3λ will denote the cube of same center and three times
wider. If f is a bounded function, the wavelet leaders of f are the quantities

dλ = sup
λ ′⊂3λ

|cλ ′ |

It is important to require f to be bounded; otherwise, the wavelet leaders of f can
be infinite; therefore checking that Hmin

f > 0 is a prerequisite of the method.
Remark: Similar quantities were previously introduced by S. Mallat, in the

Wavelet Transform maxima method, which can be seen as counterpart of the wavelet
leader technique for the continuous wavelet transform; it was used in multifractal
analysis by A. Arneodo, E. Bacry and J.-F. Muzy:, see [9, 36] and references therein;
however it does not enjoy the same simplicity of implementation and very few math-
ematical results apply to it.

The reason for introducing wavelet leaders is that they give an information on
the pointwise Hölder regularity of the function. Indeed, let x0 ∈ Rd , and denote by
λ j(x0) is the dyadic cube of width 2− j which contains x0. If Hmin

f > 0, then

h f (x0) = liminf
j→+∞

−1
j

log2

(
dλ j(x0)

)
(21)

(see [26] and references therein). Therefore, constructing a scaling function with the
help of wavelet leaders is a way to incorporate pointwise smoothness information.
It is therefore natural to expect that (20) will be improved when using such a scaling
function instead of η f (p).

The leader scaling function is defined by

∀p ∈ R, ζ f (p) = liminf
j→+∞

−1
j

log2

2−d j
∑

λ∈Λ j

|dλ |p
. (22)

An important property of the leader scaling function is that it is “well defined” for
p < 0, although it can no more be subject to a function space interpretation. By “well
defined”, we mean that it has the following robustness properties if the wavelets
belong to the Schwartz class (partial results still hold otherwise), see [31, 26]:

• ζ f is independent of the wavelet basis.
• ζ f is invariant under the addition of a C∞ perturbation.
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• ζ f is invariant under a C∞ change of variable.

Note that the wavelet scaling function does not possess these properties when
p is negative. The leader scaling function can also be given a function-space inter-
pretation for p > 0: Let p ∈ (0,∞); a function f belongs to the Oscillation space
Os

p(Rd) if and only if

∀ j ≥ 0, ∑
λ∈Λ j

[
2(s−d/p) jdλ

]p
< ∞.

Then
ζ f (p) = sup{s : f ∈ O

s/p
p }.

Properties of oscillation spaces are investigated in [31, 26]. Note that their defini-
tion mixes two quantities of different natures: a local l∞ norm (the leader, which is a
supremum of wavelet coefficients), and a global lp norm. Thus they are reminiscent
of amalgam spaces, which were introduced by N. Wiener, and thoroughly studied
by H. Feichtinger, see [19]: These spaces are defined by taking local Lp norms of
the function, and then averaging them through a discrete lq sum. Note however the
strong difference with oscillation spaces, where the l∞ local norms are taken at each
scale. Thus oscillation spaces do not favor a particular scale, in contradistinction
with amalgam spaces, where a specific scale for the amalgam is chosen.

Let us now prove the following result, which shows that the wavelet leader scal-
ing function can be alternatively defined through the “restricted leaders”

eλ = sup
λ ′⊂λ

|cλ ′ |.

Lemma 1 Let f be a function satisfying Hmin
f > 0; then

∀p ∈ R, ζ f (p) = liminf
j→+∞

−1
j
log2

2−d j
∑

λ∈Λ j

|eλ |p
.

Remark: This equivalence is important because the formulation of the scaling
function using “extended leaders” (where the supremum is taken on 3λ ) is required
in order to prove upper bounds for spectra, see [26]; on the other hand, the formu-
lation using “restricted leaders” is more suited to numerical implementation, and in
order to prove properties of the scaling function (since the supremums at a given
scale are taken on non-overlapping cubes).

Proof. Let

S f (p, j) = 2−d j
∑

λ∈Λ j

|cλ |p and Tf (p, j) = 2−d j
∑

λ∈Λ j

|eλ |p.
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Since
sup

λ ′⊂λ

|cλ ′ | ≤ sup
λ ′⊂3λ

|cλ ′ |

it follows that, if p ≥ 0, then S f (p, j) ≤ Tf (p, j), and, if p ≤ 0, then Tf (p, j) ≤
S f (p, j).

On the other hand, denote by µ the “father” of the cube λ (i.e., the cube twice
as wide which contains λ ), and denote by N(µ) the 3d “neighbours” of λ (i.e., the
cubes of same width, whose boundary intersects the boundary of λ ). Then

sup
λ ′⊂3λ

|cλ ′ | ≤ sup
ν∈N(µ)

sup
λ ′⊂ν

|cλ ′ |.

It follows that, if p≥ 0, then Tf (p, j)≤ 3dS f (p, j−1).
Finally, for any dyadic cube λ , there exists a “grandson” λ ′′ of λ such that 3λ ′′ ⊂

λ . Therefore
sup

λ ′⊂3λ ′′
|cλ ′ | ≤ sup

λ ′⊂λ

|cλ ′ |;

therefore, if p ≤ 0, then S f (p, j) ≤ Tf (p, j + 2). The result follows from these four
estimates. ut

The leader spectrum of f is defined through a Legendre transform of the leader
scaling function as follows

L f (H) = inf
p∈R

(
d +H p−ζ f (p)

)
. (23)

The following result of [26] shows the improvement obtained when using wavelet
leaders: The upper bound is sharpened since, on one hand η f (p) = ζ f (p) if p > p0,
and, on the other hand, the infimum in (23) is taken for all p ∈ R.

Theorem 2 If Hmin
f > 0, then, ∀H, dim(EH)≤ L f (H).

Furthermore, equality holds for large classes of models used in signal and image
processing, such as Fractional Brownian Motions, lacunary and random wavelet
series, cascade models,.... see [1, 31] and references therein.

2.7 Scaling function for measures

Since nonnegative measures supply a natural setting for the modeling of images, we
now expose the tools related with the multifractal analysis of nonnegative measures
(see e.g. [2, 13, 21]), and we will show that they can also be related with function
space interpretations.

Definition 8 Let x0 ∈ Rd and let α ≥ 0. A nonnegative measure µ defined on Rd

belongs to Cα(x0) if there exists a constant C > 0 such that, in a neighbourhood of
x0, µ(B(x0,r))≤Crα , where B(x0,r) denotes the open ball of center x0 and radius
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r. Let x0 belong to the support of µ; then the Hölder exponent of µ at x0 (also called
the “local dimension”) is

hµ(x0) = sup{α : µ ∈Cα(x0)}.

Let Eµ(H) = {x0 : hµ(x0) = H}. The spectrum of singularities of µ (denoted by
dµ(H)) is the Hausdorff dimension of Eµ(H).

We will need to deduce the Hölder exponent at every point from a “discretized
version” of µ , i.e., from the values of µ on a countable collection of sets. A possi-
ble choice for this collection of sets is supplied by the dyadic cubes. The following
lemma is a key ingredient in the derivation of the multifractal formalism for mea-
sures.

Lemma 2 Let µ be a nonnegative measure defined on Rd . Then

hµ(x0) =−1
j

liminf
j→+∞

(log2 (µ[3λ j(x0)])) . (24)

Proof. By definition of the Hölder exponent,

∀ε > 0, ∃r > 0, ∀r ≤ R, µ(B(x,r))≤ rH−ε ;

but 3λ j(x0)⊂ B(x0,3
√

d2− j), so that

µ(3λ j(x0))≤ (3
√

d)H−ε 2− j(H−ε),

and it follows that hµ(x0) is bounded by the right hand-side of (24).
On the other hand, if hµ(x0) = H, then there exist balls Bn = B(x0,rn) and εn > 0

such that rn→ 0, εn→ 0 and rH+εn
n ≤ µ(Bn)≤ rH−εn

n . Let jn be such that

1
2

2− jn < rn ≤ 2− jn ;

then Bn ⊂ 3λ jn(x0) so that µ(Bn) ≤ µ(3λ jn(x0)), which implies the lower bound.
ut

Let µ be a probability measure on R. It follows from Lemma 2 that it is natural
to define a scaling function associated with µ by

τµ(p) = limsup
n→∞

−1
j
log2

 ∑
λ∈Λ j

(µ(3λ ))p

.

Let us now show why the spectrum of singularities is expected to be recov-
ered from the scaling function. The definition of the scaling function roughly
means that ∑ µ(3λ ) ∼ 2−ηµ (p) j. Let us estimate the contribution to this sum of
the cubes λ that cover the points of Eµ(H). Lemma 2 asserts that they satisfy
µ(3λ )∼ 2−H j. By definition of the fractal dimension, we need about 2−dµ (H) j such
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cubes to cover Eµ(H); thus, the corresponding contribution can be estimated by
2−d j2dµ (H) j2−H p j = 2−(d−dµ (H) j+H p) j. When j→ +∞, the dominant contribution
comes from the smallest exponent, so that τµ(p) = infH(d−dµ(H)+H p). Inverting
this Legendre duality relationship, and assuming that dµ(H) is concave, we obtain

dµ(H) = inf
H

(d− τµ(p)+H p). (25)

Let us now show the relationship between the scaling function for measures, and
the function spaces which contain the distribution function of this measure. Recall
that the distribution function Fµ of µ is defined by Fµ(x) = µ((−∞,x].

Let s ∈ (0,1) and p > 1. A function F belongs to the Sobolev spaces W s,p(R) if
it satisfies

∃C > 0 such that
∫ ∫ |F(x)−F(y)|p

|x− y|sp+1 dxdy≤C. (26)

We take F = Fµ , and we split the integral (26) as a sum on the subdomains

A j = {(x,y) : 2− j ≤ |x− y|< 2 ·2− j}.

The lefthand side of (26) is equivalent to

∑
j

2 j(sp+1)
∫ ∫

A j

|Fµ(x)−Fµ(y)|pdxdy,

which, because Fµ is increasing, is equivalent to

∑
j

2 j(sp+1)2−2 j
∑

λ∈Λ j

|Fµ(λ+)−Fµ(λ−)|p,

where λ+ = k+2
2 j and λ− = k−1

2 j . But Fµ(λ+)−Fµ(λ−) = µ(3λ ), and therefore the
double integral in (26) is equivalent to

∑
j

2 j(sp−1)
∑

λ∈Λ j

µ(3λ )p.

Coming back to the definition of τµ(p) yields the function space interpretation

τµ(p) = sup{s : Fµ ∈W (s+1)/p,p(R)}, (27)

which, using the embeddings between Sobolev and Besov spaces, implies that

τµ(p) = ηµ(p)+1.
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3 Extensions of the scaling function: q-leaders and fractional
integration

Advances concerning the construction of new scaling functions beyond (22) were
motivated by the following restriction: In order to be used, the wavelet leader
method requires the data to be locally bounded. We saw a practical procedure in
order to decide if this assumption is valid, namely the determination of the uniform
Hölder exponent Hmin

f . Experimental investigations showed that Hmin
f is negative

for large classes of natural ”texture type” images, see [46, 47, 48], and therefore the
method cannot be used as such.

In order to circumvent this problem, one can either change the data or change the
method. By changing the data, we will mean “smoothing ” them, in order to obtain a
new signal, with a positive index Hmin, on which the previous analysis may be safely
performed. On the other hand, by changing the method, we will mean replacing the
wavelet leaders by alternative quantities, which measure pointwise regularity (for
another definition of regularity) and make sense even if the data are no more locally
bounded. Let us start by exploring this second possibility.

3.1 q-leaders

We will use the following extension of pointwise smoothness, which was introduced
by Calderón and Zygmund in 1961, see [14].

Definition 9 Let B(x0,r) denote the open ball centered at x0 and of radius r; let
q ∈ [1,+∞) and α > −d/q. Let f be function which locally belongs to Lq(Rd).
Then f belongs to T q

α (x0) if there exist C,R > 0 and a polynomial P such that

∀r ≤ R,

(
1
rd

∫
B(x0,r)

| f (x)−P(x− x0)|qdx
)1/q

≤Crα . (28)

The q-exponent of f at x0 is

hq
f (x0) = sup{α : f ∈ T q

α (x0)}.

Note that the Hölder exponent corresponds to the case q = +∞. This definition
is a natural substitute for pointwise Hölder regularity when dealing with functions
which are not locally bounded, but locally belong to Lq. In particular, the q-exponent
can take values down to −d/q, and therefore it allows to model behaviors which
locally are of the form 1/|x−x0|α for α < d/q, i.e., to deal with negative regularity
exponents.

Let us now show how the notion of T q
α regularity can be related to local lq norms

of wavelet coefficients. This will be done with the help of the following theorem,
which yields a characterization of this pointwise smoothness. First, recall that the
local square functions at x0 are
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S f ( j,x0)(x) =

 ∑
λ⊂3λ j(x0)

|cλ |21λ (x)

1/2

.

The following theorem is proved in [28].

Theorem 3 Let q ∈ (0,∞), α > −d/q and assume that the wavelet basis used is
r-smooth with r > sup(2α,2α + 2d( 1

q −1)) ; if f ∈ T q
α (x0), then ∃C ≥ 0 such that

∀ j ≥ 0,
‖ S f ( j,x0) ‖q≤C2− j(α+d/q) (29)

( if q < 1, then ‖ . ‖q denotes the Lq quasi-norm).
Conversely, if (29) holds and if α /∈ N, then f ∈ T q

α (x0).

Remark: When α is an integer, then the wavelet condition (29) characterizes
a slightly different space, which implies a T q

α (x0) with a logarithmic loss on the
modulus of continuity. This is reminiscent of the case of uniform Hölder spaces for
s = 1, in which case the wavelet condition (15) characterizes the Zygmund class
instead of the usual C1 space.

We now relate local square functions and local lq norms of wavelet coefficients.
(The derivation that we propose slightly differs form the one of [32], since it is in the
spirit of “wavelet leaders”, whereas the one performed in [32] relies on extensions
of two-microlocal spaces which were proposed by Y. Meyer and H. Xu in [41].)

Note that the condition ‖ S f ( j,x0) ‖q≤ C2− j(α+d/q) implies that, at each scale
j′ ≥ j, ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 ∑

λ ′⊂3λ j(x0),|λ ′|= j′
|cλ ′ |21λ ′(x)

1/2
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
q

≤C2− j(α+d/q),

where, by definition, |λ ′| denotes the scale j′ of the cube λ ′. Since dyadic cubes at
a given scale do not overlap, the left-hand side can be computed exactly and yields ∑

λ ′⊂3λ j(x0),|λ ′|= j′
|cλ ′ |q2−d j′

1/q

.

It follows that the pointwise q-exponent can be expressed by a regression on a log-
log plot of the q-leaders

dq
λ

=

 ∑
λ ′⊂3λ j(x0)

|cλ ′ |q2−d( j′− j)

1/q

. (30)

Note that q-leaders are nothing but local Besov norms. Therefore, besides the
fact that they are much easier to estimate than Lq norms of the local square function
(as proposed in [29, 31]), they also offer the additional possibility of taking q < 1. In



Contents 23

that case, the relationship with pointwise regularity is more intricate, see [29]. How-
ever, for classification purposes, one does not necessarily require an interpretation
in terms of pointwise exponents.

As in the case of the usual wavelet leaders, one can associate function spaces with
q-leaders: Let p,q ∈ (0,∞); a function f belongs to the Oscillation space Os

p,q(Rd)
if and only if

∃C, ∀ j ≥ 0, ∑
λ∈Λ j

[
2(s−d/p) jdq

λ

]p
≤C.

These function spaces are closely related with the spaces Sα
q,r,m and Dα

q,r,m intro-
duced by A. Seeger in [45]. Indeed these spaces are also defined through local Lq

norms or the function. However, the motivation of Seeger was different from ours:
He wished to obtain a new characterization of Triebel-Lizorkin spaces, and there-
fore only considered the cases where the parameters α,q,r,m lead to these spaces,
whereas our motivation is at the opposite, since we are interested in these spaces
when they strongly differ from the classical ones, and lead to new scaling functions.

The q-scaling function is defined by

∀p ∈ R, ζ f (p,q) = liminf
j→+∞

−1
j

log2

2−d j
∑

λ∈Λ j

|dq
λ
|p
. (31)

In that case too, the scaling function is “well defined” for p < 0 (it satisfies the
same robustness properties as the leader scaling function). When p is positive, the
q-scaling function has the following function-space interpretation:

ζ f (p,q) = sup{s : f ∈ O
s/p
p,q }.

Note that, for a given q, this analysis is possible only if the data locally belong
to Lq. This can be checked on the wavelet scaling function, since this condition
will be satisfied if η f (q) > 0. On the opposite, if η f (q) < 0, this analysis is not
relevant. We see here another use of the wavelet scaling function, as a preliminary
quantity which is required to be computed before estimating the q-scaling function.
Therefore it plays a similar role as the computation of Hmin

f when dealing with the
multifractal analysis based on wavelet leaders. Note that, as above, a spectrum can
be attached to the q-exponent, and a multifractal formalism worked out, using the
usual procedure; this spectrum is obtained as a Legendre transform of the q-scaling
function, see [28, 29, 32]. An important open question is to understand, for a given
function f , the relationships that exist between these q-spectra, as a function of the
parameter q.
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3.2 Fractional integration

Let us come back to the problem raised at the beginning of Section 3, namely the
introduction of tools adapted to situations where wavelet leaders cannot be used
because the data analyzed are not locally bounded. We mentioned that an alterna-
tive solution is to “smooth” the data, so that the exponent Hmin

f becomes positive.
This can be done through the use of a fractional integration. We now expose this
procedure, both from a theoretical and practical point of view.

Definition 10 Let f be a tempered distribution; the fractional integral of order s of
f is the operator (Id−∆)−s/2 defined as the convolution operator which amounts
to multiply the Fourier transform of f with (1+ |ξ |2)−s/2.

Let φ be a C∞ compactly supported function satisfying φ(x) = 1 for x in a neigh-
bourhood of x0. If f ∈ L1

SG, its local fractional integral of order s is

f (−s) = (Id−∆)−s/2(φ f ). (32)

Note that the function spaces which can be locally defined through the notion
of local fractional integral do not depend on the function φ which is chosen. In-
deed, denote by f (−s)

1 and f (−s)
2 the local fractional integrals of f corresponding to

two different functions φ1 and φ2; f φ1− f φ2 vanishes in a neighbourhood of x0, and
therefore is C∞ in a neighbourhood of x0. The local regularity properties of the oper-
ator (Id−∆)−s/2 imply that (Id−∆)−s/2( f φ1− f φ2) also is C∞ in a neighbourhood
of x0; therefore f (−s)

1 and f (−s)
2 differ by a C∞ function in a neighbourhood of x0.

Numerically, the fractional integration can be replaced by a much easier proce-
dure which shares the same properties in terms of regularity, a pseudo-fractional
integration defined as follows, see [37].

Definition 11 Let s > 0, let ψλ be an r-smooth wavelet basis with r > s+1 and let f
be a function, or a distribution, with wavelet coefficients cλ . The pseudo-fractional
integral (in the basis ψλ ) of f of order s, denoted by Is( f ), is the function whose
wavelet coefficients (on the same wavelet basis) are

cs
λ

= 2−s jcλ .

The following result shows that this numerically straightforward operation re-
tains the same properties as the fractional integration.

Proposition 1 Let f be a function satisfying Hmin
f > 0. Then, for any s ∈ R, the

wavelet scaling functions of Is( f ) and f (−s) coincide. It is also the case for Hölder
exponents or q-exponents:

∀s > 0, ∀x0,∀q ∈ (0,+∞], hq
Is( f )(x0) = hq

f (−s)(x0).

The proof of this result requires to introduce several tools; the first one is the
algebras M γ , which are defined as follows.
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Definition 12 An infinite matrix A(λ ,λ ′) indexed by the dyadic cubes of Rd belongs
to M γ if

|A(λ ,λ ′)| ≤ C 2−( d
2 +γ)( j− j′)

(1+( j− j′)2)(1+2inf( j, j′)dist(λ ,λ ′))d+γ
.

Matrices of operators which map an r-smooth wavelet basis onto another one
belong to these algebras, as soon as γ > r , and more generally matrices (on wavelet
bases) of pseudodifferential operators of order 0, such as the Hilbert transform in
dimension 1, or the Riesz transforms in higher dimensions, belong to these algebras,
see [37]. We denote by O p(M γ) the space of operators whose matrix on a r-smooth
wavelet basis (for r > γ) belongs to M γ . Note that this space does not depend on
the (smooth enough) wavelet basis which is chosen; indeed, the matrix of coordinate
change from one r-smooth wavelet basis to another belongs to M γ if r > γ , so that
the independence is a consequence of the fact that the spaces M γ are algebras.

The second tool that we will need is the notion of vaguelette system.

Definition 13 A set of functions (θλ ) indexed by the dyadic cubes of scale j ≥ 0,
forms a vaguelette system of order s if

• for any j ≥ 1 the vaguelettes θλ of scale j have vanishing moment up to order
s+1, i.e., if, for any multi-index α satisfying |α| ≤ s+1, then∫

θλ (x)xα dx = 0,

• the θλ satisfy the following uniform decay estimates: For any multi-index α sat-
isfying |α| ≤ s+1, then

∀N ∈ N,

∣∣∣∣∂ α θλ

∂xα

∣∣∣∣≤ CN2(α+d/2) j

(1+ |2 jx− k|)N .

Biorthogonal vaguelette bases are couples of Riesz bases θ 1
λ

and θ 2
λ

which are
both vaguelette systems and form biorthogonal bases. Therefore, ∀ f ∈ L2,

f (x) = ∑
λ

c1
λ

θ
2
λ
, where c1

λ
=
∫

Rd
f (x)θ 1

λ
dx.

The notions we introduced are related by the following key property, see [37]:

Proposition 2 Let M be an operator which maps an r-smooth wavelet basis to a
vaguelette system of order r; then, for any for γ < r, M belongs to O p(M γ).

We now turn to the proof of Proposition 1

Proof. It is performed using the wavelet techniques developed in [37], such as
the function spaces characterizations; therefore, we won’t give a complete detailed
proof, but only mention the main lines.
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The first point consists in noticing that the systems

ψ
1
λ

= 2s j(Id−∆)−s/2
ψλ and ψ

2
λ

= 2−s j(Id−∆)s/2
ψλ

are biorthogonal vaguelette systems. This property is straightforward to check on
the Fourier transform ψ1

λ
and ψ2

λ
, which, in this case, are completely explicit.

Note that

Is( f ) = ∑2−s jcλ ψλ and f (−s) = ∑2−s jcλ ψ
1
λ
.

If f is locally bounded, then Is( f ) belongs locally to Cs (because of the wavelet
characterization of Cs);

Assume now that Is( f ) belongs to Cα(x0); the operator that maps ψλ to ψ1
λ

belongs to O p(M γ), and therefore preserves the pointwise wavelet regularity cri-
terium, see [22], and it also preserves the T q

α (x0) regularity, see [14]. Therefore, it
is satisfied by f (−s) and, since the uniform Hölder exponent of f (−s) is positive, the
converse part of the wavelet pointwise regularity criterium implies that it belongs to
Cβ (x0) for any β < α , see [22, 26]. The proof of the converse part is similar, using
the biorthogonality of the ψ1

λ
and ψ2

λ
. ut

As regards signals and images for which Hmin
f < 0, a possibility for applying to

them a multifractal analysis based on the Hölder exponent is to perform on the data
a fractional integration of sufficiently large order t; indeed, the uniform regularity
exponent Hmin

f is always shifted exactly by t, see [30]. This simple property shows
a possible strategy in order to perform the multifractal analysis of a signal which is
not locally bounded: First determine its exponent Hmin

f ; then, if Hmin
f < 0, perform

a fractional integration of order t > −Hmin
f ; it follows that the uniform regularity

exponent of It( f ) is positive, and therefore it is a bounded function. The t-leaders
are

dt
λ

= sup
λ ′⊂3λ

|cλ ′2
−t j′ | (33)

The strategy we sketched leads to the consideration of the following fractional
leader scaling function :

∀p ∈ R,∀t > 0, ζ f (t, p) = liminf
j→+∞

−1
j

log2

2−d j
∑

λ∈Λ j

|dt
λ
|p
. (34)

It can also be given a function-space interpretation: Let p ∈ (0,∞); a function f
belongs to the Oscillation space Os,t

p (Rd) if and only if (c(0)
k ) ∈ lp and

∃C, ∀ j, ∑
λ∈Λ j

[
2(s−d/p) jdt

λ

]p
≤C,

see [25, 27] for properties of these spaces. Then
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ζ f (p, t) = sup{s : f ∈ O
s/p,t
p }.

The Legendre transform of this scaling function is expected to yield, for each t, the
spectrum of singularities of It( f ), see [25].

The strategy developed in this paragraph raises an open question: There is no
canonical choice for the order of fractional integration, (the only condition is that
it has to be larger than −Hmin

f ) and the quantities considered may depend on this
order. This is one of the motivations for understanding how multifractal properties
are modified under fractional integration. We will give some clues on these questions
in Section 4 (see also [5, 30]).

3.3 The q-fractional scaling function

The two strategies developed in the last two subsections correspond to different
answers of the following problem: How to perform a multifractal analysis of non
locally bounded data. They led to the consideration of either q-exponents, or of
fractional integrals. A third option consists in not making a choice but taking ad-
vantage of both strategies, and considering q-exponents of fractional integrals. It
follows from Proposition 1 and the definition of q-leaders (30) that the q-exponent
of a fractional integral of order t is given by a regression on a log-log plot of the
following grand leaders

dt,q
λ

=

 ∑
λ ′⊂3λ j(x0)

∣∣∣2−t j′cλ ′2
−d( j′− j)

∣∣∣q 2−d j′

1/q

. (35)

Not surprisingly, one can associate function spaces to grand leaders: Let p,q ∈
(0,∞); a function f belongs to the Oscillation space Os,t

p,q(Rd) if and only if

∃C, ∀ j ≥ 0, ∑
λ∈Λ j

[
2(s−d/p) jdt,q

λ

]p
≤C.

The grand scaling function is defined by

∀p ∈ R, ζ f (t, p,q) = liminf
j→+∞

−1
j

log2

2−d j
∑

λ∈Λ j

|dt,q
λ
|p
.

Note that the computation of the grand leaders require that f−t locally belongs to
Lq. Once again, this can be checked on the wavelet scaling function of f : This
requirement will be fulfilled as soon as

η f (q) >−qt. (36)
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Note that, in that case too, ζ f (t, p,q) is “well defined” for p < 0 (it satisfies the
same robustness properties as ζ f (p)). When p is positive, the grand scaling function
has the following function space interpretation:

ζ f (t, p,q) = sup{s : f ∈ O
s/p,t
p,q }.

The derivation proposed by Parisi and Frisch can be adapted to the previous
settings; indeed, as soon as a scaling function is supplied, one can derive a multi-
fractal formalism, with corresponding upper bounds, following a general abstract
procedure which was developed in [31]. We mention what it yields only in the most
general setting supplied by the grand scaling function (actually, the other settings
developed in Sections 3.1 and 3.2 can be considered as subcases). Let

E f (H,q, t) = {x0 : hq
f−t (x0) = H}.

The corresponding grand multifractal formalism asserts that the grand spectrum
d f (H,q, t) := dim(E f (H,q, t)) can be deduced from the grand scaling function by a
Legendre transform

∀H,q, t, d f (H,q, t) = inf
p∈R

(d +H p−ζ f (t, p,q)).

Using either the scaling function ζ f (t, p,q) or its Legendre transform d f (H,q, t)
gives a very complete information on the nature of the pointwise singularities of f ,
and a rich tool for classification. However, by construction, it cannot yield informa-
tion on the dimensions of the sets where two different exponents take given values.
Such information requires the construction of grand canonical formalisms. Let us
now explain in a general setting how they can be derived.

4 An introduction to the grand canonical formalism

A common feature shared by (21), (24), and (29) is that all the pointwise exponents
we considered can be deduced from a countable number of quantities eλ indexed by
the dyadic cubes, and the derivation is performed on a log-log plot bearing on the
cubes that contain the point x0. In the measure case, eλ = µ(3λ ), in the pointwise
Hölder case, eλ = dλ , and in the T p

α (x0) case, eλ = dp
λ

, so that the general setting in
which we work in this section will cover all the previous cases we already consid-
ered. These examples all fit in the following general framework for collections of
positive quantities eλ indexed by the dyadic cubes:

• The eλ are increasing i.e., if λ ′ ⊂ λ then eλ ′ ≤C · eλ .
• A pointwise exponent is associated with the (eλ ):

h(x0) = liminf
j→+∞

−1
j
log2

(
eλ j(x0)

)
(37)
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Grand canonical formalisms are fitted to situations where a couple of such expo-
nents is considered: For example, they may correspond to the wavelet leaders of two
functions f and g, in which case we will be interested in elaborating a multifractal
formalism which yields the dimensions of the sets of points where each exponent
takes a given value, or they may correspond to two different exponents associated
with the same function. One important example is the couple formed by the Hölder
and the oscillation exponents. Before deriving the grand canonical formalism, we
recall the motivation for studying oscillation exponents.

4.1 Oscillation exponents: Discussion of possible definitions

All notions of pointwise singularity which have been considered are variants on the
notion of “regularity exponent”, which, roughly speaking, associates the exponent
γ to the singularity |x− x0|γ at x0, at least if γ > 0 (and γ /∈ 2N), see [29, 38] for
explicit general definitions of the notion of regularity exponent); such exponents
include the (most widely used) Hölder exponent (see definition 6), the q-exponent
(see definition 9), and the weak-scaling exponent, see [38]. However, one can wish
to have information on how the function considered oscillates near the singularity
at x0: Consider for instance the “chirps”

Fγ,β (x) = |x− x0|γ sin
(

1
|x− x0|β

)
, (38)

for a given regularity γ , their oscillatory behavior in the neighbourhod of x0 in-
creases with β ; in this example, β parametrizes a “degree of oscillation”. (Note that
the case β = 0, i.e., Fγ,0(x) = |x− x0|γ is usually referred to as a “cusp”). We will
use a refined description of singularities by introducing an additional “oscillation”
parameter, that allows to draw distinctions between functions which share the same
Hölder exponent. Measuring such an additional exponent rises additional difficul-
ties, one of them being that several mathematical definitions have been proposed,
yielding different types of information.

One motivation for the detection of singularities such as (38) is that the exis-
tence of such behaviors has been conjectured in some physical data, such as fully
developed turbulence. Another motivation is an internal mathematical requirement
in multifractal analysis: We saw that one is often obliged to compute a fractional
integral of the signal before performing its multifractal analysis. In that case, the
singularity sets can be modified is a way which is difficult to predict if singularities
such as (38) are present in the signal. Therefore understanding what multifractal
analysis yields in this case requires the consideration of such behaviors.

We wish to describe strong local oscillations which display the same qualitative
feature as in (38). A clue is supplied by the following remark. Let γ > 0, be given
and let us estimate the primitive of (38). Since
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0
|t− x0|γ sin

(
1

|t− x0|β

)
dt =

∫ x

0

|t− x0|γ+β+1

β

(
cos
(

1
|t− x0|β

))′
dt,

it follows that, in the neighbourhood of x0, this integral is the sum of

|x− x0|γ+β+1

β
cos
(

1
|x− x0|β

)
and higher order terms; thus the Hölder exponent of Fγ,β is γ , but the Hölder expo-
nent of its primitive is γ +β +1; thus one can reasonably expect that the oscillation
exponent can be recovered by comparing the regularity exponents of f and of its
primitive.

Before proposing a precise mathematical procedure which allows to recover β ,
let us mention a natural requirements that a notion of “oscillation exponent” should
satisfy in order to be of practical use. The definition proposed should allow for
possible superpositions and “mixtures”; indeed, in the spirit of multifractal analysis,
we do not expect these local behaviors to appear only in an isolated, “perfect” form
as in (38), but rather for a dense set of values of x0, and with possible corruptions by
noise. Therefore one should find a key feature of (38) that characterizes the exponent
β , and use it as a general definition of oscillating singularity. We noticed that β

should be recovered by comparing the regularity exponents of f and of its primitive.
We will need a slight extension of this remark in order to obtain a definition of
oscillation exponent which fulfills this requirement. For that purpose, we will use
the notion of local fractional integral already considered. The Hölder exponent of
the local fractional integral of f of order s at x0 is called the fractional Hölder
exponent of f at x0 and denoted by

hs
f (x0) = h f (−s)(x0).

Lemma 3 The definition of hs
f (x0) does not depend on the function φ which is cho-

sen.

The proof is similar to the proof of Proposition 1. Properties of the fractional
Hölder exponent have been investigated in [8, 35]. In particular one can show that it
is a concave function.

It follows from the concavity of the fractional Hölder exponent that

either ∀s > 0, hs
f (x0) = +∞ or ∀s > 0, hs

f (x0) < +∞;

an example of the first case is given by

|x− x0|α sin
(

exp
(

1
|x− x0|

))
,

where the Hölder exponent at x0 is α , but, as soon as s > 0, then hs
f (x0) = +∞. When

this first occurrence happens, the oscillation exponent should clearly be set to +∞.
Therefore, in the sequel, we suppose that the second case occurs. The definition of
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the oscillation exponent that we will choose is motivated by the simple but important
remark that follows.

Lemma 4 Let f : R→ R be a locally bounded function, and let s be a positive
integer. Denote by Is

f an iterated primitive of order s of f ; then

hs
f (x0) = hIs

f
(x0).

Proof. Since the result is clearly local, we can assume that f is supported in a neigh-
bourhood of x0, and therefore belongs to L2, which allows to use the Fourier trans-
form without any restriction, and also allows to assume that φ = 1 in the definition
of the local fractional integral. Up to a polynomial term, one derives Is

f from f
by multiplying f̂ by (iξ )−s; this iterated primitive has the same Hölder exponent
as the one obtained using |ξ |−s instead. Indeed, the corresponding operators are
either the same (up to a multiplicative constant), or deduced from each other by
an Hilbert transform (the Fourier multiplier by sign (ξ )). In addition, applying the
Hilbert transform does not modify the pointwise Hölder exponent since f (−s) has an
exponent Hmin which is positive, see [22]. The result follows by noticing that

1
(1+ |ξ |2)s/2 −

1
|ξ |s
∼ C
|ξ |s+2 when |ξ | →+∞,

and therefore the corresponding operator is a uniformly smoothing operator which,
for any α ∈ R, maps Cα(R) to Cα+s+2(R). Therefore,

h f (−s)−Is
f
(x0)≥ 2+ sup(h f (−s)(x0),hIs

f
(x0)),

and we get h f (−s)(x0) = hIs
f
(x0). ut

It follows from this lemma that results in dimension 1 which are checked by hand
through the computation of primitives can then be extended to any dimension and
to the non-integer case by using fractional integrals; for instance, let us check that

∀s≥ 0, hs
Fγ,β

(x0) = γ +(1+β )s, (39)

where Fγ,β was defined by (38). Indeed, a straightforward integration by parts shows
that this result holds for iterated primitives, and thus, using Lemma 4, it also holds
for fractional integrals of integer order; the result for all s follows from the concavity
of the fractional Hölder exponent. Therefore, a natural definition for the oscillation
exponent of an arbitrary function at x0 should use the slope of the function

s→ hs
f (x0). (40)

In the case of Fγ,β , this function is linear, and the definition is unambiguous; how-
ever, it is not always the case, and one can show (see [8, 35]) that, in general, func-
tions defined by (40) only satisfy the following properties:
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Proposition 3 Let f : Rd → R be a locally bounded function, and let x0 ∈ Rd . The
function s→ hs

f (x0) is concave; therefore it has everywhere a left and a right deriva-
tive. These derivatives satisfy

∀s≥ 0,
∂ (hs

f (x0))

∂ s
≥ 1.

Furthermore, these properties characterize fractional Hölder exponents.

It follows from this characterization that hs
f (x0) is, in general, not a linear func-

tion of s, and therefore many choices are possible for its slope. In practice, only two
choices have been used up to now, leading to two different exponents:

• The chirp exponent (choice of the slope “at infinity”)

γ f (x0) = lim
s→+∞

∂

∂ s
(hs

f (x0))−1, (41)

• the oscillation exponent (choice of the slope “at the origin”)

β f (x0) = lim
s→0

∂

∂ s
(hs

f (x0))−1, (42)

(see [33] for properties associated with chirp exponents, and [8] for properties asso-
ciated with oscillation exponents). The drawback of using (41) is that this notion is
very unstable: If g is an arbitrary smooth (but not C∞) function, one can have

γ f (x0) = Γ > 0 but γ f +g(x0) = 0.

A simple example of this phenomenon is given by the functions: f (x) = xsin(1/x)
and g = |x|a for an a /∈ 2N and large enough. Thus, the chirp exponent does not
satisfy the natural requirement of stability under the addition of smooth noise.

4.2 Properties and wavelet estimation of the oscillation exponent

The instabilities mentioned above cannot occur when using the oscillation exponent
as shown by the following result, which states that, as soon as one imposes this
stability requirement, then the choice of β f (x0) is canonical.

Proposition 4 Let f be a locally bounded function satisfying: ∀s > 0, hs
f (x0) < +∞.

Then β f (x0) is the only quantity which satisfies the following properties:

• It is deduced from the function s→ hs
f (x0).

• If hg(x0) > h f (x0), then β f +g(x0) = β f (x0) (the oscillation exponent of f
is not altered under the addition of a function which is smoother than f ).

• It yields the exponent β for the functions Fγ,β .
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Proof. Let us first check that the oscillation exponent satisfies these properties. We
only have to check the second one; indeed, the first one follows from the definition,
and the last one has already been proved. Because of the finiteness assumption for
hs

f , and its concavity, it is a continuous function; therefore, it remains strictly smaller
than hg(x0) in a small neighbourhood of x0, and thus

∃η > 0 : ∀s < η , hs
f (x0) < hs

g(x0),

so that hs
f +g(x0) = hs

f (x0).
Let us now prove the converse result. The stability requirement implies that the

quantity considered cannot be a function of hs
f (x0) for an s > 0; therefore it is a

“germ property” at s = 0, and therefore, a function of the value at 0 of the function
s→ hs

f (x0) and its derivatives. Since hs
f (x0) can be an arbitrary concave function,

higher order derivatives do not exist in general; therefore, only h f (x0) and the first
derivative can be involved. Finally, the fact that the exponent takes the value β for
the functions Fγ,β implies that it is given precisely by (42). ut

Remarks: In practice, one cannot directly measure the oscillation exponent since
it involves the estimation of how the Hölder exponent evolves under a fractional in-
tegration of “infinitesimal” order, and one rather estimates the evolution under a
fractional integration of given fixed order s, thus obtaining the s-oscillation expo-
nent:

β f (s,x0) =
hs

f (x0)−h f (x0)

s
−1. (43)

Because of the concavity of hs
f (x0),

∀s > 0, γ f (x0)≤ β f (s,x0)≤ β f (x0)

and
β f (s,x0) = 0 ⇐⇒ β f (x0) = 0. (44)

Note that the general definition of a cusp singularity at x0 is given by the condition:
β f (x0) = 0.

Note that (44) is of practical importance for the following reason: If one is in-
terested in a qualitative information such as the existence or absence of oscillating
singularities (and not the precise values taken by β f ), then, (44) shows that, in prac-
tice, one may as well work with the s-oscillation exponent rather than the oscillation
exponent in order to obtain the required information.

We now recall the characterization of oscillating singularities, that was discov-
ered by J.-M. Aubry, cf [10]. It makes use of the following notion introduced in
[33], which is a natural generalization (in particular to higher dimensions) of the
oscillating behavior of the sine function.

Definition 14 A function g ∈ L∞(Rd) is called indefinitely oscillating if and only if
∃ω ∈S (Rd) such that such ∀N ∈ N, g can be written
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g = ω + ∑
|α|=N+1

∂
α gα

with each gα ∈ L∞(Rd).

J.-M. Aubry proved that, if h < h f (x0) and if f has oscillating exponent β , then
f can be written, in the neighbourhood of x0 as

f (x) = |x− x0|hg
(

x− x0

|x− x0|β+1

)
+ r(x),

where g is indefinitely oscillating, and r is smoother than the first term at x0 (see
[10]) for a more precise statement).

4.3 Derivation of β -leaders

Let us now show how, heuristically, one can derive quantities similar to leaders, that
would yield the oscillation exponent on a log-log plot. Let us work out the general
heuristic that backs the derivation of a multifractal formalism in the specific setting
of the oscillation exponent (for the derivation in the initial setting of the Hölder
exponent, see the seminal paper [43], and for a derivation in a dyadic setting adapted
to the wavelet framework, see [26, 31]). We wish to express the oscillation exponent
by a condition bearing on wavelet leaders. Recall that the leaders associated with the
fractional integral of order t are the t-leaders (33).

It follows from Proposition 1 that

hs
f (x0) = liminf

j→+∞

 log
(

ds
j(x0)

)
log(2− j)

 , (45)

therefore, the oscillation exponent can be derived from the ds
λ

according to (42).
We will need the following notations. The first one is a weak form of the O

notation of Landau: If F and G are two functions which tend to 0, F = O(G) if

liminf
log |F |
log |G|

≥ 1,

and the second one expresses the fact that two functions are of the same order of
magnitude, disregarding “logarithmic corrections”:

F ∼ G if lim
log |F |
log |G|

= 1.

The following proposition is a consequence of the previous remarks.
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Proposition 5 Let f be such that Hmin
f > 0. The oscillating singularity exponents of

f at x0 are (h,β ) if and only if its wavelet leaders satisfy the following conditions:

1. d j(x0) = O
(
2−h j

)
,

2. there exists a sequence jn→ ∞ such that

d jn(x0)∼ 2−h jn , (46)

3. there exists a sequence λ ′n ⊂ 3λ jn(x0) such that:{
j′n = (1+β ) jn +o( jn)
|cλ ′n | ∼ d jn(x0),

(47)

4. β is the smallest number such that (47) holds.

Remarks: The last condition means that the supremum in the definition of the
wavelet leader d jn(x0) is “almost” attained at a scale close to (1+β ) j.

Let s > 0 small enough be given. If f has an oscillating singularity with expo-
nents (H,β ) at x0 then its wavelet leaders satisfy d j(x0) ∼ 2−H j and its integrated
wavelet leaders satisfy ds

j(x0) ∼ 2−(H+s(1+β )) j By elimination, this allows to con-
struct quantities that will scale like 2−β j in the limit of small scales: the β -leaders

Bs
λ

= 2 j
(ds

j(x0)
d j(x0)

)1/s

,

and we expect that, if β is the oscillation exponent at x0, then, for s small enough,

Bs
λ
∼ 2−β j. (48)

4.4 Derivation of grand canonical formalisms

We now come back to the general setting supplied by two pointwise exponents given
by the rate of decay, on a log-log plot, of two quantities eλ and fλ indexed by dyadic
cubes. In order to derive a multifractal formalism for this couple of exponents, fol-
lowing the path suggested by the grand canonical formalism in statistical physics,
we consider the following structure function

S j(p,q) = 2−d j
∑

λ∈Λ j

(eλ )p( fλ )q.

The associated scaling function is

η(p,q) = liminf
j→+∞

(
log(S j(p,q))

log(2− j)

)
(49)
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We will reformulate the fundamental idea due to G. Parisi and U. Frisch in this
general setting. These authors gave an interpretation of the nonlinearity of the scal-
ing function as the signature of the presence of different pointwise exponents (see
[43] and also [21] for applications, particularly in the setting of invariant measures
of dynamical systems).

The following notion of spectrum is adapted to the simultaneous consideration
of two exponents.

Definition 15 Let (eλ )λ∈Λ and ( fλ )λ∈Λ be increasing dyadic functions, and let

EH1,H2 = {x : he(x) = H1 and h f (x) = H2}.

The spectrum of singularities associated with the (eλ )λ∈Λ is the function d(H1,H2)
defined by

d(H1,H2) = dim(EH1,H2).

The support of the spectrum is the set of values (H1,H2) for which EH1,H2 6= /0.

Let us now show heuristically how the spectrum of singularities can be recovered
from the scaling function. The definition of the scaling function (49) means that,

when j→+∞, S j(p,q)∼ 2−η(p,q) j.

Let us estimate the contribution to S j(p,q) of the dyadic cubes λ that cover the
points of EH1,H2 . By definition of EH1,H2 , they satisfy

eλ ∼ 2−H1 j and fλ ∼ 2−H2 j;

by definition of d(H1,H2), since we use cubes of the same width 2− j to cover EH1,H2 ,
we need about 2−d(H1,H2) j such cubes; therefore the corresponding contribution is
of the order of magnitude of

2−d j2d(H1,H2) j2−(H1 p+H2q) j = 2−(d−d(H1,H2)+H1 p+H2q) j.

When j→+∞, the main contribution comes from the smallest exponent, so that

η(p,q) = inf
H

(d−d(H1,H2)+H1 p+H2q). (50)

In the next section, we will show that the scaling function η(p,q) is a concave
function on R, which is in agreement with the fact that the right-hand side of (50)
necessarily is a concave function (as an infimum of a family of linear functions) no
matter whether d(H1,H2) is concave or not. However, if d(H1,H2) also is a concave
function, then the Legendre transform in (50) can be inverted (as a consequence of
the duality of convex functions), which justifies the following assertion:

Definition 16 A sequence (eλ , fλ ) follows the multifractal formalism if its spectrum
of singularities satisfies
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d(H1,H2) = inf
(p,q)∈R2

(d−η(p,q)+H1 p+H2q). (51)

The derivation exposed above is not a mathematical proof, and we do not ex-
pect (51) to hold in complete generality. However, in applications, it often happens
that the spectrum of singularities itself has no direct interpretation and multifractal
analysis is only used as a classification tool in order to discriminate between several
types of signals; when such is the case, one is no more concerned with the validity
of (51) but only with having its right-hand side defined in a numerically precise way.

Note that, in the specific case where the couple of exponents considered is the
Hölder exponent and the oscillation exponent, one applies the above general deriva-
tion using wavelet leaders and β -leaders. This justifies the grand-canonical multi-
fractal formalism proposed in [5, 30].

4.5 Concavity of the scaling function

We will now prove that the function η is concave on R2, a property that was used in
the derivation of the multifractal formalism

Proposition 6 The function η defined by (49) is concave on R2.

In order to prove Proposition 6, we will need the following lemma.

Lemma 5 Let (ai)i∈N and (bi)i∈N be sequences of positive real numbers. The func-
tion ω : R2 −→ R (= R∪{+∞,−∞}) defined by

ω(p,q) = log

(
∑
i∈N

ap
i bq

i

)

is convex on R2.

Proof. We need to check that ∀(p,q),(p′,q′) ∈ R2, ∀α ∈]0,1[,

ω
(
α(p,q)+(1−α)(p′,q′)

)
≤ αω(p,q)+(1−α)ω(p′,q′). (52)

Consider the sequences

A =
(
(ap

1bq
1)

α , ...(ap
Nbq

N)α , · · ·
)

and B =
(
(ap′

1 bq′
1 )1−α , ...(ap′

N bq′
N )1−α , · · ·

)
;

Hölder’s inequality applied with the conjugate exponents 1/α and 1/(1−α) yields

∞

∑
i=1

aα p+(1−α)p′
i bαq+(1−α)q′

i ≤

(
∞

∑
i=1

ap
i bq

i

)α(
∞

∑
i=1

ap′
i bq′

i

)1−α

.

Taking logarithms on both sides of this inequality yields (52). ut
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We will now show that η is concave on R2. For each j, one applies Lemma 5 to
the sequences (eλ ) and ( fλ ). We obtain that, for any j ≥ 0, the function

(p,q)→ log

2−d j
∑

λ∈Λ j

dp
λ

f q
λ


is convex; therefore, after dividing by log(2− j) < 0, we obtain a concave function;
since concavity is preserved by taking infimums and pointwise limits, the concavity
of the scaling function follows.

5 Concluding remarks

Let us summarize the whole strategy that we proposed in order to find the relevant
multifractal parameters attached to an image. The first step consists in computing
the wavelet scaling function η f (q) defined for q > 0 by (14), and the additional
parameter supplied by the uniform Hölder exponent Hmin

f defined by (17); note that
these parameters can be computed in all cases, without any regularity assumption
on the data. They can be used for classification: For instance preliminary studies
made on a collection of natural textures show that their exponents Hmin

f may widely
differ, and therefore that it is a pertinent classification parameter, see [46, 47, 48].

These parameters also serve another purpose as a preliminary step in order to go
further: Hmin

f allows to determine if the leader scaling function (defined by (22)) is
well defined: It is the case if Hmin

f > 0. This scaling function has already proved
useful in many situations: A particularly striking example is supplied by deciding
which models for fully developed turbulence are relevant, see [34] : This is a typical
situation where Hmin

f and η f (q) are not discriminatory (for p > 0, several models
fit the experimental values measured on turbulent data); on the other hand, the fact
that ζ f (p) is defined for negative values of p yields a range of parameters on which
discrimination can be efficiently performed (note that this is in sharp distinction
with the wavelet scaling function, which is defined only for p > 0). This example
also shows the importance of using the corresponding parameters despite the fact
that they do not have a function space interpretation, which is the case of scaling
functions associated with negative ps, see [3, 4].

If Hmin
f < 0, then we have the choice between two strategies. One consists in per-

forming a pseudo-fractional integration of order larger than −Hmin
f , so that the new

signal has a positive uniform Hölder exponent. This strategy has been successfully
applied to images, and yields a set of parameters which are well defined, and also
proved useful for classification, see [46, 47, 48].

On the other hand, this method is not universal, and one can easily check on
the following toy examples why this strategy may have for consequence a loss of
information on the nature of the singularities present in the signal. Consider for
instance the function
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F(x) = |x− x1|α sin
(

1
|x− x1|β

)
+ |x− x2|δ +Bγ(x),

where Bγ is a Fractional Brownian Motion (FBM) of order γ ∈ (0,1). We assume
that 0 < α < γ , and−1 < δ < 0 so that F ∈ Lp

loc as soon as α >−1/p. Since δ < 0,
then, the computation of wavelet leaders cannot be performed, and a fractional in-
tegration of order t > −δ is required so that Hmin

It ( f ) > 0. But if α + t(1 + β ) > γ ,
then this fractional integration make the oscillating singularity disappear, since its
exponent becomes larger that the exponent of the integrated FBM. It is easy to check
that such situations do happen: If α > γ +δβ , then either the order of fractional in-
tegration is too small, and the wavelet leaders are not well defined, or it is too large,
and the oscillating singularity has been too much smoothed, and cannot be detected.
This example shows that performing a fractional (or pseudo-fractional) integration
has the effect of smoothing the data, and can make the oscillating singularities dis-
appear in the presence of noise. Therefore, a better strategy in order to detect the
presence of oscillating singularities can be to deal with a q-scaling function of the
signal; in the more favorable cases, we won’t have to perform any fractional inte-
gration at all, because, for some values of q, η f (q) > 0. It is the case in the example
we picked, since δ > −1; see also [46, 47, 48] for examples taken from natural
textures where Hmin

f is negative, but nonetheless, the wavelet scaling function takes
positive values. In the worst cases where η f (q) is negative for all values of q, then
one has to perform a fractional integration; however, one can use the grand scaling
function for values of the fractional integration parameter t which are smaller than
when dealing with leaders, and thus less information concerning the presence of
oscillating singularities will be lost. The previous example showed the relevance of
the computation of the wavelet scaling function of f : If, for a given q, η f (q) > 0,
then the q-scaling function (defined by (31)) is well defined for this value of q. The
determination of this scaling function has also been advocated as a useful tools in
order to perform a multifractal analysis of fractal boundaries, see [32]. Therefore,
this discussion shows situations where the q scaling function can be required in or-
der to perform a multifractal analysis, and even situations where the grand scaling
function proves necessary.

We are particularly thankful to the anonymous referee for many useful comments,
and to Maı̈tine Bergounioux for for her constant help and encouragements during
the redaction of this text.
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42. S. Osher, A. Solé, L. Vese (2003) Image decomposition and restoration using total variation
minimization and the L1 norm. Multiscale Model Simul., 1, pp. 349–370

43. G. Parisi, U. Frisch(1985) On the singularity structure of fully developed turbulence; ap-
pendix to Fully developed turbulence and intermittency, by U. Frisch; Proc. Int. Summer
school Phys. Enrico Fermi, North Holland, pp. 84–88 .

44. L.I. Rudin, S. Osher, E. Fatemi, (1992) Nonlinear total variation based noise removal algo-
rithms. Physica D, 60, pp. 259–268.

45. A. Seeger (1989) A note on Triebel-Lizorkin spaces, Approximation and Function spaces,
Banach Center Publications, 22, pp. 391–400.

46. H. Wendt, P. Abry, S. Jaffard (2007)Bootstrap for Empirical Multifractal Analysis IEEE Sig-
nal Proc. Mag., 24, no. 4, pp. 38–48 .

47. H. Wendt, P. Abry S. Roux, S. Jaffard, B. Vedel (2009) Analyse multifractale d’images:
l’apport des coefficients dominants Traitement du Signal, vol. 25, no. 4-5, pp. 47–65.

48. H. Wendt, S. Roux P. Abry, S. Jaffard (2009) Wavelet leaders and Bootstrap for multifractal
analysis of images Signal processing, 89, pp. 1100–1114.




