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ABSTRACT

Multifractal analysis is considered a promising tool for image processing, notably for
texture characterization. However, practical operational estimation procedures based on
a theoretically well established multifractal analysis are still lacking for image (as
opposed to signal) processing. Here, a wavelet leader based multifractal analysis, known
to be theoretically strongly grounded, is described and assessed for 2D functions
(images). By means of Monte Carlo simulations conducted over both self-similar and
multiplicative cascade synthetic images, it is shown here to benefit from much better
practical estimation performances than those obtained from a 2D discrete wavelet
transform coefficient analysis. Furthermore, this is complemented by the original
analysis and design of procedures aiming at practically assessing and handling the
theoretical function space embedding requirements faced by multifractal analysis. In
addition, a bootstrap based statistical approach developed in the wavelet domain is
proposed and shown to enable the practical computation of accurate confidence
intervals for multifractal attributes from a given image. It is based on an original joint
time and scale block non-parametric bootstrap scheme. Performances are assessed by
Monte Carlo simulations. Finally, the use and relevance of the proposed wavelet leader

and bootstrap based tools are illustrated at work on real-world images.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction: multifractal analysis for image
processing

Nowadays, in a large number of applications of very
different natures, the data collected by sensors for analysis
consist of images, i.e., they are naturally bi-dimensional
signals. This is mostly due to the recent and significant
progresses achieved in digital sensor, fast rate and high
resolution camera and video camera design. For a number
of these applications the corresponding statistical analysis
of the images amounts to performing texture character-
ization. This is the case notably for clouds or rainfalls
analyses in geophysics [1-3], bio-medical diagnosis for
human body rhythms or structure (bones, tissues, mam-
mography, etc.) [4-6], universe or galaxy structures in
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astronomy [7], growth phenomena in physics [8,9] or
texture classification in computer vision [10,11], to name
but a few examples.

Texture characterization is now often envisaged by
measuring the fluctuations (with respect to space) of the
regularity of the amplitude of the image. There is an
increasing number of research articles suggesting that
regularity characterization should be conducted within
the mathematical framework of multifractal analysis
(MA). In practice, MA is quasi-systematically performed
using the coefficients of continuous [12] or discrete [13,14]
wavelet transforms. The regularity fluctuations are then
inferred from the behavior in the limit of fine scales of the
(sample mean estimators of the) moments of order q.
However, surveying the literature related to applications,
one realizes that image MA suffers from two major limi-
tations: It remains either incomplete, as it is simplified to
the computation of Fourier spectra (via classical standard
spectral estimation) or of wavelet coefficients variograms
(regression of the variance against the scales), i.e., for both
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cases, of a second order statistical quantity only (e.g.,
[15]); or it is reduced to the analyses of collections of 1D
slices of data instead of real 2D images (e.g., [16]).

The reasons for this are mostly associated to the
theoretical requirement that a complete MA involves,
namely a variety of negative statistical orders q as well as
positive ones [17,18]. However, wavelet coefficients, by
nature, consist of quantities that mostly concentrate
around 0, rendering the numerical computation of
negative ¢ moments extremely unstable or even theore-
tically infinite. To overcome this limitation, using the
modulus maxima of a continuous wavelet transform
(MMWT) has been proposed for the 1D case [12]. This
method relies on the determination of the coefficients of a
continuous wavelet transform (CWT), from which a
skeleton, consisting of maxima along scales lines, is
extracted [19]. The wavelet coefficients living on this
skeleton are then involved in the computation of the
fluctuations of the image regularity. For details, the reader
is referred to [12]. This technique has been further
extended to image analysis, at the price though of
significant computational (2D-CWT + 2D-Skeleton) and
conceptual complexities (maxima lines become maxima
manifolds) [20]. Therefore, it remains hardly ever used for
images (see, a contrario, [20]). In addition to the practical
difficulties related to its implementation, the MMWT
approach, be it 1D or 2D, despite its showing satisfactory
experimental performances, is still lacking a theoretical
mathematical support.

Recently, an alternative approach has been proposed
[14,17]: the wavelet leader (WL) MA. This method is
theoretically backed up by a strong mathematical frame-
work [14,17,21,26]. Also, its being defined from an
(orthonormal) discrete wavelet transform (DWT) enables
reasonably easily its theoretical and practical extensions
to higher dimension [14,21]. It has been shown to be one
of the best available tools for (1D) signals, enabling a
relevant and general MA of empirical data, with both
excellent theoretical properties and statistical perfor-
mance [22].

Therefore, elaborating on theoretical results proven for
functions in R" and recently published in [14,17,21,26], the
first goal of the present contribution is to provide
practitioners with an explicit formulation of a 2D WL
based MA that can actually be applied to real-world
images. To this end, Section 2 reviews the key notions
underlying MA, introduces the 2D WL MA, and details the
corresponding practical estimation procedures. In addi-
tion, the validity and practical relevance of these 2D MA
procedures are assessed in the present work by numerical
simulation studies of their estimation performance in
Sections 6.1 and 6.2. The performances of the proposed
procedures is shown to compare very favorably to those
obtained from wavelet coefficients. The synthetic self-
similar and multiplicative cascade images used in Monte
Carlo simulations are described in Section 5.

The second goal of the present contribution is to further
complement the theoretical understanding of a compre-
hensive use of the WL MA. For this, we address a number
of theoretical issues, related to which function space data
are embedded in, and constituting mandatory prerequi-

sites in the derivation of the WL based MA, as well as for
any other procedure aiming at performing a MA of images
or signals. Notably, the WL MA is well-defined for
bounded functions only. However, a digital image con-
sisting of an intensity local average can naturally be seen
as the approximation—at a given resolution level—of a
positive measure, and there is hence no a priori guarantee
for it to belong to the space of bounded functions.
Section 3 addresses such issues and proposes tools for
an a priori analysis aiming at enabling the characteriza-
tion of which function space the data belong to, and
solutions to handle the bounded function requirement.
This part has practical implications for the validation of
many image processing models, where an a priori
assumption is made on the function spaces that contain
the image. The proposed solutions are supported by
mathematical proofs, whose founding arguments are
reported in Section 3 (yet in Section 3.3 detailed versions
of some proofs are beyond the scope of the present article
and will be published independently in a theoretically
oriented journal, see [34]). The performances of the
proposed procedures is assessed numerically. Also, their
practical relevance and usefulness are supported through
the examination of the large reference texture image
database used in [11].

In the use of MA in actual applications, practitioners
are potentially as much interested in the confidence that
should be granted to the estimates as in the value of the
estimates themselves. However, the (asymptotic) statis-
tical performances of the estimation procedures for
multifractal attributes—and hence the design of confi-
dence intervals are beyond analytic derivation, mostly
because of the involved statistical properties of multi-
fractal images. To overcome such limitations, we recently
proposed, for 1D signal, the use of non-parametric boot-
strap techniques [23,24], applied in the wavelet domain
[22,25]. Therefore, the third goal of the present contribu-
tion is to define an original bootstrap scheme that
matches the 2D WL MA and to validate its performances
in producing confidence intervals for multifractal attri-
butes from a single image. This 2D scheme differs from
the 1D one proposed earlier insofar as it consists of a joint
time and scale block bootstrap procedure, designed to
better account for the naturally joint time and scale
correlation structure of wavelet coefficients and WLs. This
bootstrap approach is detailed in Section 4. The statistical
performances of this bootstrap scheme, its relevance and
usefulness are assessed numerically and discussed in
Section 6.3.

The relevance and practical use of the multifractal
leader and bootstrap based analysis framework proposed
here is illustrated at work on a real-world image (cf.
Section 6.4). Also, comments and discussions related to
the general applicability to images conditions of the
proposed leader and bootstrap based MA procedures are
proposed in Section 6.5.

2. Multifractal formalism and wavelet leader

This section aims at providing to practitioners in image
processing actual procedures to conduct relevant MA of
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real-world images. It is based on general theoretical
results published in [14,17,21,26] and makes explicit their
formulation and use for images.

2.1. Multifractal spectrum

Let X(t):teR? - X e R denote the function to be
analyzed, assumed to belong to the space of bounded
functions. For an image, d = 2 and the variable t = (x1,x3)
is commonly referred to as the space variable. MA consists
in describing the local regularity of X(t), around ty, by
comparing X(ty) against a local power law behavior:
IX(t) — Pg, ()| <Ct — tp|*, with «>0, and where C>0 and
P is a polynomial such that deg(P)<o. The Holder
exponent h(ty) is the largest such exponents o«. The
fluctuations of h with respect to t are usually described
via the multifractal spectrum. It collects the Hausdorff
dimensions of the sets of positions t, for which the Holder
exponents take the same value : Z(h) = dimy{t : h(t) = h}.
Because of its being a Hausdorff dimension, the multi-
fractal spectrum is confined to 0< 2(h) <d. By convention,
9(h) = —oco for the Holder exponents that are not present
in X. For theoretical introductions to MA, the reader is
referred to e.g., [17,18].

If X is a bounded function, its Holder exponent is
necessarily non-negative, so that 2(h) = —oco,vh<0. For
ease of exposition, we hereafter only consider images that
are uniformly singular, which implies that the Holder
exponent is bounded from above, see [26]. From a
practical point of view, MA consists in estimating Z(h)
from the finite size image under analysis. This is
commonly achieved via the so-called multifractal formal-
isms. The WL MA is defined in the next section.

2.2. Wave leader multifractal analysis

Wavelet coefficients: Let Ho(k), Go(k) denote the (low-
pass and high-pass, respectively) quadrature mirror filters
defining a 1D orthonormal DWT. The underlying mother
wavelet possesses N,>1 vanishing moment(s). A 2D
orthonormal DWT can be defined via the use of four bi-
dimensional filters G(m)(lq,kz), m=20,1,2,3 obtained as
products of Hy and Go. By convention, Gk, ky) =
Ho(k1)Hq(ky) corresponds to the 2D low-pass filter provid-
ing a lower approximation, while G™, m = 1,2, 3, corre-
spond to the high-pass filters yielding the wavelet
coefficients. Let {X(kq,kz), k1 =1,...,N1,kx =1,...,Ny}
denote the 2D gray level digitized image to be analyzed,
regarded as a sampled version of X(x1, x,). The 2D wavelet
coefficients D" (j, k1, k), m = 1,2,3, are obtained by, first
(i=1), convolution of G™(ky,ky), m=0,1,2,3 with
{X(ky,ky)} and down-sampling, and then (j>2) iterative
convolution of G™(k,k;), m=0,1,2,3 with D —
1,kq,ky) and down-sampling. For detailed introduction
to continuous time and discrete time 1D or 2D WT, the
reader is referred to, e.g., the tutorial books [19,27].

For scaling analysis, it is more suitable (cf. [12,13]) to
re-normalize the standard L?-norm wavelet coefficients
according to a L'-norm: d{’(j, k1, kz) = 272DV, ky, ky).

Wavelet leaders: Let us now further assume that the
Ho(k), Go(k) have finite impulse responses, and introduce a
dyadic indexing of squares as

Aitndey, = k127, (k1 + 1)27), [k 2/, (ky + 1)27)).

The union of nine such neighbor intervals is denoted as

2
3%k ke, = A s+ K+ -
ny,np={-1,0,1}

WLs are theoretically defined by

Lx(, k1, kz) = sup V) (1)

m=1,2.32'c3* s, &,

(see [17]). This definition is illustrated in Fig. 1 and
practically means that the leader Lx(j, k1, k») is obtained as
the largest wavelet coefficient amongst those, |d§(m’(j’,l<’l,
k5|, m=1,2,3, existing in a (narrow) spatial neighbor-
hood of (k1, k»), at any finer scale 2 <2/,

The central result underlying the use of WLs for MA
lies in them accurately measuring local Holder exponents
(cf. [17] for the theoretical proof): if X has Holder
exponent h(tg)>0 in to, then, on condition that
Ny > h(tp) and, if 27k is the dyadic point of scale j which
is closest to tg

Lx(, k)szsozjh(to)' (2)

where X;~,_0Y, means that both quantities share the
same lim inf on a log-log scale.

Structure functions and scaling: Let us now form the
structure functions, i.e., spatial averages of (the g-th order
of) the leaders at a given scale 2/:

i 1 .
S@.q)=--> Lx(i ki ko). 3)
T ky,ky

Fig. 1. Definition of wavelet leaders. The wavelet leader Lx(j, k1, k») at scale
2 and position (kq,k;) (black cross) is defined as the largest of the
wavelet coefficients |d{ (K, Ky)l,m=1,..., 3 (red, green and blue
dots) within a spatial neighborhood of (k;, k;) and within all finer scale
2/ <2 (red volume). The wavelet coefficients over which the supremum
is taken are marked by fat dots. (For interpretation of the references to
color in the figure legend, the reader is referred to the web version of this
article.)
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The scaling function {(q) is then defined as

J
t@ = lim inf 2529 (4)
250 In2
In practice, this definition means that the S(2/,q) exhibit
power law behaviors with respect to the analysis scale 2/,

in the limit of small scales 2/ — 0 [14]:

S, q)~242"?  when j - —oc. (5)

The {(q) are hence often termed the scaling exponents. This
power law behavior establishes a clear and deep connec-
tion between the concepts of scale invariance and MA.
Eq. (4) also implies that the scaling function necessarily is
a concave function of q [14].

Multifractal formalism: Let ¥(h) be the Legendre
spectrum defined from the scaling function through a
Legendre transform:

2y = inf(d +qh - (@), (6)

Under a mild uniform regularity condition for X (uniform
Holder, cf. Section 3.2), it can be shown [14,17] that the
Legendre spectrum and the multifractal spectrum are
simply related : 2(h)< £ (h). There exist (large) classes of
functions and processes X(t) for which this inequality
turns to an equality, referred to as the WL based multi-
fractal formalism:

2(h) = L(h). (7)

Notably, for the self-similar and multiplicative cascade
processes used in the present contribution to evaluate the
statistical properties of the proposed estimation proce-
dures (cf. Section 5), the WL multifractal formalism holds.
An obvious necessary condition for it to hold is that the
spectrum Z(h) of X(t) is a concave function. In practice,
one cannot have access to the spectrum of singularities of
a real-life signal; therefore the purpose of practical MA
focuses on the estimation of the Legendre spectrum Z(h).

Cumulant expansion: Let us now assume that the
scaling exponents {(q) are a smooth function of g around
0; then, we can consider a Taylor expansion of this scaling
exponents at q = 0:

{@) =Y /. (8)
p>1

It has been shown in [28,29] that the log-cumulants c, are

related to the cumulant of order p, C(2/, p), of InLy(j, K) as

C(2',p) =cop+cpIn2. (9)

The concavity of ((q) implies that c;<0. Recently,
we showed (detailed calculations reported in [30]) that
Eq. (8) can be cast into a polynomial expansion of the
spectrum as

2 3
g(h)=d+%<h_c1> +—c3 <h—cl>

Cy 3! Cy

—c4+32/ca (h—cr\*
T =) e (10)

This indicates that c; corresponds to the location of the
maximum of Z(h), c; to its width, while c3 is an
asymmetry parameter. In applications, practitioners can-

not compute the entire functions {(q) or #(h) and instead
often concentrate on a small number of well chosen
representative multifractal attributes. The ¢, are candi-
dates of particular interest and one usually computes c;
and c¢; and, when data permit, cs. This is further discussed
in Section 6 for the specific context of image analysis.

2.3. Estimation procedures

For images, estimation of the scaling or multifractal
attributes can be conducted as in the 1D case, mutatis
mutandis. Estimation procedures have been described at
length in [22,25] and are only briefly outlined here. As
suggested by Eqs. (5) and (8), the estimation of the {(q)
and of the c, can be performed by means of linear
regressions:

. 7! .
{q) =) _wjlog, S, q), (11)
j=h
b
¢p = (logz e)- > w;C(2.p), (12)
J=h

where the estimates C(2/, p) for the cumulants of In Lx(j, -)
are obtained from standard sample cumulant estimators.

The weights w; have to satisfy the constraints Zﬁ jw; =1
and >?w; =0 and can be expressed as w; = b;(Vqj -
V1)/(VoVy — V3) with V; = zﬁj"bj,iz 0,1,2. The freely
selectable positive numbers b; reflect the confidence

granted to each C(2/,p) or log, S/, q). To estimate .Z(h),
it has been proposed [31] to handle practically the
Legendre transform via its parametric form, h(q), L(g).
Such a formulation efficiently matches the bootstrap
requirements for confidence interval derivation (cf. Sec-
tion 4) and is hence used here. Tedious yet simple
calculations lead to the following estimators:

n Ja . n J2 .
h@=> wVv@.,q9, Lp=> wUZ. g, (13)
=h =

where

. S e L3 G, blog, Lx (. k)
V(,q) = =k= g

(.9 nSG.9)
and

l‘lJ qs: qs _ X .

UG, q) = o1 Lx U, k) (1og, Ly (, k) — log, njs(]’q))Jrlogz .

n;5(, q)

2.4. Wavelet coefficients versus leaders

Empirical scaling or multifractal analysis for images
has so far been mostly conducted using a MA based
directly on the wavelet coefficients of a 2D DWT. The
corresponding structure functions are computed as
d i 13
S =37 1dg Gk ko)l (14)

E L e
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The remainder of the formalism (Egs. (5)-(10)) and of the
estimation procedures (Egs. (11)-(13)) can be obtained by
replacing Lx(j,k) with |dx(j, k)| (and similarly for the
bootstrap procedures defined in Section 4).

As pointed out earlier in Section 1, the wavelet
coefficient MA suffers from a major theoretical drawback:
a complete MA cannot be conducted, as negative ¢
structure functions are numerically unstable and diverge
because wavelet coefficients are mostly concentrated
around the 0 value, see [14] where a precise mathematical
analysis of this phenomenon is carried out for some
classes of stochastic processes. The WL MA is designed to
overcome this difficulty and benefits from two other key
theoretical properties: it is proven to be valid for self-
similar and multiplicative cascade processes (while the
wavelet coefficient MA holds only partially, and for a
restricted class), and the scaling exponents {(q) are shown
not to depend on the precise choice of the wavelet!' Hy, Go
[14,17]. In Section 6, we further compare (very favorably)
the leader based MA to the wavelet coefficient based one
both in terms of practical estimation performances and
bootstrap based confidence interval derivation.

However, an important limitation of the WL based MA
results from the fact that it can be directly applied only to
bounded functions, while the wavelet coefficient MA is
not restricted to this class.

This question, together with a number of related
theoretical issues of importance for a practical use of
MA on real images, is further addressed in the next
section.

3. Advanced considerations on multifractal analysis of
images

As mentioned in Section 1, there is a priori no
guarantee that actual digital images are the discretization
of a function that belongs to an LI(R?) space, g>1, (or, a
fortiori, belongs to the space of bounded variation (BV)
functions, i.e., functions whose gradient is a bounded
measure). Along the same line, one can hardly decide a
priori whether the images under analysis fall within the
class of bounded functions, permitting a straightforward
application of the leader MA. Indeed, scanning large image
databases (such as the one reported in [11]) confirms that
there are roughly as many images which are bounded as
images which are unbounded (see in Section 3.2 how this
can be practically determined on discretized signals).
Hence, the leader based MA cannot be applied to images
without prior checking.

Note that the violation of the bounded function
requirement can be related to the existence of negative
Holder exponents in the data (see Section 3.2), and it is
indeed commonly reported in the literature dedicated to
empirical MA that images exhibit negative Holder ex-
ponents [32]. There is no general consensus on a precise
mathematical definition of negative Holder exponents,
and a discussion of this notion requires theoretical

T A precise mathematical statement of this result requires further
elaboration beyond the scope of this contribution, see e.g., [14,17].

developments beyond the scope of this contribution (this
is addressed in [33,34]); we can, however, indicate that
the underlying heuristic remains yet the same: in some
averaged sense, [X(t) — X(to)|~t_t, o/t — tol".

These involved issues have been partially addressed in
[33] and are further elaborated in this section. Further-
more, the analyses reported here indicate that, though
wavelet coefficients offer a restricted analysis of the
multifractal properties of an image, a number of useful
information can still be extracted from the wavelet
coefficient based structure functions.

3.1. Images and function space models

Let us define, for ¢>0,

Ins‘2,q)
In2

Then, Cd(q)>0 indicates that the image X belongs to

LI(R?). Indeed, the wavelet characterization of the Sobolev
spaces L?° implies that

£(g) = lim inf (15)
250

if g=1 then (%q) = sup{s: f e L%/9),

see [26]; therefore Cd(q)>0 implies that f belongs to a
Sobolev space L% for an s>0; a fortiori, it belongs to L%,
which coincides with the space L?. For q = 2, this provides
the practitioners with tools helping to decide whether or
not X fits the assumptions of the Osher-Rudin-Fatemi
model [38]. This remark is not only pertinent for this
model: all other models which have been later proposed
as alternatives (see for instance the book of Meyer [35]
and references therein, or [36]) are based on the
hypothesis that the image considered belongs to a given
function space (or a sum of function spaces). Since all the
function spaces which have been proposed in this context
either are Sobolev spaces or satisfy sharp embeddings
with Sobolev spaces, it follows that the determination of
the wavelet scaling function of a given image allows to
determine if it satisfies a particular function space
assumption, and, therefore, if the corresponding algorithm
can be reasonably applied in this case. When q = 1, the
same argument as above yields that, if Cd(1)>0, then X
belongs to L'(R?) and additionally, Cd(1)>l implies that X
belongs to the class of BVs images. Furthermore, X is a
measure necessarily yields Cd(l)zo.

Scanning image databases reveals that a non-negligible
proportion of images (e.g., ~ 10% for the Univ. of Maryland
data set (cf. www.cfar.umd.edu/users/fer/website-texture/
texture.htm) are characterized with Cd(2)<0, with con-
fidence intervals (computed with the technique proposed
in Section 4) clearly validating the negativity for the
estimate. Also, Cd(l) is positive for most images (as
expected for positive measures), yet that 0<{4(1)<1 for
a large proportion of images (e.g., ~ 90% for the Univ. of
Maryland data set), which are hence not within the BV
class.

For illustration purpose, the image used in Section 6.4
(cf. Fig. 7) is characterized by Cd(l) = —0.08 £0.03 and
Cd(Z) = —0.17 £ 0.08, confidence intervals being obtained
with the bootstrap approach described in Section 4.
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3.2. Uniform regularity

A measure or a function X(t) is said to belong to C°,
¢ € R, when its wavelet coefficients satisfy

3C>0: V), k1, ky, mld{V G, kr, ko)l < C2. (16)
A uniform regularity exponent can hence be defined by
hpmin = supf{e : X e C%). (17)

A function or a measure is said to be uniformly Hélder if
hmin > 0. In turns, hp;,, >0 implies that

Vto, h(tO) = hmin-

and also that X is a continuous function, hence bounded,
hence possesses finite WLs in the limit of fine scales (all
implications are strict).

As stated in Section 2.2, the computation of WLs, hence
the computation of the Legendre spectrum is possible
only for functions which are uniformly Holder. Applied to
images that do not respect this restriction, the WL based
MA produces results that are meaningless. However, one
can meet the following pitfall: in practice, any image will
yield empirical WLs with finite value (because the
supremum in the definition of WLs (1) is in practice
always taken on a finite set), independently of the fact
that h,,;;, is positive or not. Hence, practitioners have little
or no means to decide a posteriori whether leaders are
meaningful or not and this needs to be checked a priori. A
sufficient condition is that the image is uniformly Hélder
and hence that h,;;;>0. This can be evaluated via the
formulation:

(m) 5
hmin _ llm lnf ln Supm,kl,kz |dxm Uskl,kZ)l ,

20 In2 (18)

which is a direct consequence of Eq. (16) and practically
amounts to performing linear regressions of the log of the
magnitudes of the largest wavelet coefficients at scales 2/
versus log of scales. The performances of this estimator,
assessed over 500 realizations of a synthetic multifractal
stochastic images of size 1024 x 1024 (cf. Section 5.3) is
summarized in Table 1. The results clearly demonstrate
that estimation of the uniform regularity exponent is
feasible from a standard size image.

Examination of image databases shows that images are
found as often with negative h,;, as with positive one
(e.g., ~ 50% for Univ. of Maryland data set). For a simple
illustration purpose, the image used in Section 6.4 (cf.
Figs. 7 and 8) is characterized by h,;;; = —0.24. This calls

Table 1
Estimation of hy,.

hppin CMC-LP
Theory mean std mse
-0.391 -0.395 0.117 0.117

Mean, standard deviation and root mean squared error (cf. Eq. (27)) of
wavelet coefficient based estimation of h,;, (Eq. (18)) for CMC-LP,
obtained by numerical simulation as described in Section 5.3 with linear
regressions over the finest scales 2' <2/<23. The column on the left
states the theoretical value of hp;,.

for a modification of the leader based MA proposed in
Section 2.2 for bounded functions. This is the subject of
the next section.

3.3. Fractional integration

To overcome the negative h,;, issue, it has been
proposed to fractionally integrate with an order larger
than —h,,;,, which implies that the uniform regularity
exponent of the new image is positive, and thus insures
that all Holder exponents are positive. This has been for
instance abundantly used in [8,20,39].

The fractional integration (of order #) of a function or
measure X is defined in the Fourier domain as

ITX)E) = (1 + |ER2R (). (19)

If X is such that h,,;, <0, then I"X is a uniformly Ho6lder
function as soon as

n> - hmin; (20)

this result is a direct consequence of the interpretation of
hpin in terms of the Lipschitz spaces C*(R™"):

himin = supfo : X € C*(R")},

and of the fact that if X € C*, then X e ¢+, Indeed, it
follows that if #> — hy,, then I"X belongs to C° for an
&£>0, hence is a bounded function, see [34] for details.

Instead of actually computing the fractionally inte-
grated version of X and then applying the WL multifractal
formalism to it, both operations can be combined into a
single one, as follows:

(i) First compute the 2D WT coefficients d§"(j, k1, k») and
replace them with

d;(m),n(]-’ kq, k) = Zmd&m)(]" k1, ko).

This amounts to computing the wavelet coefficients
of "X, a pseudo-fractionally integrated version of X,
whose local and global regularity properties are
identical to that of I"X, as soon as 17> — hy,p, See [34].

(ii) WLs are computed from these new wavelet coeffi-
cients:

LG ki ko) = sup |V (21)

m,)"c3}~j.k1_k2
Such modified leader coefficients are equivalent to
those computed from I"X, in the sense that if IX has
Holder exponent h at tp then, when 277Kk is the closest
dyadic point of to, L(j, ki, ky)~2/".

(iii) Compute new structure functions:

=

. 1 .
ShG. ) = Y Z L?((I, k1, k). (22)

J Ky ko

They behave as power laws with respect to the
analyzing scale 2/, in the limit of fine scales 2 — 0:

Sy, q) ~ G2 @, (23)
yielding the multifractal spectrum of I"X:

Zy(h) = min(1 + gh — Cn(q)). (24)
q#0

(2009), doi:10.1016/j.sigpro.2008.12.015
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One can prove that the scaling function (and there-
fore the Legendre spectrum) thus obtained is the
same one as if a “true” fractional integration had
been performed, see [34]. Note that Condition (20)
does not prescribe a unique value for #. Therefore one
meets the following alternative:

e A thorough possibility consists in computing the
Legendre spectra #,(h) for a wide range of values
of #, and using this collection of spectra for
classification, or in order to understand the nature
of the pointwise singularities of X. Preliminary
results in this direction are given in [34].

e A simpler option consists in noticing that, for large
classes of mathematical functions and stochastic
processes, one can prove that all the functions
ZLy(h+n) are actually the same, and therefore
define a unique function Z(h):

V> —hpin, L(h) = ZLy(h+9n). (25)

A precise analysis of the validity of Eq. (25) is
beyond the scope of this paper and can be found in
[34,36]; let us just mention that it is related to the
absence of strongly oscillating features in the
image, such as the ones provided by chirps of the
form |x — Xo|* sin(jx — Xo|#). Note, however, that
some classical models do not satisfy Eq. (25);
typical examples are supplied by lacunary wavelet
series, see [37]. If Eq. (25) holds, then the
particular value of # which is picked is irrelevant
(as soon as it is large enough): in practice, one
picks one value of # and defines the Legendre
spectrum by Eq. (25); the MA is performed using
this function #(h) for spectrum.

Though this second option is successfully used for
classification in a number of applications, it is important
to be aware that this heuristic faces limitations: besides
the problem of the validity of Eq. (25) which has already
been mentioned, the function #(h) cannot generally be
related to the multifractal properties of X. Nonetheless, it
is deeply related to the intrinsic properties of the original
image X and can be used as such (for classification, for
instance).

Finally, note that fractional integration also increases
the C"(q) (the counterpart of the heuristic translation in
Eq. (25) reads CZ(q) = {d(q) + 1q), hence ensuring, for large
enough 7, that Cz(1)>l and/or C$(2)>0.

3.4. Validity of the multifractal formalism

It is also of importance to be aware that theoretically Eq.
(7) does not hold in general. More precisely, let us assume
that X belongs to the class of mild functions, defined as
3Cy,C,A,B>0 such that Vj, k, C12° <Lx(, k)< C>2® (this
implies that X is nowhere C*, but satisfies a minimal
uniform regularity assumption). When X is a mild function,
its {(q) is an admissible function, i.e., it satisfies:

(i) {0 =0,
(ii) ¢(q) is concave and increasing on R,
(iii) 0<{(q) — ql(g)/dg<d.

Conversely, one can show [26] that any admissible
function corresponds to the {(q) of a mild function X.
However, this does not ensure that X satisfies the WL
multifractal formalism. Let, for instance, A(q) be an
admissible function. One can design the following tri-
fractal function whose {(q) = A(q): it is constructed such
that its multifractal spectrum reads Z(hpin) = 2(hmax)
=0, Yhpeq)=d and Z(h)=—oco elsewhere, with
himea = {'(0), hmin = {'(+00), and hpax = {'(—=00). As soon
as these three values hy,in, himed, hmax differ, the multifractal
formalism (as in Eq. (7)) obviously ceases to hold, since
the Legendre transform of {(q) is a concave function.
Another counterexample is detailed in [26] where the
generality of the validity of the multifractal formalism is
further investigated.

3.5. Wavelet coefficients versus leaders

This section leads to the conclusion that wavelet
coefficients are providing preliminary information regarding
the regularity properties of X and should hence be used
prior to applying the WL MA, and in a complementary
manner, rather than with the usual competition perspective.

4. Space-scale block bootstrap

We now extend the line of work proposed in [22,25] for
the design of bootstrap confidence limits for 1D multifractal
processes (signals) to 2D ones (images). While most scale
invariant processes are characterized by difficult statistical
properties (non-stationary, intricate dependence), their
wavelet coefficients often form stationary sequences with
less involved dependence structure [22]. Therefore, it is
more natural to apply bootstrap schemes in the wavelet
domain rather than in the space one. We devise a specific
construction of space-scale blocks to ensure that the
residual dependencies of leaders, both in space and in scale,
are approximately reproduced by the bootstrap resamples.
Also, these space-scale blocks ensure that bootstrapped WLs
preserve their key property for MA, namely Eq. (2).

For an overview of bootstrap and bootstrap methods
for dependent data, see e.g., [23,40,41].

4.1. Space-scale blocks of wavelet leaders

For ease of notation and without loss of generality, we
assume square images (N; = N, = N). The space-scale
blocks of leaders are defined as 3D boxes, extending over
all scales, with a square base of a fixed number of pixels.
All leaders lying within such a box form one space-scale
block. The blocks are constructed overlapping and on
circularized leaders, i.e., on L%(j,kq,k2) = Lx(j, k;mod n;,
kamod n;), such that each leader has the same probability
to be within a resample. More precisely, the collection of
leaders Lx(j’, k}, k3) that form a space-scale block .7 (kq, k),
of 21 x 21 pixels, located at position (kq, k»), is given by (cf.
Fig. 2)

F(ky,ky) = {Lx(j', Kymodn;, k;mod ny):
ki — K2 |<Llky — K52 |<1,1<f Sjimax)- (26)

(2009), doi:10.1016/j.sigpro.2008.12.015
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Fig. 2. Space-scale block construction. The space-scale block of leaders
J(kq, ko) at position (kq, ky) consists of the collection of leaders (fat black
dots) that are within a box with square base of base length 21, centered at
(k1,k2) and extending over all scales (red volume).

real *(r) bootstrap
world {Lx} resample {Lx"} world
| | ~
(8) (3) (8) (3)
o & \ R e
C(2’,p) S5(2,q) C(27,p)*™ 5(27,¢)*"
(12) (11) (12) (1)
(la) | =<t &" Clq)™

Fig. 3. Estimation and bootstrap estimation procedures. Overview of
estimation procedure (left) and bootstrap estimation procedure (right).
‘Resample” corresponds to the space-scale block bootstrap resampling
procedure described in Section 4, “CI” to confidence limit calculation
from empirical bootstrap distributions as in Section 4.3, and (-) on arrows
indicates the equation involved in estimation. The scheme can be written
equivalently for D(q) and fl(q).

4.2. Bootstrap resampling and estimation

Each single bootstrap resample of leaders 3;‘((”,r:
1,...,R, is obtained as follows. First, B = [N/2I] blocks of
leaders .#*(kq,k;) are drawn at random, independently
and with replacement, from the available blocks
F(kq,k), ki,k; =1,...,N. Then, blocks are concatenated
in space, such that each resampled leader remains located
at its original scale 2/.

The bootstrap estimation procedure re-applies the
estimation procedure described above to each of this
bootstrap resamples ,ff)*((r); First, the bootstrap structure
functions S(2/,q)* and C(2,q)* are obtained by applying
Egs. (3) and (8). Then, bootstrap estimates ﬁ(q)*, Dy,
h(g)" and ¢, are calculated as in Egs. (11), (13) and (12).
These estimation and bootstrap estimation procedures are
sketched in Fig. 3. Note that the bootstrap resampling and
estimation procedures can as well be applied directly to
wavelet coefficients instead of leaders.

4.3. Bootstrap confidence limits

For parameters 0 € {{(q), D(q), h(q), ¢}, we use the equi-
tailed (1 - o) bogtstrgp percentile Asonﬁdence interval,
defined as Clp = [0, 5, 0,_, ], where 0, is the o quantile of

the empirical distribution of 0" obtained by the bootstrap
estimation procedure described above. Double bootstrap
estimates could be obtained and used for more sophisti-
cated confidence limit and hypothesis test constructions,
such as studentized or adjusted confidence limits and
tests. Such issues have been considered in [22,25] for the
1D case. An extension to images is currently investigated.

5. Performance assessment on synthetic multifractal
images

5.1. Methodology: Monte Carlo simulations

We assess the performances of the proposed estima-
tion procedures by applying them to a large number Ny,
of realizations of synthetic stochastic 2D processes of size
(N x N) with a priori known and controlled multifractal
properties. The aim of the numerical study is to address
the following issues: Do the estimation procedures exhibit
satisfactory statistical performance? Should one prefer
wavelet coefficients or leaders for the estimation of
multifractal attributes of images? Are the bootstrap
confidence limits reliable, i.e., do they reproduce targeted
coverages?

5.2. Synthetic multifractal processes

We use two stochastic processes: fractional Brownian
motion (FBM) and canonical Mandelbrot’s multiplicative
cascade with log-Poisson multipliers (CMC-LP). They
provide us with simple yet representative examples of
Gaussian monofractal processes and multifractal pro-
cesses, respectively. Example of such fields are shown in
Fig. 4.

FBM : We use the 2D Gaussian self-similar FBM, as
defined in [42]. Its statistical properties are completely
determined by a single parameter, the Hurst exponent H.
FBM has scaling properties as in Eq. (5), with {(q) = qH
and therefore ¢; = H, ¢, = 0,p>2. Its multifractal spec-
trum reduces to one single point h = H where 2(H) = 2,
hence, FBM is monofractal.

CMC-LP: The multiplicative cascades of Mandelbrot (cf.
[43]) have for long been the only example of multifractal
processes practically available. Their construction is based
on an iterative split-and-multiply procedure on an inter-
val. In this work, we use a binary cascade and log-Poisson
multipliers s =27 exp(In(f)n;), where 7; is a Poisson
random variable with parameter A = —yIn(2)/( — 1). To
handle negative minimum regularity, the cascade is
(pseudo) fractionally integrated (according to the proce-
dure described in Section 3.3), with a parameter #>0. The
CMC-LP are multifractal with {(q) = (1 — y)q + y(B? — 1)/
B-1), ca=n+yInP/B-1)~1) and ¢, = —y/(B-1)
(= In(B)y, D)y =2+y/B-1D)+(n+y+h/Inp-
(In((=n +y+h(B - 1/yInp) - 1].

5.3. Simulation setup

Results are reported here with one specific selection of
process parameter settings. Similar results have been

(2009), doi:10.1016/j.sigpro.2008.12.015
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FBM

CMC-LP

Fig. 4. Synthetic processes. One realization of FBM (left) and of CMC-LP (right). The bottom plane presents the images, the axes on top an amplitude view of
the images (amplitudes normalized to [0,1]), illustrating the (ir)regularity of the images.

obtained for a range of different process parameters, and
are not reported here for space reasons. Parameters for
numerical simulations are set to Ny c = 500 and N = 1024.
All results are obtained with Daubechies’ wavelets with
Ny =2 vanishing moments. It has been checked that
using wavelets with larger Ny, yields identical results and
conclusions. Linear regressions are performed over the
scales 2° <2/ <27 with weights b; = n;, as proposed in
[22]. We use R=199 bootstrap resamples and block
lengths [ =85 (FBM) and [ = 128 (CMC-LP). The target
significance for bootstrap confidence limits is set to 90%.
The process parameters are fixed to H = 0.7 for FBM, and
=084, y=042, n=0.5 for CMC-LP, such that
[c1,¢€2,c3] =[0.538,—0.080,0.014].

6. Results
6.1. Structure functions

Fig. 5 shows, for FBM (left) and CMC-LP (right), means
over Monte Carlo realizations of structure functions
log, S, q) for g =2 (top row) and for g = —2 (second
row), and the deviations of the structure functions from
their theoretical slope, log, S/, q) — j¢(q), for q = 2 (third
row) and q= -2 (bottom row). The 95% asymptotic
confidence limits are obtained by Monte Carlo simulation.
As structure functions for wavelet coefficients diverge for
negative g's, only positive q’s are shown.

Scaling range: A first investigation (top and second row)
suggests that for both wavelet coefficients and leaders,
structure functions display scaling behavior as in Eq. (5)
over the range of scales 22<2/<2’. A closer look at the
deviations from the theoretical slope (third and last row)
confirms this observation for coefficients. However, it
reveals that for leaders, log,S(2,q) becomes a linear
function of j only for 2/ >2>. This can be explained by the
fact that, theoretically, a leader is defined as the sup of
coefficients at all finer scales down to infinitely fine scales,
whereas practically, the sup can be taken only down to the
finest available, first scale. Hence, in practice, leaders need
one or two scales for initialization, whereas coefficients
do not.

Projection step: The non-scaling behavior of S(2/, q) for
wavelet coefficients at the first scale j =1 is due to the
fact that the pre-filtering or projection step theoretically
necessary for a clean wavelet analysis has been omitted
(cf. [44]).

Regressions: We observe further that the error bars for
structure functions for CMC-LP are substantially larger
than those for FBM, suggesting a smaller variability of the
S(2/, q) and better subsequent estimation performances for
the monofractal process. Moreover, it is interesting to note
that whereas the error bars for FBM behave approximately
as 1/./m;, this is not the case for CMC-LP, where the size of
the confidence intervals varies only slightly with j. This
confirms that the choice of weights for weighted linear
fits, as proposed in [22], is appropriate for FBM. Though
not optimal for multiplicative cascades, it has been shown
to perform better than non-weighted regression.

6.2. Performances of parameter estimation

_ We quantify the performances of the estimators 0 e
{{(q).¢p} by their root mean squared error,

mse,‘?,m = \/(ENMC(; — 0)? + Vary,, 0, (27)

where Ey,, and \7a\rNMC stand for the sample mean and
variance, respectively, over Ny,c independent realizations.
Estimation performance results are summarized in Table 2
and illustrated in Fig. 6, both for wavelet coefficients and
leaders, for medium size images (N = 1024). In addition,
Table 2 shows complementary results for large images of
CMC-LP (N = 2048). On overall, we observe that leader
based estimations are more efficient than coefficient
based ones.

Positive statistical moments q: For q> 0, both estimation
procedures have approximately equal mse and std.
Wavelet coefficient based estimations are slightly more
efficient for monofractal FBM while leader based ones are
for multifractal CMC-LP.

Negative statistical moments q: For g< — 1, the wavelet
coefficient based estimates of {(q) are not meaningful
as they exhibit very large mse. Therefore, a wavelet

(2009), doi:10.1016/j.sigpro.2008.12.015
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FBM

CMC-LP

. q=—2

1 3 5 7

log, S(2!, a) - (@)

Fig. 5. Structure functions. Structure functions log, S/, q) for g =2 (top row) and q = —2 (second row), and deviation of structure functions from
theoretical slope, log, S(2, q) — j - {(qg), for g = 2 (third row) and q = —2 (bottom row), obtained by mean over Monte Carlo realizations for FBM (left) and
CMC-LP (right). Red circles correspond to wavelet leader, blue crosses to wavelet coefficient based estimations. The error bars correspond to 1.96 Monte

Carlo standard deviation.

coefficient based MA of images allows to explore exclu-
sively the range q> — 1 and thus, in practice, only the
increasing part of the multifractal spectrum Z2(h). In
contrast, the proposed WL based procedure permits a
complete analysis of the multifractal properties of an
image, and notably of the decreasing part of the multi-
fractal spectrum (cf. Fig. 6).

Log-cumulants: Table 2 shows that the WL based
estimations of ¢, exhibit consistently smaller std and
mse than their wavelet coefficient based counterparts.
Whereas the difference in performance is only small for
the estimation of ¢, it becomes more significant for ¢, and
c3, with gains in mse of up to more than one order of
magnitude. This is of crucial importance, since non-zero
c; and cs3 discriminate self-similar from multiplicative
cascade processes. Further, for N = 2048, Table 2 (last line)
enables to deduce that an asymptotic 85% confidence
interval for the leader based estimation of c3 excludes
zero, hence that the real cs is different from zero with high

probability. To the best of our knowledge, this had never
been achieved on multifractal images. It also clearly
shows that for images of smaller size, the estimation of
parameter cs, a fortiori of higher order c,, should be used
with care: confidence intervals might be so large that they
may not exclude 0 even if the parameters are non-zero.

Self-similar versus multiplicative cascade processes:
Finally, for both the leader and coefficient based proce-
dures, estimation is more difficult for multifractal CMC-LP
than for FBM, resulting in larger mse for estimations on
the multifractal process.

6.3. Bootstrap estimation performances

We evaluate the reliability of the bootstrap percentile
confidence limits Cly by their recentered empirical cover-
age:

%y = En,, 1{0 + (En, 0 — 0) € Cly}, (28)

(2009), doi:10.1016/j.sigpro.2008.12.015

Please cite this article as: H. Wendt, et al., Wavelet leaders and bootstrap for multifractal analysis of..., Signal Process.



file://localhost/Users/pabry/Documents/DOWNLOADS/dx.doi.org/10.1016/j.sigpro.2008.12.015

H. Wendt et al. / Signal Processing 1 (1uin) - 1

Table 2
Estimation performance.

Estimate theory leaders leaders
mean std mse mean std mse
FBM — N = 1024
{(=2) —1.400 -—-3461 2315 3.100 -1.388 0.022 0.025
{(—1) —-0.700 -0.895 0.544 0.578 -0.695 0.011 0.012
L) 0.700 0.699 0.010 0.010 0.696 0.012 0.013
{2) 1.400 1.398 0.021 0.021 1.393 0.025 0.026
Cq 0.700 0.699 0.012 0.012 0.696 0.011 0.012
C2 0.000 0.000 0.029 0.029 0.001 0.003 0.003
C3 0.000 0.001 0.150 0150 -0.001 0.001 0.001
CMC-LP — N = 1024
{(=2) -1.256 -3.115 2507 3.121 -1.227 0.064 0.070
{(-1) —-0.580 -0.718 0.546 0.563 -0.570 0.025 0.027
£(1) 0.500 0.484 0.017 0.023 0.493 0.021 0.022
{(2) 0.933 0.902 0.036 0.047 0.920 0.045 0.046
C1 0.538 0.519 0.018 0.027 0.530 0.022 0.023
@) —0.080 -0.073 0.032 0.033 -0.077 0.015 0.015
C3 0.014 0.005 0.152 0.152 0.011 0.013 0.013
CMC-LP — N = 2048
Cq 0.538 0.521 0.010 0.019 0.532 0.012 0.013
C2 —-0.080 -0.073 0.016 0.018 -0.078 0.009 0.009
C3 0.014 0.012 0.075 0.075 0.012 0.008 0.009

Mean, standard deviation and root mean squared error of wavelet
coefficient (center columns) and leader (columns on the right) based
estimation for FBM (top) and CMC-LP (center) for N = 1024, and for
CMC-LP (bottom) for N = 2048. The columns on the left identify the
parameters and their theoretical values.

-10

1.9
065 07: 075 h

0 0.5 1

where [{-} is the indicator function of the event {.}. The
recentered coverage %, allows to assess the performances
of the confidence limits without the contribution of a
potential bias in the estimation of 0. The results for 0
{{(q), cp} are summarized in Table 3 for wavelet coefficient
(top) and leader (bottom) based estimation and for a
target coverage of 90%. We observe that for wavelet
coefficient based estimation, the performances of the
bootstrap confidence limits is excellent. Their actual
coverage are very close to the target coverage, with error
in coverage smaller than 5% both for {(q) and c,, and for
both processes. The performances of the WL confidence
intervals is slightly inferior, with an average coverage
error of approximately 9%. This can be interpreted as the
result of the non-linear operation underlying the con-
struction of leaders from wavelet, yielding an additional
difficulty for bootstrap estimation. Still, the bootstrap
confidence limits remain satisfactorily reliable. The use of
more sophisticated and potentially more accurate double
bootstrap confidence limits is currently under considera-
tion.

6.4. Analysis of real-world image

The proposed estimation procedures have been used
for the systematic analysis of large databases of real-
world images (such as the texture image Univ. of Mary-
land data set). For illustrating its practical use, we present
here the performances of the proposed estimation

CMC-LP (@)

-10

-5 0 5

0 0.5 1

Fig. 6. Estimates ((q) and Z(h). Estimates {(q) (top) and Z(h) (bottom) for FBM (left) and CMC-LP (right), obtained from leaders (red circles, dashed lines)
and wavelet coefficient (blue crosses, dashed lines) by mean over Monte Carlo realizations, and the corresponding theoretical values (black solid lines
with dots). The error bars correspond to 1 Monte Carlo standard deviation. The error bars for coefficient based estimates for Z(h) are not shown for better
visibility of the spectra. The insert for Z(h) of FBM corresponds to the area shaded around the theoretical spectra location.
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Table 3 procedures for one real-world image of size 1024 x 768,
Bootstrap estimation performance. taken by ourselves with a standard digital camera. It
consists of trees in the Reichraminger Hintergebirge,
Upper Austria (cf. Fig. 7, top). Fig. 7 shows structure

Recentered coverage of confidence limits—target: 90%

(-2 -1 iy @ o I cs functions (center), scaling exponents (bottom left) and the

spectrum (bottom right) estimated from this image,

2 obtained with the leaders based estimation procedure
FBM 91.8 888 944 878 894

proposed in this work, with a N, = 3 Daubechies’ wavelet.

CMC-LP 890 892 832 898 882 . .

Results on log-cumulants are summarized in Table 4.
LWT Fig. 8 illustrates the uniform regularity exponent h;,
FBM 794 798 790 786 788 820 850 Eq. (18) estimate. The linear behavior of log,supy, k,
CMCLP 808 820 826 812 810 812 830 1dY" (G, ki, ko)l with respect to scales j indicates the

relevance of estimation of hp;,, which is found to be

Recentered empirical coverage (in %) of bootstrap percentile confidence . . ..
limits for wavelet coefficient (top) and leader (bottom) based estimation. clearly negative. Therefore, to handle negative minimum

The empirical coverage equals the percentage of realizations for which rEgUI'arityv ) the image is analyzed via 'the (pseudg—)
the theoretical value of an estimate lies within the estimated confidence fractional integration procedure (cf. Section 3.3), with
limits (target coverage 90%). order 1 = 05 (this order is sufficient, since the estimated

19

. -9
log, S(j, 9): q=-2
16 [N P -1
13 b N L ] -13
10 -15
2 4 6 2 4 6
D(h)
4 S A 6 S o
0 1
-4 h
0
0 5 10 15 0 0.5 1 1.5

Fig. 7. Analysis of real-world image. Real-world image (top) and estimates: structure functions (center) for g = —2 (left) and q =2 (right), scaling
exponents {(q) (bottom left) and spectrum D(h) (bottom right). The bootstrap percentile 90% confidence limits are obtained from R = 99 resamples.
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Table 4
Real-world image log-cumulants.

¢ G C3
Estimate 0.472 —0.016 0.020
a [0.433, 0.502] [=0.029, —0.006] [0.005, 0.046]

Log-cumulant estimates and bootstrap percentile 90% confidence limits
(R =99) for the real-world image in Fig. 7 (top).

Fig. 8. Real-world image h,,;,. Estimate of h,,,;; Eq. (18) for the real-world
image in Fig. 7 (top).

uniform regularity exponent for this image is
hpin = —0.24). Multifractal attribute estimates are ob-
tained by weighted fits over the scales 23 <2/ <2, for
which Fig. 7 (center) indicates that log25(2j,q) are
approximately linear functions of j. Results demonstrate
that the proposed method can be readily applied to real-
world images for their complete multifractal character-
ization. They demonstrate further that the bootstrap
percentile 90% confidence intervals are of significant
practical usefulness: first, the confidence limits on
structure functions help to verify that the chosen scaling
range is appropriate. Second, confidence limits on multi-
fractal attributes allow to decide that the image shows
with high probability a multifractal signature, since
confidence intervals for ¢, and c3 exclude zero. The
confidence limits thus provide information that might
be of significant importance for e.g., detection or classi-
fication tasks, or for the understanding of physical or
biological processes underlying the data. Finally, note that
the entire estimation procedure with WL MA (without
bootstrap) takes less than a minute on a standard PC,
whereas the same estimation with MMWT increases
computation time by a factor larger than 20.

6.5. Discussion

Numerical simulations, equivalent to those reported
above, have been performed on other multifractal pro-
cesses and lead to similar conclusions: wavelet coeffi-
cients do not allow to meaningfully explore negative q’s
and thus to measure the decreasing part of the spectrum
Z(h) whereas WLs do, estimation of ¢, is better when

based on leaders than on coefficients, and significantly so
for cp,p=2.

Selection of scaling range: We have seen in Section 6.1
that the range of scales over which the linear fits are to be
performed are likely to be narrower (requiring the use of a
larger j;) for leaders than for wavelet coefficients. For
practical MA and real-world images, the choice of this
regression range is a crucial, difficult and controversial
issue, further complicated by the use of leaders. In
practice, however, bootstrap confidence intervals for the
structure functions, as obtained by the proposed proce-
dure and illustrated in Fig. 5, constitute a precious support
for solving this non-trivial issue and can be regarded as a
first step towards statistical procedures for automatized
or intelligently assisted detection of scales over which
data are scale invariant.

Vanishing moments of wavelet: Another critical practical
issue is the choice of the number of vanishing moments
Ny for the wavelet with which the data are analyzed.
Condition Ny >h, where h is the largest singularity
exponent present in the data, is expected to be sufficient
for a relevant MA. However, in practice, the choice of N,
results from a trade-off: a larger N, stabilizes the
estimates of the negative ¢ structure functions and
enables to get rid of potentially superimposed smooth
trends such as polynomial, hence improves estimation
and brings robustness; a larger N, also implies a larger
support for the wavelet and thus produces border effects
of wider size, such that no coefficients may remain
unaffected at large scales, hence in itself degrades
estimation performances. Therefore, a reasonable practi-
cal rule of thumb is to choose the smallest N,, for which
the estimated multifractal attributes do not significantly
change when N, is increased (i.e., remain within con-
fidence intervals, emphasizing again the need for and the
importance of such confidence intervals).

Real-world data and MA: In Section 2.2, we recalled
how the estimates of ((q), c,, Z(q) and h(q) are
theoretically intimately tied to the multifractal spectrum
9(h) of the field X and hence to the analysis of its local
regularity fluctuations. This relation is known to hold
theoretically for all the synthetic images used here for
Monte Carlo simulations and illustrations. For real-world
images, this interpretation in terms of multifractal
spectrum and singularity description might not always
be completely relevant. However, this, in no way, prevents
practitioners to make use of the measured {(q), ¢, 2(q)
and h(g) to analyze the data in terms of a less
mathematically stringent formulation of scale invariance
properties or to perform standard image processing tasks
such as classification or retrieval based on such quantities.

Computational costs: The proposed 2D WL MA is simple
both conceptually (2D DWT, leaders and linear regres-
sions) and practically (very low computational cost, both
with respect to time and memory, of the order of a 2D
DWT). As an example, a 2048 x 2048 gray level image is
processed in a couple of seconds on a standard PC under
MarLas. The bootstrap based confidence intervals are
obtained essentially by repeating the linear regression
procedures. The larger the repetition number and there-
fore the computational load, the higher the precision of

(2009), doi:10.1016/j.sigpro.2008.12.015
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the confidence intervals. This is the unavoidable price to
pay to obtain reliable confidence intervals from a single
image. All the analysis and estimation procedures are
designed by ourselves in MarLas. The 2D DWT is
performed using (a corrected version of) the Rice Wavelet
Toolbox.

7. Conclusions and perspectives

The present contribution proposes a procedure to
perform a fast, efficient and accurate analysis of the
scaling and multifractal properties of images. It outper-
forms significantly the previous propositions based on 2D
DWT or 2D CWT in estimation performances, and 2D-
WTMM in computation time, memory cost and imple-
mentation complexity. It is fast and efficient since simply
based on a 2D orthogonal DWT. Our procedure enables an
accurate and complete characterization of the (ir)regula-
rities of the texture of an image thanks to the use of
original multiresolutions quantities called wavelet lea-
ders, and is backed up by a strong mathematical frame-
work.

Furthermore, the present contribution proposes and
validates procedures for assessing function space model
conditions for data—notably for the bounded function
requirement—and handling them in practice.

The low memory and time costs together with the
satisfactory estimation performance of the procedure
opens for the first time the possibility to perform the
MA of voluminous databases of images with possibly large
sizes. Therefore, MA may be incorporated in procedures
aiming at image retrieval, computer vision or robotic
purposes. We are currently investigating such databases.

Moreover, for applications such as surface roughness,
where one wants to understand the fracture process, or
biomedicine, where one wants to detect and classify
pathologies, confidence intervals are crucial. The boot-
strap approach, tailored here to match image processing
via the proposition of a 2D space-scale block bootstrap
procedure, provides reliable and straightforwardly usable
confidence intervals. This is, to the best of our knowledge,
the only procedure that has been proposed to provide
accurate and operational confidence intervals for MA of
images. It can be further extended to devise statistical
tests. This is currently investigated.

References

[1] V. Gupta, E. Waymire, A statistical analysis of mesoscale rainfall as a
random cascade, J. Appl. Meteor. 32 (1993) 251-267.

[2] D. Schertzer, S. Lovejoy, F. Schmitt, Y. Ghigisinskaya, D. Marsan,
Multifractal cascade dynamics and turbulent intermittency, Fractals
5(3) (1997) 427-471.

[3] S. Roux, A. Arneodo, N. Decoster, A wavelet-based method for
multifractal image analysis. IIl. Applications to high-resolution
satellite images of cloud structure, Eur. Phys. J. B 15 (4) (2000)
765-786.

[4] R. Jennane, W. Ohley, S. Majumdar, G. Lemineur, Fractal analysis of
bone X-ray computed microscopy projections, IEEE Trans. Med.
Imaging 20 (5) (2001) 443-449.

[5] Y. Xu, J. Hui, C. Fermiiller, Viewpoint invariant texture description
using fractal analysis, Int. J. Computer Vision, 2009, to appear.

[6] F. Richard, H. Biermé, A statistical methodology for testing the
anisotropy of Brownian textures with an application to full-field
digital mammography, preprint.

[7] J.-L. Starck, F. Murtagh, A. Bijaoui, Image Processing and Data
Analysis: The Multiscale Approach, Cambridge University Press,
Cambridge, 1998.

[8] N. Decoster, S. Roux, A. Arneodo, A wavelet-based method for
multifractal image analysis. II. Applications to synthetic multifractal
rough surfaces, Eur. Phys. J. B 15 (4) (2000) 739-764.

[9] L. Ponson, D. Bonamy, H. Auradou, G. Mourot, S. Morel, E. Bouchaud,
C. Guillot, J. Hulin, Anisotropic self-affine properties of experimental
fracture surface, Int. J. Fracture 140 (1-4) (2006) 27-36.

[10] S. Peleg, J. Naor, R. Hartley, D. Avnir, Multiple resolution texture
analysis and classification, IEEE Trans. Pattern Anal. 6 (4) (1984)
518-523.

[11] Y. Xu, ]J. Hui, C. Fermiiller, A projective invariant for texture, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), New York, 2006, pp. 1932-1939.

[12] E. Bacry, ]. Muzy, A. Arneodo, Singularity spectrum of fractal signals
from wavelet analysis: exact results, J. Stat. Phys. 70 (3-4) (1993)
635-674.

[13] P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, D. Veitch, Multiscale nature
of network traffic, IEEE Signal Process. Mag. 19 (3) (2002) 28-46.

[14] S. Jaffard, B. Lashermes, P. Abry, Wavelet leaders in multifractal
analysis, in: T. Qian, M.I. Vai, X. Yuesheng (Eds.), Wavelet Analysis
and Applications, Birkhduser Verlag, Basel, Switzerland, 2006, pp.
219-264.

[15] V. Sharifi-Salamantian, B. Pesquet-Popescu, J. Simoni-Lafontaine, J.P.
Rigaut, A robust index for spatial heterogeneity in breast cancer, J.
Microscopy 216 (2) (2004) 110-122.

[16] C.L. Benhamou, et al., Fractal analysis of radiographic trabecular
bone texture and bone mineral density: two complementary
parameters related to osteoporotic fractures, J. Bone Miner. Res. 16
(4) (2001) 697-704.

[17] S. Jaffard, Wavelet techniques in multifractal analysis, fractal
Geometry and applications: a jubilee of Benoit Mandelbrot, in: M.
Lapidus, M. van Frankenhuijsen (Eds.), Proceedings of Symposia
in Pure Mathematics, vol. 72(2), AMS, Providence, RI, 2004,
pp. 91-152.

[18] R. Riedi, Multifractal processes, in: P. Doukhan, G. Oppenheim, M.
Taqqu (Eds.), Theory and Applications of Long Range Dependence,
Birkhduser, Basel, 2003, pp. 625-717.

[19] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San
Diego, CA, 1998.

[20] A. Arneodo, N. Decoster, P. Kestener, S. Roux, A wavelet-based
method for multifractal image analysis: from theoretical concepts
to experimental applications, in: P. Hawkes, B. Kazan, T. Mulvey
(Eds.), Advances in Imaging and Electron Physics, vol. 126, Academic
Press, New York, 2003, pp. 1-98.

[21] B. Lashermes, S. Jaffard, P. Abry, Wavelet leader based multifractal
analysis, in: Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2005.

[22] H. Wendt, P. Abry, S. Jaffard, Bootstrap for empirical multifractal
analysis, IEEE Signal Process. Mag. 24 (4) (2007) 38-48.

[23] S. Lahiri, Resampling Methods for Dependent Data, Springer, New
York, 2003.

[24] A. Zoubir, On confidence intervals for the coherence function, in:
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2005.

[25] H. Wendt, P. Abry, Multifractality tests using bootstrapped
wavelet leaders, IEEE Trans. Signal Process. 55 (10) (2007)
4811-4820.

[26] S. Jaffard, P. Abry, H. Wendt, S. Roux, B. Vedel, The contribution of
wavelets in multifractal analysis, in: A. Damlamian, S. Jaffard, L.T.
Tsien (Eds.), Series in Contemporary Applied Mathematics, Higher
Education Press, World Scientific Publishing, 2009.

[27] J.-P. Antoine, R. Murenzi, P. Vandergheynst, S.T. Ali, Two-Dimen-
sional Wavelets and their Relatives, Cambridge University Press,
Cambridge, 2004.

[28] B. Castaing, Y. Gagne, M. Marchand, Log-similarity for turbulent
flows, Physica D 68 (3-4) (1993) 387-400.

[29] ]. Delour, J. Muzy, A. Arneodo, Intermittency of 1d velocity spatial
profiles in turbulence: a magnitude cumulant analysis, Eur. Phys. ].
B 23 (2) (2001) 243-248.

[30] H. Wendt, Contributions of wavelet leaders and bootstrap to
multifractal analysis: images, estimation performance, dependence
structure and vanishing moments. Confidence intervals and
hypothesis tests, Ph.D. Thesis, Ecole Normale Supérieure de Lyon,
France, 2008.

(2009), doi:10.1016/j.sigpro.2008.12.015

Please cite this article as: H. Wendt, et al., Wavelet leaders and bootstrap for multifractal analysis of..., Signal Process.



file://localhost/Users/pabry/Documents/DOWNLOADS/dx.doi.org/10.1016/j.sigpro.2008.12.015

H. Wendt et al. / Signal Processing 1 (1uin) - 15

[31] A. Chhabra, C. Meneveau, R. Jensen, K. Sreenivasan, Direct
determination of the singularity spectrum and its application to
fully developed turbulence, Phys. Rev. A 40 (9) (1989) 5284-5294.

[32] M. Ossiander, E. Waymire, Statistical estimation for multiplicative
cascades, Ann. Stat. 28 (6) (2000) 1533-1560.

[33] H. Wendt, P. Abry, S. Roux, S. Jaffard, B. Vedel, Analyse multifractale
d’'images: I'apport des coefficients dominants, Traitement du Signal,
20009, to appear.

[34] S. Jaffard, P. Abry, H. Wendt, S. Roux, B. Vedel, Wavelet analysis of
multifractal measure, in preparation.

[35] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear
Evolution Equations, University Lecture Series, vol. 22, American
Mathematical Society, Providence, RI, 2001, the fifteenth Dean
Jacqueline B. Lewis memorial lectures.

[36] P. Abry, S. Jaffard, S. Roux, B. Vedel, H. Wendt, Wavelet decomposi-
tion of measures: application to multifractal analysis of images, in:
J. Byrne (Ed.), Proceedings of the NATO-ASI Conference on
Unexploded Ordnance Detection and Mitigation, Springer, Berlin,
2008.

[37] S. Jaffard, Lacunary wavelet series, Ann. Appl. Probab. 10 (1) (2000)
313-329.

[38] L. Rudin, S. Osher, Nonlinear total variation based noise removal
algorithms, Physica D 60 (1992) 259-268.

[39] A. Arneodo, N. Decoster, S.G. Roux, A wavelet-based method for
multifractal image analysis. I. Methodology and test applications on
isotropic and anisotropic random rough surfaces, Eur. Phys. J. B 15
(3) (2000) 567-600.

[40] A. Zoubir, D. Iskander, Bootstrap Techniques for Signal Processing,
Cambridge University Press, Cambridge, 2004.

[41] A. Zoubir, The bootstrap and its application in signal processing,
IEEE Signal Process. Mag. 15 (1) (1998) 56-76.

[42] M. Stein, Fast and exact simulation of fractional Brownian surfaces,
J. Comput. Graph. Stat. 11 (3) (2002) 587-599.

[43] B. Mandelbrot, Intermittent turbulence in self-similar cascades;
divergence of high moments and dimension of the carrier, J. Fluid
Mech. 62 (1974) 331-358.

[44] D. Veitch, M. Taqqu, P. Abry, Meaningful MRA initialization for
discrete time series, Signal Process. 80 (9) (2000) 1971-1983.

(2009), doi:10.1016/j.sigpro.2008.12.015

Please cite this article as: H. Wendt, et al., Wavelet leaders and bootstrap for multifractal analysis of..., Signal Process.



file://localhost/Users/pabry/Documents/DOWNLOADS/dx.doi.org/10.1016/j.sigpro.2008.12.015

	Wavelet leaders and bootstrap for multifractal analysis of images
	Introduction: multifractal analysis for image processing
	Multifractal formalism and wavelet leader
	Multifractal spectrum
	Wave leader multifractal analysis
	Estimation procedures
	Wavelet coefficients versus leaders

	Advanced considerations on multifractal analysis of images
	Images and function space models
	Uniform regularity
	Fractional integration
	Validity of the multifractal formalism
	Wavelet coefficients versus leaders

	Space-scale block bootstrap
	Space-scale blocks of wavelet leaders
	Bootstrap resampling and estimation
	Bootstrap confidence limits

	Performance assessment on synthetic multifractal images
	Methodology: Monte Carlo simulations
	Synthetic multifractal processes
	Simulation setup

	Results
	Structure functions
	Performances of parameter estimation
	Bootstrap estimation performances
	Analysis of real-world image
	Discussion

	Conclusions and perspectives
	References


