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Abstract:
B. Mandelbrot gave a new birth to the notions of scale invariance, selfsimilarity and

non-integer dimensions, gathering them as the founding corner-stones used to build up frac-
tal geometry. The first purpose of the present contribution is to review and relate together
these key notions, explore their interplay and show that they are different facets of a same
intuition. Second, it will explain how these notions lead to the derivation of the mathe-
matical tools underlying multifractal analysis. Third, it will reformulate these theoretical
tools into a wavelet framework, hence enabling their better theoretical understanding as
well as their efficient practical implementation. B. Mandelbrot used his concept of fractal
geometry to analyze real-world applications of very different natures. As a tribute to his
work, applications of various origins, and where multifractal analysis proved fruitful, are
revisited to illustrate the theoretical developments proposed here.
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1 Introduction

As many students, before and after us, we first met Benôıt Mandelbrot through his books
[127, 128]; indeed, they were scientific bestsellers, and could be found in evidence in most
scientific bookshops. A quick look was sufficient to realize that Benôıt was an unorthodox
scientist; these books radically differed from what we were used to, and were trespass-
ing several taboos of the time: First, they could not be straightforwardly associated with
any of the standardly labelled fields of science, which had been taught to us as separate
subjects. This could already be inferred from their titles: The fractal geometry of na-
ture [128] constitutes a statement that mathematics and natural sciences are intrinsically
mixed, and that the purpose will not be to disentangle them artificially, but rather to ex-
plore their interactions. The contents of these books confirmed this first feeling: Though
they contained a large proportion of very serious mathematics, they did not follow the
old definition-theorem-proof articulation we were used to. The focus was directly on the
observation of figures and on their pertinence for modeling; the mathematics were there to
help and comfort the deep geometric intuition that Benôıt had developed. This does not
mean that he considered mathematics as an ancillary discipline. To the contrary, many
testimonies confirm how enthusiastic he was when one of his mathematical intuitions was
proven correct, and how he immediately incorporated the new mathematical methods in
his own toolbox, which then helped him to sharpen his intuition and go further.

Another revolutionary point was that these books reversed the classical focusses: While
one did find familiar mathematical objects (the nowhere differentiable Weierstrass func-
tions, or the devil’s staircase had been encountered before), the role he made them play
was radically different: So far, they had only been counterexamples, or pathological objects
pedagogically used to shed light on possible pitfalls; instead of this restrictive role, Benôıt
used them as the key examples and cornerstones to found a new geometry based on rough-
ness and selfsimilarity. These books were opening a subject, and drawing tracks through a
new territory; their purpose was not to give the usual polished, final description of a well
understood area, but to open windows on how science advances, and they had a strong
influence on our vocations to research.

Later, personal meetings played a decisive role; let us only mention one such occasion:
At the end of his PhD, one of us (S. J.) met Benôıt who was visiting Ecole Polytechnique.
Benôıt had heard of wavelets, which, at the time, were a new tool still in infancy, and
immediately envisaged possible interactions between wavelets and fractal analysis. A key
feature of fractals is scaling invariance, and, because wavelets can be deduced one from
the others by translations and dilations of a given function, their particular algorithmic
structure should reveal the scaling invariance properties of the analyzed objects. Driven
by his insatiable curiosity, Benôıt wanted to learn everything about wavelets (which was
actually not so much at the time!) and then, with his characteristic generosity, he shared
with this student he barely knew his intuitions on the subject. Thus, the present contribu-
tion can be read as a tribute to some of the scientific lines Benôıt had dreamed about at
the time: It will show how and why wavelet techniques yield powerful tools for analyzing
fractal properties of signals and images, and thus supply new collections of tools for their
classification and modeling.
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1.1 Scale invariance and self similarity

Exact (or deterministic) self similarity. Fractal analysis can roughly be thought
of as a way to characterize and investigate the properties of irregular sets. Note that
irregularity is a negatively defined word; the description of the scientific domain it covers
is therefore not clearly feasible, and had not been tried before B. Mandelbrot developed
the concepts of fractal geometry. One of his leading ideas was a notion of regularity in
irregularity or selfsimilarity : The object is irregular, but there is some invariance in its
behavior across scales. For some sets, the notion of selfsimilarity replaces the notion of
smoothness. For instance, the triadic Cantor set is selfsimilar, in the sense that it is made
of two pieces which are the same as the whole set is shrunk by a factor 3. The purpose of
multifractal analysis is to transpose this idea from the context of geometrical sets to that
of functions. Sometimes, this transposition can be directly achieved, when the geometrical
set consisting of the graph of the function also displays some selfsimilarity. Consider the
example of the Weierstrass-Mandelbrot functions (a slight variant of the famous Weierstrass
functions, see [128] pp. 388-390):

Wa,H(x) =

+∞∑
n=−∞

sin(anx)

aHn
for a > 1 and H ∈ (0, 1) (1)

(note that the series converges when n → +∞ because a > 1 and when n → −∞ because
| sin(anx)| ≤ |anx| and H < 1). Those functions clearly satisfy the exact selfsimilarity
relationship

∀x ∈ R, Wa,H(ax) = aHWa,H(x). (2)

Note that selfsimilar functions associated with a selfsimilarity exponent H > 1 can be
obtained using slight variants: For instance, the function

+∞∑
n=−∞

cos(anx)− 1

aHn
for a > 1 and H ∈ (0, 2)

is selfsimilar with a selfsimilarity exponent H, which can go up to 2; and the function

+∞∑
n=−∞

sin(anx)− anx
aHn

for a > 1 and H ∈ (1, 3)

is selfsimilar with a selfsimilarity exponent H which can go up to 3. Note that this “renor-
malization technique” can be pushed further to deal with higher and higher values of H,
yielding smoother and smoother functions: One thus obtains functions that are everywhere
C [H] and nowhere C [H]+1.

Random (or statistical) self similarity. Functions satisfying (2) are very rare; there-
fore the notion of exact selfsimilarity can be considered too restrictive for real world data
modeling. Fruitful generalizations of this concept can be developed into several directions.
A first possibility lies in weakening the exact deterministic relationship (2) into a proba-
bilistic one: The (random) functions aHf(ax) do not coincide sample path by sample path,
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but share the same statistical laws. A stochastic process Xt is said to be selfsimilar, with
selfsimilarity exponent H iff

∀a > 0, {Xat, t ∈ R} L= {aHXt, t ∈ R} (3)

(see Definition 5 where the precise definition of equality in law of processes is recalled).
The first example of such selfsimilar processes is that of fractional Brownian motion

(hereafter referred to as fBm), introduced by Kolmogorov [105]. Its importance for the
modeling of scale invariance and fractal properties in data was made explicit and clear by
Mandelbrot and Van Ness in [138]. This article is characteristic of Mandelbrot’s genius,
which could perceive similarities between very distant disciplines: Motivations simultane-
ously rose from hydrology (cumulated water flow), economic time series and fluctuations
in solids. Notably, B. Mandelbrot explained that fBm (with 0.5 < H < 1) was well-suited
to model long term dependencies, or long memory effects, in data, a property he liked to
refer to as the Joseph effect in a colorful and self-speaking metaphoric comparison to the
character of the Bible (cf. e.g., [139]). Selfsimilar processes have since been the subject
of numerous exhaustive studies, see for instance the books [4, 55, 65, 168]. Note also that
B. Mandelbrot put selfsimilarity (which he actually more accurately called selfaffinity) as
a central notion in the study stochastic processes in views of applications, see [136] for a
panorama of his works in this direction.

1.2 Selfsimilarity and Wavelets

Let us now briefly come back to B. Mandelbrot’s intuition and see how wavelet analysis can
reveal relationships such as (2) or (3), as well as other important probabilistic properties of
stochastic processes. In its simplest form, an orthonormal wavelet basis of L2(R) is defined
as the collection of functions

2j/2ψ(2jx− k), where j, k ∈ Z, (4)

and the wavelet ψ is a smooth, well localized function. Wavelet coefficients are further
defined by

cj,k = 2j
∫
f(x) ψ(2jx− k) dx.

A L1-normalization is used (rather than the classical L2-normalization), as it is better
suited to express scale invariance relationships, as shown in (5) below.

Let f denote a function satisfying (2) with a = 2, i.e. such that

∀x ∈ R, f(2x) = 2Hf(x);

then, clearly, its wavelet coefficients satisfy

∀j, k, cj,k = 2Hcj+1,k.

Similarly, in the probabilistic setting, if (3) holds, then the (infinite) sequences of random
vectors Cj ≡ (2Hjcj,k)k∈Z satisfy the following property:

{Cj}j∈Z share the same law. (5)
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Other probabilistic properties have simple wavelet counterparts; let us mention a few of
them.

Let Xt be a Markov process, i.e. a stochastic process satisfying the property

∀s > 0, Xt+s −Xt is independent of the (Xu)u≤t ;

typical examples of Markov processes are supplied by Brownian motion, or, more generally,
by Lévy processes, i.e. processes with stationary and independent increments. Because
wavelets have vanishing integrals, the Markov property implies that, if the supports of the
ψ(2jx − k) are disjoint, then the corresponding coefficients cj,k are independent random
variables.

Recall that a stochastic process Xt has stationary increments iff

∀s > 0, Xt+s −Xt has the same law as Xs ;

typical examples are fractional Brownian motions, or Lévy processes. If Xt has stationary
increments, then

∀j, the random variables (cj,k)k∈Z share the same law. (6)

Note that this property holds for each given j, but implies no relationship between wavelet
coefficients at different scales; however, if Xt is a selfsimilar process of exponent H with
stationary increments, then it follows from (5) and (6) that the random variables 2Hjcj,k
all share the same law (for all j and k).

A random variable X has a stable distribution iff

∀a, b ≥ 0, ∃c > 0 and d ∈ R such that aX1 + bX2
L
= cX + d

where X1 and X2 are independent copies of X. A random process is stable if all linear
combinations of the X(ti) are stable. This property implies that the wavelet coefficients of
a stable process are stable random variables. Further, it can actually be shown that any
finite collection of wavelet coefficients forms a stable vector (cf. e.g., [7, 162, 163, 175]).

Finally, if Xt is a Gaussian process, then any finite collection of its wavelet coefficients
is a Gaussian vector. Note however a common pitfall: Unless some additional stationarity
property holds, the sole Gaussianity hypothesis for the marginal distribution of the process
does not imply that the empirical distributions of the coefficients (cj,k)k∈Z are close to
Gaussian: It can only be said that they will consist of Gaussian mixtures (which can strongly
depart from a Gaussian distribution). The statistical properties of wavelet coefficients of
fBm were studied in depth in the seminal works of P. Flandrin [71, 72] that significantly
contributed to the popularity of wavelet transforms in the analysis of scale invariance.

Among the results that we mentioned above, it is important to draw a difference between
those that are a consequence of the sole fact that wavelet coefficients are defined as a linear
mapping, and therefore would hold for any other basis (Gaussianity and stability) and those
that are the consequence of the particular algorithmic nature of wavelets (selfsimilarity and
stationarity). These (rather straightforward) results are either implicit or explicit in the
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literature concerning wavelet analysis of stochastic processes; however, in order to give a
flavor of the ideas and methods involved, we give a proof of (5) at the end of Section 4.1.

Further, let us mention that all these wavelet properties do not constitute exact char-
acterizations of the probabilistic properties of the corresponding processes, but only impli-
cations, because of a deficiency of wavelet expansions that will be explained in Section 4.1.

1.3 Beyond selfsimilarity: Multifractal analysis

Beyond selfsimilarity. An obvious drawback of using exact probabilistic properties,
such as selfsimilarity, or independence of increments is that, though they can relevantly
model physical properties of the underlying data, they usually do not hold exactly for
real-life signals. Two limitations of selfsimilarity can classically be pointed out. First, the
scaling properties may not hold for all scales (as required by the mathematical definition
of selfsimilarity). This may be due to noise corruption or it may also result from the fact
that the physical phenomena implying those properties intrinsically act over a finite range
of scales only. Second, the appealing property of selfsimilarity (the sole selfsimilarity pa-
rameter H contains the essence of the model) may also constitute its limitation: Can one
really expect that the complexity of real-world data can be accurately encapsulated in one
single parameter only? Let us examine such issues.

Multiplicative Cascades. As mentioned above, B. Mandelbrot coined fBm as one
of the major candidates to model scale invariance. However, combining selfsimilarity and
stationary increments implies that all finite moments of the increments of fBm (and of
any process whose definition gathers these two properties) verify, for all ps such that
IE(|X(1)|p) <∞ [168, 65],

∀τ ∈ R, IE(|X(t+ τ)−X(t)|p) = IE(|X(1)|p) |τ |pH . (7)

Though very powerful, this result can also be regarded as a severe limitation for applica-
tions, where empirical estimates of moments,

∫
|X(t+ τ)−X(t)|pdt, computed on the data

assuming ergodicity, may instead behave as:
∫
|X(t+τ)−X(t)|pdt = τ ζ(p), for a range of τ ,

and where ζ(p) is, by construction, a concave function, but is not necessarily linear. This is
notably the case when analyzing velocity or dissipation fields in the study of hydrodynamic
turbulence where strictly concave scaling functions were obtained (cf. e.g., [76] for a review
of experimental results). This was justified by a celebrated argument due to Kolmogorov
and Obukhov in 1962 [108, 149, 186]: Navier-Stokes equation, governing fluid motions, im-
plies that the (third power of the) gradient of the velocity u(x+r)−u(x) is proportional to
the mean of the local energy εr dissipated into a bulk of size r: IE(u(x+r)−u(x))3 ∝ IE(εr)·r.
If εr is constant, then any power scales as IE(u(x+ r)−u(x))p ∝ εprrp/3. But, in turbulence,
εr is not constant over space and should rather be regarded as a random variable, hence
implying: IE(u(x + r) − u(x))p ∝ IE(εpr) rp/3 which naturally implies a general scaling of
the form ∼ IE(u(x+ r)− u(x))p ∝ rζ(p), with ζ(p) which is likely to depart from the linear
behavior pH which is implied by the selfsimilarity hypothesis.
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To account for this form of observed scale invariance, new stochastic models have been
proposed: Multiplicative cascades. Numerous declinations of cascades were proposed in the
literature of hydrodynamic turbulence to model data, see e.g., [76] (on the mathematical
side, see the book [26] for a detailed review, and also the contribution of J. Barral and J.
Peyrière [32] in the present volume, for a lighter introduction). For the sake of simplicity,
the simplest (1D) formulation is presented here; however, it contains the key ingredients
present in all other more general cascade models. Starting from an interval (arbitrarily
chosen as the unit interval), a cascade is constructed as the repetition of the following
procedure (c being an arbitrary integer): At iteration j, each of the cj−1 sub-intervals
{Ij−1,k, k = 0, . . . cj−1 − 1}, obtained at iteration j − 1, is split into c intervals of the same
length c−j ; a mean-1 positive random variable wj,k (drawn independently and with identical
distribution) is associated with each {Ij,k, k = 0, . . . cj − 1}. After an infinite number of
iterations, the cascade W is defined as the limit (in the sense of measures) of the finite
products

WJ(x)dx =
∏

j≤J, x∈Ij,k

wj,k dx.

Mathematically, this sequence of measures converges under mild conditions on the distribu-
tion of the multipliers w (cf. [103]). Such constructions and variations have been massively
used to model the Richardson energy cascade implied by the Navier-Stokes equation [164]
(cf. [76] for a review of such models). One of the major contributions of B. Mandelbrot to
the field of hydrodynamic turbulence was proposed in [124], where he presented the themes
and variations on multiplicative cascades in a single framework and studied their common
properties, notably in terms of scale invariance. This celebrated contribution paved the
way towards the creation of the word multifractal, to the notions of multifractal processes
and multifractal analysis, where multi here refers to the fact that instead of a single scaling
exponent H, a whole family of exponents ζ(p) are needed for a better description of the
data. B. Mandelbrot also discussed the importance of the distribution of the multipliers
and how multiplicative cascades may significantly depart from log-normal statistics that
could be obtained from a simplistic argument:

Πwj,k = Πelog(wj,k) = e
∑

logwj,k ,

where
∑

logwj,k tends to a normal distribution, hence e
∑

logwj,k should tend to a log-normal
distribution (cf. [132, 123], and also [186]). This opened many research tracks proposing
alternatives to the log-normal model, the most celebrated one being the log-Poisson model
[172]. This will be further discussed in Section 6.1. Much later, multiplicative cascades were
connected to Compound Poisson cascades and further to Infinitely Divisible Distributions
(cf. e.g., [148]). Mandelbrot himself contributed to these latter developments with the
earliest vision of Compound Poisson Cascades [30] and also with his celebrated fBm in
multifractal time [135], which will be considered in Section 6.2. This gave birth to multiple
constructions of processes with multifractal properties (cf. e.g., [19, 23, 24, 33, 34, 48, 49]).

Compared with the concept of selfsimilarity (and in particular fBm), which is naturally
related to random walks and hence to additive constructions, cascades are, by construction,
tied to a multiplicative structure. This deep difference in nature explains why practitioners,
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for real-world applications, are often eager to distinguish between these two classes of mod-
els. This distinction is however often misleadingly confused with the opposition of mono-
versus multi-fractal processes. This will be further discussed in Section 5.4.

Scaling functions and scaling exponents. The empirical observations of strictly
concave scaling exponents, made on hydrodynamic turbulence data, led to the design of a
new tool for analysis: Scaling functions. Let f : Rd → R. The Kolmogorov scaling function
of f (see [107]) is the function ηf (p) implicitly defined by the relationship

∀p ≥ 1,

∫
|f(x+ h)− f(x)|pdx ∼ |h|ηf (p), (8)

the symbol ∼ meaning that

ηf (p) = lim
|h|→0

log

(∫
|f(x+ h)− f(x)|pdx

)
log |h| . (9)

Note that this limit does not necessarily always exist; when it does, it reflects the fact that
f shows clear scaling properties (and it is needed to hold in order to numerically compute
scaling functions). However, we are not aware of any simple and general mathematical
assumption implying that it does; therefore, it is important to formulate a mathematical
and slightly more general definition of the scaling function, which is well defined for any
function f ∈ Lp:

∀p ≥ 1, ηf (p) = lim inf
|h|→0

log

(∫
|f(x+ h)− f(x)|pdx

)
log |h| . (10)

It is important to note that, if data are smooth (i.e., if one obtains that ηf (p) ≥ p), then
one has to use differences of order 2 or more in (9) and (10) in order to define correctly the
scaling function.

For application to real-world data, which are only available with a finite time or space
resolution, (9) can be interpreted as a linear regression of the log of the left hand side of
(8) vs. log(|h|). The same remark holds for the other scaling functions that we will meet.

Multifractal analysis. In essence, multifractal analysis consists in the determination of
scaling functions (variants to the original proposition of Kolmogorov ηf will be considered
later). Such scaling functions can then be involved into classification or model selection
procedures. Scaling functions constitute a much more flexible analysis tool than the strict
relation (2). For many different real-world data stemming from applications of various
natures, relationships such as (8) are found to hold, while this is usually not the case for
(2), see Section 6 for illustrations on real world data.

An obvious key advantage of the use of the scaling function ηf (p) is that its dependence
in p can take a large variety of forms, hence providing versatility in adjustment to data.
Therefore, multifractal analysis, being based on a whole function (the scaling function ηf (p),
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or some of its variants introduced below), rather than on the single selfsimilarity exponent,
yields much richer tools for classification or model selection. The scaling function however
satisfies a few constraints, for example, it has to be a concave non-decreasing function (cf.
e.g., [99, 183]).

Another fundamental difference between the selfsimilarity exponent and the scaling
function lies in the fact that, for stochastic processes, the selfsimilarity exponent is, by
definition, a deterministic quantity, whereas the scaling function is constructed for each
sample path, and therefore is a priori defined as a random quantity. And, indeed, even if
the limit in (10) turns out to be deterministic for many examples of stochastic processes
(such as fBm, Lévy processes, or multiplicative cascades, for instance), it is not always the
case, as shown, for instance, by the example of fairly general classes of Markov processes,
such as the ones studied in [27]. Note that, if a stationarity assumption can be reasonably
assumed, then one can define a deterministic quantity by taking an expectation instead of
a space average in (10), which leads to a definition of the scaling function through moments
of increments. Under appropriate ergodicity assumptions, time (or space) averages can be
shown to coincide with ensemble averages, and, in this case, both approaches lead to the
same scaling functions, see [165] for a discussion (checking such ergodicity assumptions for
experimental data does, however, not seem feasible and can become an intricate issue, cf.
[112]).

1.4 Data analysis and Signal Processing

In its early ages, the concept of scale invariance has been deeply tied to that of 1/f -
processes, that is, to second order stationary random processes whose power spectral density
behave as a power law with respect to frequency over a broad range of frequencies: ΓX(f) ∼
C|f |−β, where the frequency f satisfies fm ≤ f ≤ fM , with fM/fm � 1. From that starting
point, spectrum analysis was regarded as the natural tool to analyze scale invariance and
estimate the corresponding scaling parameter β. In that context, the contribution of B.
Mandelbrot and J. Van Ness [138] can be regarded as seminal since, elaborating on [85], it
put forward fBm, and its increment process, fractional Gaussian noise (fGn), as a model
that extends and encompasses 1/f -processes: fGn is a 1/f -process, with β = 2H − 1, fBm
is a non-stationary process that shares the same scale invariance intuition. This change of
paradigm immediately raised the need for new and generic estimation tools for measuring
the parameter H from real world data, which were no longer based on classical spectrum
estimation. Relying strongly on the intuitions beyond selfsimilarity and long memory (a
concept deeply tied with selfsimilarity, cf. e.g. [36]), the R/S estimator (for Range-Scale
Statistics) has been the first such tool proposed in the literature, to the study of which
B. Mandelbrot also contributed [134, 139, 140]. The R/S estimator has notably been used
in finance and economy, in particular by D. Strauss-Kahn and his collaborators, (see e.g.,
[82, 157]). Later, in the 90s, with the advent of wavelet transforms, seminal contributions
studied the properties of the wavelet coefficients of fBm [71, 72, 177] and opened avenues
towards accurate and robust wavelet-based estimations of the selfsimilarity parameter H
[3, 8, 179, 180].
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To some extent, the present contribution can be read as a tribute to ideas and tracks
originally addressed by B. Mandelbrot (and others) aiming at estimating the parameters
characterizing scale invariance in real world data: The wavelet based formulations of mul-
tifractal analysis (i.e., of the estimation from data of scaling functions and multifractal
spectra) devised in Sections 4 and 5 can be read as continuations and extensions of these
pioneering works towards richer models and refined variations on the characterization of
scale invariance.

1.5 Goals and Outline

In Section 2, it is explained how various paradigms pertinent in fractal geometry, such as
selfsimilarity or fractal dimension, can be shifted to the setting of functions, thus leading
to the introductions of several scaling functions. In Section 3, it is shown how such scaling
functions can be reinterpreted in terms of function space regularity: On one hand, it allows
to derive some of their properties; on other hand, it paves the way towards equivalent for-
mulations that will be derived later. Section 4 introduces wavelet techniques, which allow
to reformulate these former notions in a more efficient setting, from both a theoretical and
pratical point of view. Section 5 introduces the multifractal formalism, which offers a new
interpretation for scaling functions in terms of fractal dimensions of the sets of points where
the functions considered has a given pointwise smoothness. Applications of the tools and
techniques developed here will be given in Section 6, aiming at illustrating the various as-
pects of multifractal analysis addressed in the course of this contribution. Such applications
are chosen either because B. Mandelbrot significantly contributed to their analysis and/or
because they illustrate particularly well some concepts which will be developed here. The
selected applications stem from widely different backgrounds, ranging from Turbulence to
Internet, Heart Beat Variability and Finance (in 1D), and from natural textures to paint-
ings by famous masters (in 2D), thus showing the extremely rich possibilities of these new
techniques.

2 From fractals to multifractals

2.1 Scaling and Fractals

Dynamics versus Geometry. One of the major contributions of B. Mandelbrot has
been to understand the benefits of using mathematical tools and objects already defined
in earlier works but regarded as incidental, such as fractal dimensions, in order to explore
the world of irregular sets, to classify them and to study their properties. A key example
is supplied by the Von Koch curve (cf. e.g., [155, 170] and Fig. 1). The important role
that B. Mandelbrot gave to this curve is typical of his way of diverting a mathematical
object from its initial purpose and of making it fit to his own views; indeed, it was initially
introduced as an example of the graph of a continuous, nowhere differentiable function
(see the book by G. Edgar [64], which made available many classic articles of historical
importance in fractal analysis). B. Mandelbrot shifted the status of this curve from a
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peripherical example of strange set to a central element in the construction of his theory,
and he baptized it the Von Koch snowflake, a typical example of the poetic accuracy that
B. Mandelbrot displayed for coining new names (other examples, being the devil’s staircase,
Lévy flights, Noah or Joseph effects,...). This example will be revisited below in Section 4.2
to validate a numerical method for multifractal analysis.

Two features — dynamics and geometry — are intimately tied into the Von Koch
snowflake: It is constructed from (and hence invariant under) a dynamical system con-
sisting of the iterative repetition of a split and reproduce procedure (highly reminiscent of
the split and multiply procedure entering the definition of multiplicative cascades, cf. Sec-
tion 1.3 earlier); the resulting geometrical set has well defined geometrical properties that
can be put into light through the determination of its box dimension, whose definition we
now recall.

Dimensions.

Definition 1 Let A be a bounded subset of Rd; if ε > 0, let Nε(A) be the smallest number
such that there exists a covering of A by Nε(A) balls of radius ε.

The upper and lower box dimension of A are respectively given by

dimB(A) = lim sup
ε→0

logNε(A)

− log ε
, and dimB(A) = lim inf

ε→0

logNε(A)

− log ε
. (11)

When both limits coincide (as it is the case for the Von Koch snowflake), they are
referred to as the box dimension of the set A:

dimB(A) = lim
ε→0

logNε(A)

− log ε
. (12)

This implies that Nε(A) displays an approximate power-law behavior with respect to scales:

Nε(A) ∼ ε−dimB(A), (13)

a major feature that makes the box dimension useful for practical applications, as it can
be computed through a linear regression in a log-log plot.

The strong similarity (in a geometric setting) between the box dimension and the Kol-
mogorov scaling function (10) can now clearly be seen. The latter is also defined as a linear
regression in log-log plots (log of the p-th moments vs. the log of the scales): Both objects
hence fall under the general heading of scale invariance.

This relationship between geometric and analytic quantities is not only formal: On one
hand, the determination of scaling functions has important consequences in the numerical
determination of the fractal dimensions of graphs, and related quantities, such as the p-
variation, see Section 2.2 ; on other hand, the multifractal formalism, exposed in Section 5,
allows to draw relationships between scaling functions and the dimensions of other types of
sets, defined in a different way: They are the sets of points where the function considered
has a given pointwise smoothness (see Definition 3). Note however that the notion of
dimension used in the context of the multifractal formalism differs from the box dimension:
One has to use the Hausdorff dimension which is now defined (see [66]).
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Definition 2 Let A be a subset of Rd. If ε > 0 and δ ∈ [0, d], let

M δ
ε = inf

R

(∑
i

|Ai|δ
)
,

where R is an ε-covering of A, i.e. a covering of A by bounded sets {Ai}i∈N of diameters
|Ai| ≤ ε. (The infimum is therefore taken on all ε-coverings.)

For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is

mesδ(A) = lim
ε→0

M δ
ε .

One can show that there exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞
∀δ > δ0, mesδ(A) = 0.

This critical δ0 is called the Hausdorff dimension of A, and is denoted by dim(A).

An important convention, in view of the use of these dimensions in the context supplied
by the multifractal formalism, is that, if A is empty, then dim (∅) = −∞.

In contradistinction with the box dimension, the Hausdorff dimension is not obtained
through a regression on log-log plots of quantities that are computable on real-life data;
therefore it is fitted to theoretical questions and can not be used directly in signal or im-
age processing; however, we will see that the multifractal formalism allows to bypass this
problem by supplying an indirect way to compute such dimensions.

Scaling, dimensions and dynamics. The discussions in this section aimed at illustrat-
ing the interplay between three different notions: The signal processing notion of scaling,
or scale invariance, the geometrical notion of dimension and the dynamic notion of con-
structive split/multiply or split/reproduce procedures. Note that the relationships between
fractals and dynamics have been investigated by B. Mandelbrot, see [137] for a panorama.
The dynamic constructive procedures of geometrical sets (e.g., Von Koch snowflake) or of
functions (e.g., multiplicative cascades) result in geometrical properties of the constructed
object. These geometrical properties can be theoretically characterized using dimensions.
These dimensions can be measured practically if they additionally imply the existence of
power law behaviours (or scaling) (such as those reported in (13) or (8)). When the con-
structive procedure underlying the geometrical sets or functions analyzed are known and
parametrized, the measure of geometrical dimension may enable to recover the correspond-
ing dynamic parameters. However this is certainly no more true outside of a parametric
model: Many different dynamic constructions may yield the same dimensions. Therefore,
the inverse problem of identifying the nature of the dynamic or even its existence from the
sole measure of dimensions is ill-posed and can not be achieved in general. Specifically, a
concave scaling function, that hence departs from linearity in p, does not prove the existence
of an underlying cascade mechanism in data.
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2.2 From graph box-dimensions to p-variation: The oscillation scaling
function

From graphs to functions. For data analysis purposes, an obvious difference between
the determination of the fractal dimension of a set A and the scaling function ηf (p) of a
function f has already been pointed out: While the former reduces to a single number,
the latter consists of a whole function of the variable p, hence yields a much richer tool for
classification and identification. However, the gap can easily be bridged in the case where
the geometrical set A consists of the graph, denoted Gr(f), of the function f . Let us exam-
ine how a slight extension of the notion of box dimension of a graph allows to introduce a
dependency on a variable p, and hence a family of exponents whose definition bears some
similarity with the Kolmogorov scaling function.

Oscillations. Let f : [0, 1]d → R be a continuous function (the set [0, 1]d plays no specific
role and is taken here just to fix ideas). If A ⊂ [0, 1]d, let Osf (A) denote the oscillation of
f on the set A, i.e.

Osf (A) = sup
A
f − inf

A
f.

Note that this notion defines only first order oscillation; if A is a convex set, second order
oscillation (which has to be used for smooth functions) is defined as

Osf (A) = sup
x,y∈A

∣∣∣∣f(x)− 2f

(
x+ y

2

)
+ f(y)

∣∣∣∣
(and so on for higher order oscillation). Let λj(x0) denote the dyadic cube of width 2−j

that contains x0; Λj will denote the set of such dyadic cubes λ ⊂ Rd of width 2−j . Let now
p be given. The p-oscillation at scale j of f is defined as

Rf (p, j) = 2−dj
∑
λ∈Λj

(Osf (λ))p. (14)

This quantity allows to define the oscillation scaling function of f as

Of (p) = lim inf
j→+∞

log (Rf (p, j))

log(2−j)
. (15)

Box dimension of graphs versus the oscillation scaling function. Since f is
continuous, the graph of f is a bounded subset of Rd+1. First, note that, in the definition
of the upper box dimension (11), one can rather consider coverings by dyadic cubes of side
2−j ; indeed each optimal ball of width ε used in the covering is included in at most 42d

dyadic cubes of width 2−j = [log2(ε)]; and, in the other way, a dyadic cube is contained
in the ball of same center and width

√
d · 2−j . Therefore using dyadic cubes (instead of

optimally positioned balls) only changes prefactors in Nε(Gr(f)) and not scaling exponents.
Let us now consider the dyadic cubes used in the covering of the graph of f and which

stand above a dyadic cube λ of dimension d and width 2−j included in [0, 1]d. Their number

14



N(λ) clearly satisfies:

2j
(

sup
λ
f − inf

λ
f

)
≤ N(λ) ≤ 2j

(
sup
λ
f − inf

λ
f

)
+ 2.

This, together with the definition of the oscillation scaling function, implies that for p = 1,

dimB(Gr(f)) = max(d, d+ 1−Of (1)).

However, the oscillation scaling function can be used for other (positive) values of p,
and therefore yields a classification tool with similar potentialities as those offered by the
Kolmogorov scaling function. We will see an example of its use in finance, in order to esti-
mate quadratic variations, see Section 6.2. An extension of the oscillation scaling function
will be defined later, defined through wavelet quantities: The leader scaling function, cf.
Section 4.4.

Box dimension and selfsimilarity exponent. For some selfsimilar functions and
processes, a direct relationship between the box dimension of their graphs and their self-
similarity exponent can be drawn. For instance, one-dimensional fBm of selfsimilarity index
H has a graph of box dimension 2−H, and the same result holds in a deterministic setting
for the graphs of the Weierstrass-Mandelbrot functions, which have box dimension 2 −H
(see [67, 68] where similar results can also be found for Hausdorff dimensions of graphs).
Note that B. Mandelbrot himself had already drawn connections between selfsimilarity and
fractal dimension (cf. e.g., [129, 130, 131]).

3 Geometry vs. Analysis

The shift from fractal geometry to multifractal analysis essentially consists in replacing
the study of selfsimilarity, and of geometric properties of sets, by the study of analytic
properties of functions. This shift has several facets: First, in Section 3.1, we will explore
relationships between selfsimilarity and pointwise regularity, two concepts which are often
confused, and actually have subtle interplays which are far from being fully understood
today. Second, in Section 3.2, we will give the interpretation of scaling functions in terms
of function space regularity, which allows to use the full apparatus of functional analysis.
Finally, in Section 5, the multifractal formalism is introduced: It allows to interpret the
(Legendre transform of the) scaling function in terms of dimensions of sets of points where
f has a given pointwise Hölder regularity.

3.1 Pointwise Hölder regularity

Hölder exponent. Selfsimilarity of either deterministic functions or stochastic processes
is intimately related with their local regularity. Before explaining these relationships, let us
start by recalling the notion of pointwise Hölder regularity (alternative notions of pointwise
regularity, have also been considered, allowing to deal with functions that are not locally
bounded, see [95, 96, 97, 102]).
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Definition 3 Let f : Rd → R be a locally bounded function, x0 ∈ Rd and let γ ≥ 0; f
belongs to Cγ(x0) if there exist C > 0, R > 0 and a polynomial P of degree less than γ such
that

if |x− x0| ≤ R, then |f(x)− P (x− x0)| ≤ C|x− x0|γ .
The Hölder exponent of f at x0 is

hf (x0) = sup {γ : f is Cγ(x0)} .
When Hölder exponents lie between 0 and 1, the Taylor polynomial P (x − x0) boils

down to f(x0) and the definition of the Hölder exponent heuristically means that,

|f(x)− f(x0)| ∼ |x− x0|hf (x0).

For these cases, a relationship can be drawn with the local oscillation considered in Section
2.2. Indeed, let λj(x0) denote the dyadic cube of width 2−j that contains x0, and 3λj(x0)
the cube of same center and 3 times wider (it therefore contains 3d dyadic cubes of width
2−j). One easily checks that, if 0 < hf (x0) < 1, then

hf (x0) = lim inf
j→+∞

log (Osf (3λj(x0)))

log(2−j)
. (16)

This formula puts into light the fact that the Hölder exponent can theoretically be obtained
through linear regressions on log-log plots of the oscillations Osf (3λ) versus the log of the
scale. However, in practice, this formula has found little direct applications for two reasons:
One is that alternative formulas based on wavelet leaders (cf. Section 4.4) are numerically
more stable, and the other is that many types of signals display an extremely erratic Hölder
exponent, so that the instability of its determination is intrinsic, no matter which method
is used. We will see in Section 4.4 how to turn this deeper obstruction.

Implications of selfsimilarity on regularity and dimensions. The Hölder expo-
nent sometimes coincides with the selfsimilarity exponent, hence resulting in a confusing
identification of the two quantities. This is the case for two frequently used examples:
Weierstrass-Mandelbrot functions and fBm sample paths have everywhere the same and
constant Hölder exponent, ∀x : hf (x) = H. The theoretical definition of such examples
essentially relies on a single parameter, and therefore it comes as no surprise that, for such
simple functions with a constant Hölder exponent, both their selfsimilarity and their local
regularity are governed by this sole parameter (and coincide). Similarly, their scaling func-
tions are linear in p, and therefore are governed by one parameter only, the slope of this
linear function, which, for these two examples, is H.

However, one should not infer hasty conclusions from these examples: Selfsimilar pro-
cesses with stationary increments do not always possess a single Hölder exponent that cor-
responds to the selfsimilarity exponent, as shown by the example of stable Lévy processes:
These processes are selfsimilar of exponent H = 1/α, where α is the stability parameter.
In addition, their scaling function is linear in p only for p small enough:

ηf (p) = Hp if 0 ≤ p ≤ 1
H

= 1 if p > 1
H .
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This is intimately related with the fact that their Hölder exponent is not constant: Sample
paths of a stable Lévy process have, for each h ∈ [0, H], a dense set of points where
their Hölder exponent takes the value h (cf. [91] for Lévy processes, and [63] for Lévy
sheets indexed by Rd). Thus, their Hölder exponents jump in a very erratic manner from
point to point, as a consequence of the high variability of the increments: Indeed, their
distributions only have power-law decay, and therefore (in strong contradistinction with
Gaussian variables) can take extremely large values with a relatively large probability; the
importance of this phenomenon in applications was largely undervalued in the past, until B.
Mandelbrot pointed out its possibly dramatic consequences, referring to them in a colorful
way as Noah’s effect.

Let us now be more explicit concerning the relationships between selfsimilarity and
Hölder regularity. A first result relates selfsimilarity with uniform regularity of sample
paths.

Proposition 1 Assume that Xt is a selfsimilar process of exponent H, with stationary
increments, and such that E(|X1|α) <∞ for some α > 0. Then,

∀h < H − 1/α, a.s. ∃C, ∀t, s, |Xt −Xs| ≤ C|t− s|h (17)

The proof follows directly from the Kolmogorov-Chentsov theorem: Recall that this
theorem asserts that, if Xt is a random process satisfying

∀t, s, E(|Xt −Xs|α) ≤ C|t− s|1+β

then,
∀h < β/α, a.s. ∃C, ∀t, s, |Xt −Xs| ≤ C|t− s|h

(see [55]). But, if X is selfsimilar, then

E(|Xt −Xs|α) = |t− s|HαE(|X1|α), (18)

and the proposition follows.

We will reinterpret this result in Section 4.3 when the uniform Hölder exponent will
be introduced. The following result goes in the opposite direction: It relates selfsimilarity
with irregularity of sample paths.

Proposition 2 Let Xt be a selfsimilar process of exponent H, with stationary increments,
and which satisfies P({X1 = 0}) = 0, i.e. the law of X at time t = 1 (or at any other time
t > 0) does not contain a Dirac mass at the origin. Then

a.s. a.e. hX(t) ≤ H. (19)

Proof: We first prove the result for t = 0. The assumption P({X1 = 0}) = 0 implies
the existence of a decreasing sequence (δn)n∈N which converges to 0 and satisfies

P(|X1| ≤ δn) ≤ 1

n2
.
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Let ln = exp(−1/δn). Then Xln
L
= (ln)HX1. Therefore

P
(
|Xln | ≤

(ln)H

log(1/ln)

)
= P(|X1| ≤ δn) ≤ 1

n2
.

The Borel-Cantelli lemma implies that a.s. a finite number of these events happens, and
therefore hX(0) ≤ H. By the stationarity of increments, this argument holds the same at
each t, i.e.

∀t a.s. hX(t) ≤ H;

and Fubini’s theorem allows to conclude that (19) holds.

In particular, assume that Xt satisfies the assumptions of Proposition 2, and also of
Proposition 1 for any α > 0. Then, both results put together show that, in this case, (17) is
optimal. Relationships between selfsimilarity and Hölder exponents for selfsimilar processes
will be further investigated in Section 5.4.

Note that, without additional assumptions, one can not expect results more precise than
those given by Propositions 1 and 2, as shown by the subcase of stable, selfsimilar processes
with stationary increments, see [109, 168]: Let H denote the selfsimilarity index of such a
process, and α its stability index. First, note that there is no direct relationship between
α, H and Hölder regularity: They always satisfy

0 < α < 2 and H ≤ max(1, 1/α);

the case of fBm is misleadingly simple since it satisfies

α = 2 and ∀x, hBH (x) = H ∈ (0, 1);

however Lévy processes satisfy H = 1/α and hf (x) takes all values in [0, H]. Finally, Lévy
fractional stable processes have nowhere locally bounded stable sample paths if H < 1/α,
and continuous sample paths if H > 1/α (see Section 4.3 for a more precise result). Sam-
ple paths of selfsimilar processes (with stationary increments) together with their scaling
functions (and multifractal spectra) are illustrated in Fig. 2 in Section 5.2.

Let us now mention a few results concerning the relationship between selfsimilarity and
fractional dimensions. We start with fBm which again is the simplest and best understood
case. Such results are of two types:

• Dimensions of the graph of sample paths: Box and Hausdorff dimensions coincide and
take the value 2−H, see [67, 68].

• Relationship between the Hausdorff dimension of a set A and of its image X(A) (see
see [173] and references therein)

a.s., for any Borel set, A ⊂ R, dimX(A) = min(1, dim(A)/H). (20)
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We will see that this second result has important consequences for the multifractal analysis
of some finance models proposed by L. Calvet, A. Fisher, and B. Mandelbrot, see (51).
Partial results of these two types also hold for other selfsimilar processes, see [173].

Regularity versus dimension: The mass distribution principle. The example of
stable Lévy processes suggests that the most fruitful connection to be drawn does not involve
the notion of selfsimilarity, but rather should connect scaling functions with pointwise
regularity. This is precisely what the multifractal formalism performs, as it establishes a
relationship between scaling functions and the Hausdorff dimensions of the isohölder sets
of f defined by

Ef (h) = {x0 : hf (x0) = h}. (21)

The multifractal formalism will be detailed in Section 5. A clue which shows that such
relationships are natural can however be immediately given, via the mass distribution
principle which goes back to Besicovitch (see Proposition 3 below). This principle estab-
lishes a connection between the dimension of a set A and the regularity of the measures that
this set can carry. The motivation for it stems from the following remark. Mathematically,
it is easy to obtain upper bounds for the Hausdorff dimension of a set A: Indeed, any well
chosen sequence of particular ε-coverings (for a sequence εn → 0) yields an upper bound.
To the opposite, obtaining a lower bound by a direct application of the definition is more
difficult, since it requires to consider all possible ε-coverings of A. The advantage of the
mass distribution principle is that it allows to obtain lower bounds of Hausdorff dimensions
by just constructing one measure carried by the set A. Recall that a measure µ is carried
by A if µ(Ac) = 0. Note, however, that a set A satisfying such a definition is not unique;
In particular, this notion should not be mistaken with the more usual one of support of
the measure, which is uniquely defined as the intersection of all closed sets carrying µ. For
example, consider the measure

µ =
∑

p/q∈[0,1],p∧q=1

1

q3
δp/q

(where δa denotes the Dirac mass at the point a). The support of this measure is the
interval [0, 1], but it is (also) carried by the (much smaller) set A = Q ∩ [0, 1].

Proposition 3 Let µ be a probability measure carried by A. Assume that there exists
δ ∈ [0, d], C > 0 and ε > 0 such that, for any ball B of diameter less than ε, µ satisfies the
following uniform regularity assumption

µ(B) ≤ C|B|δ.

Then the δ-dimensional measure of A satisfies: mesδ(A) ≥ 1/C, and therefore dim(A) ≥ δ.

Proof: Let {Bi}i∈N be an arbitrary ε-covering of A. Then

1 = µ(A) = µ
(⋃

Bi

)
≤
∑

µ(Bi) ≤ C
∑
|Bi|δ.

The result follows by passing to the limit when ε→ 0.
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3.2 Scaling functions vs. function spaces

From scaling functions to function spaces. Kolmogorov scaling function ηf (p) (as
defined by (10)) receives a function space interpretation, which is important for several
reasons. On one hand, it allows to derive a number of its mathematical properties, and
on other hand, it points towards variants and extensions of this scaling function, yielding
sharper information on the singularities existing in data, and therefore offering a deeper
understanding of the multifractal formalism.

Function space interpretation. The function space interpretation of the Kolmogorov
scaling function can be obtained through the use of the spaces Lip(s, Lp) defined as follows.

Definition 4 Let s ∈ (0, 1), and p ∈ [1,∞]; f ∈ Lip(s, Lp(Rd)) if
∫
|f(x)|pdx <∞ and

∃C > 0, ∀h > 0,

∫
|f(x+ h)− f(x)|pdx ≤ C|h|sp. (22)

Note that larger smoothness indices s are reached by replacing in the definition the first-
order difference |f(x+h)−f(x)| by higher and higher order differences: |f(x+2h)−2f(x+
h) + f(x)|,... (which is coherent with the remark just after the introduction of Kolmogorov
scaling function (10), where, there too, higher order differences have to be introduced in
order to deal with smooth functions f).

It follows from (8) and (22) that,

∀p ≥ 1, ηf (p) = sup{s : f ∈ Lip(s/p, Lp(Rd))}. (23)

In other words, the scaling function allows to determine within which spaces Lip(s, Lp) data
are contained, for p ∈ [1,∞]. The reformulation supplied by (23) has several advantages:
It will lead to a better numerical implementation, based on wavelet coefficients, and it will
have the additional advantage of yielding a natural extension of these function spaces to
p ∈ (0, 1); this, in turn, will lead to a scaling function also defined for p ∈ (0, 1), therefore
supplying a more powerful tool for classification, see Section 4.2. Note that the reason why
Kolmogorov scaling function cannot be directly extended to p < 1 is that Lp spaces and
the spaces which are derived from them (such as Lip(s, Lp)) do not make sense for p < 1;
indeed Definition 4 for p < 1 leads to mathematical inconsistencies (spaces of functions
thus defined would not necessarily be included in spaces of distributions).

Another advantage of the function space interpretation of the scaling function is that it
allows to draw relationships with areas of modeling where the a priori assumptions which
are made are function space regularity assumptions. Let us mention two famous examples,
which will be further used as illustrations for the wavelet methods developed in the next
section: Bounded Variations (BV) modeling in image processing (cf. Section 4.2), and
bounded quadratic variation hypothesis in finance (cf. Sections 4.4 and 6.2, this latter case
being related with the determination of the oscillation scaling functions (15)).
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Bounded variations and image processing. A function f belongs to the space BV,
i.e., has bounded variation, if its gradient, taken in the sense of distributions, is a finite
(signed) measure. A standard assumption in image processing is that real-world images
can be modeled as the sum of a function u ∈ BV which models the cartoon part, and
another term v which accounts for the noise and texture parts (for instance, the first “u+v
model”, introduced by Rudin, Osher and Fatemi in 1992 ([111]) assume that v ∈ L2, see
also [129, 130]). The BV model is motivated by the fact that if an image is composed of
smooth parts separated by contours, which are piecewise smooth curves, then its gradient
will be the sum of a smooth function (the gradient of the image inside the smooth parts)
and Dirac masses along the edges, which are typical finite measures. On the opposite, char-
acteristic functions of domains with fractal boundaries usually do not belong to BV, see
Fig. 1 for an illustration). Therefore, a natural question in order to validate such models is
to determine whether an image (or a portion an image) actually belongs to the space BV
or not. We will see in Section 4.2 how this question can be given a sharp answer using a
direct extension of Kolmogorov scaling function.

Bounded quadratic variations. Another motivation for function space modeling is
supplied by the finite quadratic variation hypothesis in finance. In contradistinction with
the previous image processing example, this hypothesis is not deduced from a plausible
intrinsic property of financial data, but rather constitutes an ad hoc regularity hypothesis
which (considering the actual state of the art in stochastic analysis) is required in order to
use the tools of stochastic integration. There exist several slightly different formulations of
this hypothesis. One on them, which we consider here, is that the 2-oscillation is uniformly
bounded at all scales. This means that f , assumed to be defined on [0, 1]d, satisfies

∃C, ∀j ≥ 0, 2djRf (2, j) =
∑
λ∈Λj

(Osf (λ))2 ≤ C

(where Rf (p, j) was defined by (14)). The definition of the oscillation scaling function (15)
shows that, if Of (2) > d, then f has finite quadratic variation, and if Of (2) < d, then
this hypothesis is not valid. This will be further discussed in Section 4.2 and illustrated in
Section 6.2 and Fig. 7.

4 Wavelets: A natural tool to measure global scale invari-
ance

The general considerations developed in Section 3.2 emphasized the importance of scaling
functions as a data analysis tool. To further develop this program, reformulations of scaling
functions which are numerically more robust than the Kolomogorov and oscillation scaling
functions introduced so far are of both practical and theoretical interests. Motivations for
introducing wavelet techniques for this purpose were already mentioned in Section 1.2. We
now introduce these techniques in a more detailed way, and develop and explain the benefits
of rewriting scaling functions in terms of wavelet coefficients.
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4.1 Wavelet bases

Orthonormal wavelet bases on Rd exist under two slightly different forms. First, one can
use 2d − 1 functions ψ(i) with the following properties: The functions

2dj/2ψ(i)(2jx− k), for i = 1, · · · 2d − 1, j ∈ Z and k ∈ Zd (24)

form an orthonormal basis of L2(Rd). Therefore, ∀f ∈ L2,

f(x) =
∑
j∈Z

∑
k∈Zd

∑
i

cij,kψ
(i)(2jx− k), (25)

where the cij,k are the wavelet coefficients of f , and are given by

cij,k = 2dj
∫
Rd
f(x)ψ(i)(2jx− k)dx. (26)

Note that, in practice, discrete wavelet transform coefficients are generally not computed
through the integrals (26), but instead using the discrete time convolution filter bank based
pyramidal and recursive algorithm (cf. [120]), referred to as the Fast Wavelet Transform
(FWT).

However, the use of such bases rises several difficulties as soon as one does not have the
a priori information that f ∈ L2. For instance, if the only assumption available is that f
is a continuous and bounded function, then one can still compute wavelet coefficients of f
using (26) (indeed, these integrals still make sense), however, the series at the right-hand
side of (25) may converge to a function which differs from f . This is due to the fact that
certain special functions (which do not belong to L2) have all their wavelet coefficients that
vanish, and therefore, such possible components of functions will always be missed in the
reconstruction formula (25). These special functions always include polynomials, however,
in the case of Daubechies compactly supported wavelets, other fractal-type functions also
have this property, see [167]. This explains why, at the end of Section 1, we mentioned
that the properties of wavelet coefficients of certain processes that we obtained were not
characterizations: Indeed information on these special functions, as possible components of
the processes, is systematically missed, whatever the information on the wavelet coefficients
is. However, this drawback can be turned by using a slightly different basis, which we now
describe.

The alternative wavelet bases that will systematically be used from now on are of the
following form: There exists a function ϕ(x) and 2d − 1 functions ψ(i) with the following
properties: The functions

ϕ(x− k) (for k ∈ Zd) and 2dj/2ψ(i)(2jx− k) ( for k ∈ Zd, and j ≥ 0) (27)

form an orthonormal basis of L2(Rd). In practice, we will use Daubechies compactly sup-
ported wavelets [56], which can be chosen arbitrarily smooth. Since these functions form
an orthonormal basis of L2, it follows, as previously, that

∀f ∈ L2, f(x) =
∑
k∈Zd

Ckϕ(x− k) +

∞∑
j=0

∑
k∈Zd

∑
i

cij,kψ
(i)(2jx− k); (28)
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the cij,k are still given by (26) and

Ck =

∫
Rd
f(x)ϕ(x− k)dx. (29)

This choice of basis enables to answer the following important data analysis questions
(which was not permitted by the previous choice (24)): In real-world data, the a priori
assumption that f ∈ L2 does not need to hold (for instance, the sample paths of standard
models, such as Brownian motion, do not belong to L2(R)). As already mentioned, the sole
information that the series of coefficients of a function f on an orthonormal basis is square
summable, does not imply that f ∈ L2 (consider the example of f = 1 and the basis (24)).
However, for the alternative basis given by (27), the following property now holds: Assume
that f is a function in L1

loc with slow growth, i.e. satisfies

∃C,A > 0 :

∫
B(0,R)

|f(x)|dx ≤ C(1 +R)A, (30)

where B(x,R) denotes the ball of center x and radius R; then the wavelet expansion (28)
of f converges to f almost everywhere. Additionally, if the wavelet coefficients of f are
square summable, then f ∈ L2 (in contradistinction with what happens when using the
basis (24)). Note that the slow growth assumption is a very mild one, since it is satisfied
by all standard models in signal processing, and actually is necessary, in order to remain
in the mathematical setting supplied by tempered distributions.

Note that one can even go further: (26) and (29) make sense even if f is not a function;
indeed, if one uses smooth enough wavelets, these formulas can be interpreted as a duality
product between smooth functions (the wavelets) and tempered distributions. This rises
the problem of determining if the series (28) converges in other functional settings, and it
is indeed one of the most remarkable properties of wavelet expansions that it is very often
the case. Wavelet characterizations of function spaces are detailed in [143]. Let us mention
a property which is particularly useful, and shows that convergence properties of wavelet
expansions are “as good as possible”: Suppose that f is continuous with slow growth, i.e.
that it satisfies

∃C,N > 0, ∀x ∈ Rd, | f(x) | ≤ C(1 + |x|)N ; (31)

then the wavelet expansion of f converges uniformly on every compact set.
However, while the differences that we pointed out between the two types of wavelet

bases are important for reconstruction, they are not for the type of analysis that we will
perform: Indeed, properties will be deduced from the inspection of asymptotic behaviors
of wavelet coefficients at small scale, where both bases (24) and (27) coincide.

As an example of the fruitful interplay between the algorithmic structure of wavelet bases
and the concept of selfsimilarity, we now prove (5). We start by recalling the definition of
equality in law of stochastic processes.

Definition 5 Two vectors of Rl: (X1, · · ·Xl) and (Y1, · · ·Yl) share the same law if, for any
Borel set A ⊂ Rl, P({X ∈ A}) = P({Y ∈ A}).
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Two processes Xt and Yt share the same law if, ∀l ≥ 1, for any finite set of time points
t1, · · · tl, the vectors of Rl

(Xt1 , · · ·Xtl) and (Yt1 , · · ·Ytl)

share the same law.

We apply this definition to the two processes Xat and aHXt (such as stated in (3)),
which are assumed to share the same law. Taking for A the domain between two parallel
hyperplanes, this, in turns, implies that any finite linear combinations

l∑
i=1

αiXti and

l∑
i=1

αiYti

share the same law. Therefore, if Xt is a selfsimilar process of exponent H, then (3) means
that

∀t1, · · · tl,
l∑

i=1

αiXati and

l∑
i=1

αia
HXti share the same law. (32)

Assume now that for almost every ω ∈ Ω, the sample path of Xt is Riemann integrable.
The coefficient

cj,k =

∫
2jXtψ(2jt− k)dt

is a limit of the Riemann sums∑
i

(ti+1 − ti)2jXtiψ(2jti − k); (33)

using (32), it follows that (33) has the same law as∑
i

(ti+1 − ti)2−H2jX2tiψ(2jti − k)

which, writing ui = 2ti, can be written∑
i

(ui+1 − ui)2−H2j−1Xuiψ(2j−1ui − k),

which is a Riemann sum of the integral∫
2−H2j−1Xuψ(2j−1u− k)du = 2−Hcj−1,k.

Passing to the limit when the largest spacing between sampling points ti (and therefore ui)
tends to 0, we obtain that

cj,k
L
= 2−Hcj−1,k.

The argument that we developed for one coefficient can be reproduced similarly for an
arbitrary vector of coefficients, hence (5) holds.

24



4.2 Wavelet Scaling Function

We now investigate properties which arise as consequences of the wavelet characterizations
of function spaces.

Notations. Compact notations are used for indexing wavelets. Instead of the three

indices (i, j, k), dyadic cubes are used: λ (= λ(j, k)) =
k

2j
+

[
0,

1

2j

)d
. In order to keep

notations as simple as possible, the index i is dropped in formulas and notations, with
the implicit convention that sums or suprema over indices are also taken on the index i.
Accordingly, cλ = cij,k and ψλ(x) = ψ(i)(2jx − k). The wavelet ψλ is localized near the
cube λ: Since we use Daubechies compactly supported wavelets, ∃C > 0 such that ∀i, j, k,
supp (ψλ) ⊂ C · λ (where C · λ denotes the cube of same center as λ and C times wider).
Finally, let Λj denote the set of dyadic cubes λ which index a wavelet of scale j, i.e. wavelets
of the form ψλ(x) = ψ(i)(2jx−k) (note that Λj is a subset of the dyadic cubes of size 2j+1),
and Λ will denote the union of the Λj for j ≥ 0.

Wavelet scaling function. A key property of wavelet expansions is that many function
spaces have a simple characterization by conditions bearing on wavelet coefficients. This
property has a direct consequence on the determination of the Kolmogorov scaling function.
Let

Sf (p, j) = 2−dj
∑
λ∈Λj

|cλ|p. (34)

Classical embeddings between function spaces imply that, if the wavelets are smooth enough,
then the Kolmogorov scaling function can be re-expressed as (cf. [88])

∀p ≥ 1, ηf (p) = lim inf
j→+∞

log (Sf (p, j))

log(2−j)
, (35)

This formulation, which, again, yields the scaling function through linear regressions in
log-log plots, has several advantages when compared to the earlier version (10). First, it
allows to extend the Kolmogorov scaling function to the range 0 < p ≤ 1; it will be shown in
Section 4.4 how to go even further and define scaling functions for negative ps (see also [100]
for an extension of ηf (p) to p < 0). We will call this extension of the Kolmogorov scaling
function the wavelet scaling function, but we will keep the same notation. By construction,
ηf (p) is a concave increasing function, of derivative at most d, see [99].

Wavelet regularity. Let us say a few words about the required smoothness of wavelets.
The rule of thumb is that wavelets should be smoother and have more vanishing moments
than the regularity index appearing in the definition of the function space. In signal pro-
cessing, one is not necessarily aware beforehand of the regularity of the data. In practice,
one uses smoother and smoother wavelets, and when the results do not vary, this means
that smooth enough wavelets are used. (Note that this is reminiscent of the definition of
the Kolmogorov scaling function where, in theory, one has to use higher and higher order
differences and stop when the results are numerically stabilized.) In the following we will
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never specify the required smoothness, and always assume that smooth enough wavelets
are used (the minimal regularity required being always easy to infer).

Note that, in the wavelet setting, one should also draw a difference between (35), which
allows to define the wavelet scaling function of any function f , and its use in data analysis,
where scaling properties need to hold to enable measurements based on linear regressions
in log-log plots.

Function space interpretation. Let us examine how the wavelet scaling function can
be used in order to validate the function space assumptions discussed in Section 3.2. For
instance, regarding the u+v model, where u ∈ BV and v ∈ L2, the values taken by wavelet
scaling function at p = 1 and p = 2 allow practitioners to determine if data belong to BV
or L2:

• If ηf (1) > 1, then f ∈ BV , and if ηf (1) < 1, then f /∈ BV

• If ηf (2) > 0, then f ∈ L2 and if ηf (2) < 0, then f /∈ L2.

Thus wavelet techniques allow to check if the function space assumptions which are made,
e.g., in certain denoising algorithms relying on then u+ v model, are valid.

Examples of synthetic and natural images are shown in Fig. 1, together with the corre-
sponding measures of ηf (1) and ηf (2). The image consisting of a simple discontinuity along
a circle and no texture, (i.e., a typical cartoon part of the image in the u+v decomposition)
is in BV, while the image of textures or discontinuities existing on a complicated support
(such as the Von Koch snowflake) are not. Y. Gousseau and J.-M. Morel were the first
authors to rise the question of finding statistical tests to verify if natural images belong
to BV [77]. Our results confirm that the BV requirement is seldom met; actually, images
often turn out not to be even in L2, as illustrated in Fig. 1 (bottom row).

4.3 Uniform Hölder exponent

It has been shown in the previous section that the Kolmogorov scaling function can be
rewritten and extended as a wavelet coefficient based version. It is hence natural to ask
whether the same can be performed for the oscillation scaling function (15). Because os-
cillations are defined only if f is locally bounded, this condition needs to be checked in
practice. This test can be performed using the uniform Hölder exponent, which constitutes
the subject of this subsection. However, before entering technicalities, the following general
question concerning function space modeling needs to be addressed.

Function space modeling. The issue of determining whether experimental data, ac-
quired by a physical device, can be modeled by a bounded function, or not, may appear
meaningless at first sight. Indeed, data can be collected only with finite size and resolution,
and hence consist of finite, and thus bounded, sequences. For images, a common pitfall is
to conclude that images are grey-levels, so that they necessarily take values in [0, 1], and,
therefore, by construction, are appropriately modeled by bounded functions. The issue is
even more general regarding the whole strategy of functional space modeling: Given any
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finite resolution and size sequence of data practically available, they can always be extrap-
olated by a C∞ function, that thus belongs to any possible function space. The resolution
of this paradox requires the use of the notion of scale invariance. Let us consider again the
example of image modeling and address the issue of deciding whether a digital image can
be modeled by a bounded function or not: It is clear that if the image is analyzed only
at its finest scale, then the answer is positive. However, following the point of view that
we developed until now, the problem can be reinterpreted in terms of analysis of scaling
properties, over a range of available scales, and will therefore amount to determine whether
an observed scaling exponent fits with those that are compatible with bounded functions,
or not. The uniform Hölder exponent, which will be considered in this section, answers this
question.

More generally, numerical results, obtained from finite resolution and size data, leading
to conclude that data belong to certain function spaces and not to others, should actually
be understood in the following way: The function space regularity thus determined holds
under the hypothesis that scaling that are observed on the range of available scales would
continue to hold at finer scales if they were available.

Uniform Hölder exponent: Definition. The mathematical idea behind testing
whether data are locally bounded or not is to consider boundedness as a particular case in
the whole range of Lipschitz spaces, which corresponds to the regularity exponent s = 0.
Let us be more specific.

The Lipschitz spaces Cssg(Rd) are defined for 0 < s < 1 by the conditions :

∃C,N, ∀x, y ∈ Rd, |f(x)| ≤ C(1 + |x|)N .

and
∃C,N, ∀x, y ∈ Rd, |f(x)− f(y)| ≤ C|x− y|s(1 + |x|+ |y|)N .

If s > 1, they are then defined by recursion on [s] by the condition: f ∈ Cssg(Rd) if f ∈ L∞
and if all its partial derivatives (taken in the sense of distributions) ∂f/∂xi (for i = 1, · · · d)
belong to Cs−1

sg (Rd). If s < 0, then the Cssg spaces are composed of distributions, also

defined by recursion on [s] as follows: f ∈ Cssg(Rd) if f is a finite sum of partial derivatives

(in the sense of distributions) of order 1 of elements of Cs+1
sg (Rd). This allows to define the

Cssg spaces for any s /∈ Z (note that a consistent definition using the Zygmund classes can
also be supplied for s ∈ Z, see [143], however we will not need to consider these specific
values in the following). We can now define the parameter that we will use for determining
boundedness.

Definition 6 The uniform Hölder exponent of a tempered distribution f is

hminf = sup{s : f ∈ Cssg(Rd)}. (36)

This definition does not make any a priori assumption: The uniform Hölder exponent is
defined for any tempered distribution, and it can be positive and negative. Note that
we have already met this notion: Proposition 1 can be reinterpreted as stating that, if
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0 < H − 1/α < 1, then hminX ≥ H − 1/α. In particular the remark following the proof of
Proposition 2 allows to recover the fact that, for fBm, hminf = H; additionally, it yields
that the same result holds for the Rosenblatt process (see [160, 159] for the definition and
the properties of the wavelet expansion of this process).

The values taken by the uniform Hölder exponent have the following interpretation:

• If hminf > 0, then f is a locally bounded function,

• if hminf < 0, then f is not a locally bounded function.

Typical examples are supplied by Lévy fractional stable processes which already appeared
in Section 3.1; they satisfy hminf = H−1/α, and therefore (as already mentioned) they have
nowhere locally bounded stable sample paths if H < 1/α, and continuous sample paths if
H > 1/α.

The importance of this exponent lies in the fact that it does not only play the role of a
prerequisite (i.e., a parameter whose value has to be positive if one wants to determine the
oscillation scaling function), but also that it turns out to be a very efficient parameter for
discrimination. As will be illustrated later (cf. Section 6), the classification of several types
of data can actually be based on the determination of their uniform Hölder exponent.

Uniform Hölder exponent and wavelets. In practice, hminf can be derived directly
from the wavelet coefficients of f through a simple regression in a log-log plot; indeed, it
follows from the wavelet characterization of the spaces Cssg that:

hminf = lim inf
j→+∞

log

(
sup
λ∈Λj

|cλ|
)

log(2−j)
. (37)

This estimation procedure has been studied in more detail in [97].
The exponent hminf can also be derived from the wavelet scaling function, [97],

hminf = lim
p→+∞

ηf (p)

p
= lim

p→+∞
η′f (p).

Uniform Hölder exponent and applications. In Section 6, which reviews a number
of real-world applications, we will see that hminf can be found either positive or negative
depending on the nature of the application. For instance, velocity turbulence data (cf.
6.1 and Fig. 6, middle row, left plot) and price time series in finance (cf. 6.2 and Fig. 7,
2nd and 3rd row row, second plots and bottom row, first plot) are found to always have
hminf > 0, while aggregated count Internet traffic time series always have hminf < 0 (cf.
6.4 and Figs. 10 and 11, top row, left plots). For biomedical applications (cf. e.g., fetal
hear rate variability as in Section 6.3 and Fig. 8, 3rd row), as well as for image processing
(cf. Section 6.5 and Fig. 12, 4th column), hminf can commonly be found either positive
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or negative. For these last two examples, hminf is found to be a highly relevant parame-
ter for classication purposes (cf. Fig. 8, bottom row, and Fig. 12, bottom row, respectively).

Functions that are not locally bounded and fractional integration. The exam-
ples listed above indicate that it is not uncommon in real-world application to find that
hminf < 0. However, this does not imply that further analyses which require that hminf > 0
(and will be described in the following) are impossible and should be discarded. Indeed,
fractional integration offers a one to one way to associate with any distribution f (with po-
tentially negative hminf ) a function f (−s), whose exponent hmin

f (−s)
is positive, and therefore

classification can then be operated on this new function f (−s) rather than on the initial
data f . We now expose this procedure, both from a theoretical and a practical point of
view. Note that there exist many variants of the definition of fractional integration, which
would however all lead to the same definition for the exponents used here, see [161] for a
discussion of fractional integration, especially in the context of stochastic processes.

Definition 7 Let f be a tempered distribution. Fractional integral of order s of f , denoted
by f (−s), is defined as convolution operator (Id−∆)−s/2 which, in the Fourier domain, is
the multiplication by the function (1 + |ξ|2)−s/2.

Numerically, fractional integration is intricate to perform (because of finite size and border
effect issues). However, for our purpose here, these difficulties can be circumvented by
instead using pseudo-fractional integration, defined as follows.

Definition 8 Let s > 0, let ψλ be a wavelet basis whose elements belong to Cr with r > s+1;
let f be a function, or a distribution, with wavelet coefficients cλ. The pseudo-fractional
integral (in the basis ψλ) of f of order s, denoted by Is(f), is the function whose wavelet
coefficients (on the same wavelet basis) are

csλ = 2−sjcλ.

This operation is numerically straightforward, and the following result shows that it retains
the same pointwise and multifractal properties as exact fractional integration, see [97, 98,
99, 113].

Proposition 4 Let f be a tempered distribution; then

∀s ∈ R,


∀p > 0, ηf (−s)(p) = ηIs(f) = ηf (p) + sp,

hminf−s = hminIs(f) = hminf + s.

Additionally, the pointwise Hölder exponents satisfy

∀s > −hminf , ∀x ∈ Rd, hf (−s)(x) = hIs(f)(x).
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This last property also holds for the leader scaling functions which will be introduced
in Section 4.4 (under the same condition s > −hminf , so that those quantities are well
defined). Therefore, in practice, for multifractal analysis, pseudo-fractional integration is
preferred to exact fractional integration. These results point toward a natural strategy in
order to perform the multifractal analysis of a function which is not locally bounded (or of
a distribution): First determine its exponent hminf ; then, if hminf < 0, perform a pseudo-

fractional integration of order s > −hminf ; it follows that the uniform regularity exponent of
Is(f) is positive, and therefore that it is a bounded function, to which multifractal analysis
can be applied. Yet, this strategy rises an important problem: There is no canonical choice
for the fractional integration order, and the shape of the wavelet leader scaling function
(see Definition 10 below) obtained after fractional integration may depend on this choice.
In practice, when multifractal properties of a collection of data have to be studied, one
follows the following strategy: One first determines the exponent hminf of each signal in the

database; if some of them have negative hminf , one picks an exponent s such that hminf +s is
positive for all signals. Under these constraints, s should be picked as small as possible, so
that data are modified by a fractional integration of order as small as possible. The rule of
thumb practically used is to select s as the smallest multiple of 0.5 ensuring that hminf + s
is positive for all signals and to perform a pseudo-fractional integration of the same order
s for all signals.

4.4 Wavelet leaders

From oscillations to wavelet leaders. Our purpose is now to obtain a wavelet re-
formulation of the oscillation scaling function (15) (in the same way as the wavelet scaling
function is the wavelet reformulation of the Kolmogorov scaling function). This requires
the introduction of wavelet leaders, which are local suprema of wavelet coefficients. Let
us start with a heuristic argument showing that they are natural candidates to estimate
oscillation. Recall that, if λ denotes a dyadic cube, then 3λ denotes the cube with same
center and three times wider.

Definition 9 Let f be a locally bounded function satisfying (31). The wavelet leaders of
f are the coefficients

dλ = sup
λ′⊂3λ

|cλ′ |. (38)

The fact that the supremum in (38) is finite is a consequence of the boundedness assumption
for f . Therefore, checking that hminf > 0 is an absolute prerequisite prior to computing
leaders.

Let us now sketch the reason why wavelet leaders allow to estimate the oscillation.
Consider a wavelet coefficient cλ. Since we use compactly supported wavelets,

cλ = 2dj
∫
Cλ
f(x)ψ(i)(2jx− k)dx

30



Since wavelets have vanishing integral,

|cλ| =

∣∣∣∣2dj ∫
Cλ

(f(x)− f(k2−j)ψ(i)(2jx− k)dx

∣∣∣∣
≤ 2dj

∫
Cλ

∣∣f(x)− f(k2−j)
∣∣ |ψ(i)(2jx− k)|dx

≤ 2djOsf (Cλ)

∫
Cλ

∣∣∣ψ(i)(2jx− k)dx
∣∣∣

= C ·Osf (Cλ).

Consider now a given cube K; this argument works for any wavelet whose support is
included in K, so that each wavelet coefficient is bounded by COsf (Cλ) ≤ COsf (K). This
explains why wavelet leaders are bounded by the local oscillation.

Converse estimates follow form the following argument: From (25), we get

f(x)− f(y) =
∑
j,k

c
(i)
j,k

(
ψ(i)(2jx− k)− ψ(i)(2jy − k)

)
Let j0 be such that 2−j0 ∼ |x−y|. The low frequency terms (j ≤ j0) are estimated using the
smoothness of the wavelets, which makes the difference ψ(i)(2jx− k)−ψ(i)(2jy− k) small.
The terms such that j0 ≤ j ≤ Aj0 (where A has to be chosen correctly) are estimated
using the bound of the wavelet coefficients supplied by the wavelet leader. Finally, high
frequency terms (j ≥ Aj0) are estimated using the uniform regularity of f . This allows to
obtain the required converse estimates. Note that subtle relationships between oscillations
and wavelet coefficients have recently been obtained by M. Clausel and her collaborators,
see e.g. [54] and references therein.

Leader scaling function. The previous heuristic argument motivates the introduction
of a new scaling function, constructed on the model of the wavelet scaling function, but
replacing wavelet coefficients by wavelet leaders.

Definition 10 Let f be a locally bounded function with slow growth (i.e. satisfying (31)),
and let

Tf (p, j) = 2−dj
∑
λ∈Λj

|dλ|p. (39)

The leader scaling function ζf (p) is given by

∀p ∈ R, ζf (p) = lim inf
j→+∞

log(Tf (p, j))

log(2−j)
. (40)

The relationship between the leader scaling function and the oscillation scaling function is
very similar to the one mentioned to exist between the wavelet scaling function and the
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Kolmogorov scaling function: They coincide when p ≥ 1; therefore the former extends the
later for p < 1, see [93].

Let us discuss two consequences of this result: First, the fact that they coincide for
p = 1 implies that, if hminf > 0, then the upper box dimension of the graph of f can be
derived from the leader scaling function, see [90]:

dimB(Gr(f)) = max(d, d+ 1− ζf (1)).

Second, when hminf > 0, one can determine whether f has bounded quadratic variation or
not by inspecting its leader scaling function for p = 2, indeed:

• If ζf (2) > d, then f has bounded quadratic variation,

• if ζf (2) < d, then the quadratic variation of f is unbounded.

Discussion of the condition hminf > 0. One may wonder if the condition hminf > 0
is really necessary in order to obtain such results. It is actually the case, and one can not
obtain estimates of the quadratic variation (or of any p-variation) using wavelet methods
for functions which are locally bounded but do not have some uniform smoothness for
the following reason: Recall that the Hilbert transform is defined as the convolution with
p.v.(1/x) (or alternatively as the Fourier multiplier by the function sign(ξ)) and consider
as an example the sawtooth function x − [x] which is bounded and has discontinuities at
the integers. It obviously has bounded p-variation for any p. However, after applying
the Hilbert transform to it, discontinuities are transformed into logarithmic singularities,
and therefore the property of bounded p-variation is lost for any value of p. Since the
Hilbert transform does not modify the wavelet-based quantities that we have considered,
such as hminf , ζf (p), ηf (p), it is clear that wavelet methods can not estimate p-variations
of functions that have discontinuities, and therefore some uniform regularity assumption is
indeed required.

In finance, for instance, checking whether hminf > 0 is positive or not is of double im-
portance: First, it suggests to reject jump models for price; second, it enables to probe
the finiteness of quadratic variations, a requested property to validate the use of stochas-
tic integration on such data. This is further discussed in Section 6.2 and illustrated in Fig. 7.

The bonus of negative ps. The leader scaling function can also be given a function
space interpretation for p > 0 in the framework of oscillation spaces, studied in [94, 89].
In particular, embeddings between these spaces and other, more classical, function spaces
(such as Besov spaces) allow to derive an important relationship between the two scaling
functions constructed through wavelet coefficients, see [93].

Proposition 5 Let f be a function satisfying hminf > 0. Then

∀p > 0, ηf (p) ≥ ζf (p).

Let pc be the “critical exponent” defined by the condition ηf (pc) = d, then

∀p ≥ pc, ηf (p) = ζf (p).
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An important property of the leader scaling function is that it is well defined also for
p < 0, although it can no longer receive a function space interpretation. By well defined,
it is meant that it has the following robustness properties if the wavelets belong to the
Schwartz class (partial results still hold otherwise), see [98, 99]:

• ζf (p) is independent of the wavelet basis.

• ζf (p) is invariant under the addition of a C∞ perturbation.

• ζf (p) is invariant under a C∞ change of variable.

The invariance under a smooth change of variable is a mandatory property for texture
classification: Indeed, it is needed that natural textures can be recognized even after the
deformation produced by setting them on smooth surfaces.

The possibility of involving negative ps in analysis can turn crucial: A celebrated ex-
ample is that of hydrodynamic turbulence where two multiplicative cascade models are
classically in competition. Using positive ps only, the Kolomogorov and the wavelet scaling
functions computed from experimental data fail to discriminate between the two models.
However, the leader scaling function, enabling the use of negative ps, permits to show
that one model is unambiguously preferred by data. This is discussed in Section 6.1 and
illustrated in Fig. 6 (bottom row plots).

5 Beyond functional analysis: Multifractal analysis

The fact that the leader scaling function extends the analysis to negative ps shows that
multifractal analysis allows to go beyond the scope of functional analysis. Indeed, the
scaling function no longer has a function space interpretation if p < 0. Note that this
extension has some canonical character, as a consequence of its independence of the chosen
wavelet basis, and also because of its robustness properties. The point made in the present
section is to show that even more is true by exhibiting a natural interpretation of scaling
functions, which requires both positive and negative values of p. This interpretation is in
terms of the pointwise singularities of the function, and will be supplied by the multifractal
formalism, which we now describe.

5.1 Multifractal formalism for oscillation

Multifractal spectrum versus multifractal formalism. From now on, it is assumed
that hminf > 0, which implies that f is a continuous function, and therefore that its oscilla-
tions are well defined. Recall that the notion of oscillation came up in two occurrences until
now: The definition of the oscillation scaling function (15), and the characterization of the
pointwise Hölder exponent (16). This points towards a possible relationship between both
quantities, which can be made explicit via multifractal formalisms: Specifically, a multi-
fractal formalism establishes a connection between the scaling functions and the spectrum
of singularities (or multifractal spectrum) of f , which is defined as follows.
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Definition 11 Let f be a locally bounded function. The spectrum of singularities of f is
the function

Df (h) = dim(Ef (h)),

where we recall that dim denotes the Hausdorff dimension, and the Ef (h) are the isohölder
sets Ef (h) = {x0 : hf (x0) = h}.

This definition justifies the denomination of multifractal functions: On the theoretical
side, one typically considers functions f that have non-empty isohölder sets for h taking all
values in an interval [hminf , hmaxf ], and therefore one has to deal with potentially an infinite
(and even uncountable) number of fractal sets Ef (h) whose Hausdorff dimensions have to
be determined.

Recall that dim(∅) = −∞ so that Df (h) = −∞ if h does not belong to the range of hf .
We will call support of Df the set

supp(Df ) = {h : Df (h) ≥ 0} = {h : Ef (h) 6= ∅}.

(Note that the support of the spectrum needs not be a closed set, in contradistinction with
the usual definition of the support of a function).

The initial formulation of the multifractal formalism was due to the physicists G. Parisi
and U. Frisch and was based on Kolmogorov scaling function [151]. It was further grounded
mathematically in [40], see also [80]. Here, the focus is on a formalism based on the os-
cillation scaling function, which we describe first since it paves the way towards a more
satisfactory leader scaling function formulation.

Oscillation multifractal formalism. In this paragraph, it is assumed that hf (x) takes
on values between 0 and 1, so that (16) is valid. Since pointwise Hölder exponents can thus
be derived from the quantities Osf (3λ), it is natural to consider scaling functions based on
these quantities, i.e., the oscillation scaling function of f defined by (15).

Let us now show how the spectrum of singularities can be obtained from the scaling
function. The definition of the scaling function roughly means that the quantity Rf (p, j)
defined by (14) satisfies Rf (p, j) ∼ 2−Osf (p)j . Let us estimate the contribution to Rf (p, j)
of the cubes λ that cover the points of Ef (h); (16) asserts that they satisfy Osf (3λ) ∼ 2−hj ;
since we need about 2−Df (h)j such cubes to cover Ef (h), the corresponding contribution
roughly is

2−dj2Df (h)j2−hpj = 2−(d−Df (h)+hp)j .

When j → +∞, the dominant contribution stems from the smallest exponent (the others
bring contributions which are exponentially smaller), so that

Osf (p) = inf
h

(d−Df (h) + hp). (41)

It follows from the definition of the scaling function Osf (p) that it is a concave function
on R. This is in agreement with the fact that the right-hand side of (41) necessarily is a
concave function (as an infimum of a family of linear functions) no matter whether Df (h)
is concave or not. However, if the spectrum also is a concave function, then the Legendre
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transform in (41) can be inverted (as a consequence of a general result on the duality of
convex functions), which justifies the following definition.

Definition 12 Let f be a function which satisfies hminf > 0; f follows the multifractal
formalism if its spectrum of singularities satisfies

Df (h) = inf
p

(d−Osf (p) + hp). (42)

Validity of the multifractal formalism. The derivation exposed above is not a strict
mathematical proof, but rather consists of a heuristic explanation of the relation between
Df (h) and Osf (p). The determination of the range of validity of (42), or of any of its vari-
ants, is one of the main open mathematical problems in multifractal analysis. Nonetheless,
let us emphasize that the cornerstone of this derivation relies heavily on (16), i.e., on the
fact that the Hölder exponent of a function can be estimated from the set of values that
its oscillation takes on the “enlarged” dyadic cubes 3λ. In particular, the variant of this
multifractal formalism based on increments (i.e., on the Kolmogorov scaling function) has
a narrower range of validity, see [5, 98, 99] for a discussion.

An important remark is that, in applications, one should not focus too much on the
problem of the validity of the multifractal formalism. On one side, because one can not
compute directly a spectrum of singularities of experimental data, the multifractal formal-
ism can be checked only for mathematically defined functions or processes. On other side,
the purpose of multifractal analysis often is to use a spectrum as a tool for classification or
model selection, and, with this respect, using a scaling function (or it Legendre transform)
is a perfectly valid approach, independently of the fact that the multifractal formalism holds
or not. However, Section 5.4 below details an example where the multifractal formalism
allows to determine effectively the multifractal spectrum: It can be the case when it is
degenerate, i.e., when hf (x) is a constant function (in which case Df is supported by only
one point).

Further comments. The formulation of the multifractal formalism given by (42) has
the following advantage: The scaling function is invariant under bi-Lipschitz deformations
of the function, which is a natural requirement since the spectrum of singularities possesses
this invariance property (as a consequence of the assumption that the range of hf is included
in (0, 1)).

To this Legendre transform based multifractal formalism, initially proposed in [151] and
thoroughly theoretically grounded in [93, 165], has been opposed an alternative formulation
relying on the large deviation principle (cf. e.g., [165] for an early introduction and [28] for
a recent version involving oscillations of order 1). However, we will not follow this track for
the following reasons:

• Using oscillations restricts the possible range of Hölder exponents to h ∈ [0, 1];

• the method can not be adapted to data that are not locally bounded (which is often
the case in signal and image processing).

35



This second drawback, as we saw, can be circumvented easily by a pseudo-fractional inte-
gration when using wavelet techniques, and this is the reason why we now turn towards
these methods.

The limitation to the range h ∈ [0, 1] implied by either the use of increments of or-
der 1 (Kolmogorov scaling function) or oscillations of order 1 (oscillation scaling function)
has long been recognized and led to the pioneering contributions of A. Arneodo and col-
laborators promoting the use of wavelet based methods in multifractal analysis (cf. e.g.,
[11, 12, 146, 147] and references therein).

5.2 A fractal interpretation of the leader scaling function: The leader
multifractal formalism

The introduction of wavelet leaders was motivated by the fact that they allow to estimate
local oscillations, and therefore come as a natural ingredient in a wavelet reformulation of
the oscillation scaling function and of pointwise Hölder regularity.

Let x0 ∈ Rd, and recall that λj(x0) denotes the dyadic cube of width 2−j which contains
x0. If hminf > 0, then the heuristic relationship that we gave in Section 4.4 and which related
oscillations and wavelet leaders actually leads to the following result (see [93] and references
therein):

hf (x0) = lim inf
j→+∞

log
(
dλj(x0)

)
log(2−j)

. (43)

The heuristic arguments that were developed above for the derivation of the oscillation
multifractal formalism can be reproduced in the setting of wavelet leaders. They lead to
the following reformulation of the multifractal formalism.

Definition 13 Let f be a function statisfying hminf > 0; the leader spectrum of f is defined
through a Legendre transform of the leader scaling function, i.e.

Lf (h) = inf
p∈R

(d+ hp− ζf (p)) .

The wavelet leader multifractal formalism holds if

∀h ∈ R, Df (h) = Lf (h). (44)

This formalism holds for large classes of models used in signal and image processing,
such as fBm, lacunary and random wavelet series [17], or multiplicative cascades. In this
wavelet leader setting, the justification of the derivation of (44) relies heavily on (43). In
particular, multifractal formalisms based on other quantities (such as the wavelet scaling
function) have a narrower range of validity, see [93] for a discussion.

The multifractal formalism does not hold in all generality, nonetheless the following
upper bound does, yielding a general relation between the leader scaling function and the
spectrum of singularities.
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Theorem 1 If hminf > 0, then,

∀h ∈ R, df (h) ≤ Lf (h).

Examples of leader multifractal spectra Lf (h) computed from a single realization of
various processes and fields are illustrated in Figs. 2, 3 and 4, and compared with the
theoretical multifractal spectra Df (h). It can be observed that, for all these reference pro-
cesses, the leader multifractal spectra computed from a single realization very satisfactorily
match the theoretical multifractal spectra Df (h), hence suggesting that the multifractal
formalism, Lf (h) = Df (h), holds in all cases.

The following relationship holds for most standard models used in multifractal analysis:

hminf = inf(supp(Df )). (45)

Note however that this relationship is not true in all generality; for instance the “chirp”

Fα,β(x) = |x|α sin

(
1

|x|β
)

(for α and β positive) satisfies

hminFα,β
=

α

β + 1
and inf

(
supp

(
DFα,β

))
= α.

However, we will mention a partial result confirming (45) in Section 5.3.

5.3 Local spectrum and homogeneity

So far, little attention has been paid to the region where multifractal analysis is performed,
implicitly assuming that it is conducted on the entire set of data available. However, one
may wonder whether multifractal analysis would yield different results when applied to
different domains. The answer is often negative: Scaling functions, and spectra of singu-
larities, when measured on a sub-part of the data (say a non-empty open subset, in order
to dismiss boundary problems) do not depend on the particular open set which is cho-
sen. When such is the case, the function analyzed is said to have homogeneous multifractal
properties. It is observed that large categories of experimental data have homogeneous
multifractal properties: It is for instance the case for fully developed turbulence, where
analyses performed on different parts of the signal always yield the same results. However,
this might not systematically be the case.

A simple cause of non-homogeneity can be that data consist of a juxtaposition of dif-
ferent pieces, concatenated together. This situation is commonly met in image processing:
Indeed, because of occlusion effects (i.e. objects in the front of the picture partly mask ob-
jects behind), images usually appear as a patchwork of homogeneous textures. In this case,
it is reasonable to isolate the different components of the data, and perform multifractal
analysis over each piece independently. Scaling functions computed on the whole image
simply result as the minimum of the local scaling functions, and conversely the global mul-
tifractal spectrum consists of the maximum of the local spectra. Note that such cases can
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lead to simple examples of (global) non-validity of the multifractal formalism. Indeed, the
scaling function of the whole image remains, by construction, a concave function, whereas
the spectrum, as a maximum of concave function needs no more be concave, even if each
component is. Therefore, the multifractal formalism will fail, since, by construction, the
right hand side of (42) always yields concave functions.

However, more intricate situations may exist, where multifractal characteristics can
evolve with time (or the location, for images) in a way which is more involved than piece-
wise constant. One can expect, for instance, that stock market data display different
statistics during different market phases, such as crises or bubbles. Different multifractal
characteristics could stem from such differences. One may also expect that the whole con-
ditions of economy evolve with time, as a consequence of the ever increasing complexity of
financial operations, of new financial products, and (more subtly) of mathematical models
which themselves influence the way that operators react to the market; all this pleads for
possible smooth (or not so smooth) modifications of multifractal characteristics with time.
Such possible mechanisms may help to interpret the empirical observations that multifrac-
tal properties of market price fluctuations, such as those reported in Fig. 7 (bottom row
plots) for the hourly Euro-USD rate, are significantly changing along time (cf. Section 6.2
for discussion).

On the mathematical side, such situations have been barely studied so far (see a con-
trario the results concerning heterogeneous ubiquity, by J. Barral, A. Durand and S. Seuret,
where sophisticated mathematical tools have been developed to deal with the theoretical
challenges of this situation [34, 33, 35, 62]). A typical example, studied in [27], is supplied
by Markov processes (i.e. processes with independent increment) which do not have station-
ary increments (and thus are not Lévy processes). Roughly speaking, such processes have
jumps of random amplitude, but each jump brings the process in a new environment, and
the local multifractal properties will depend on this environment which is randomly chosen.
One therefore obtains a non-homogeneous process, with a random spectrum, and random
scaling functions. To the opposite, homogeneous multifractals have some additional regu-
larity properties. For instance, the pitfall mentioned in the previous subsection does not
occur: An homogeneous multifractal function satisfies (45). An interesting phenomenon of
homogeneity breaking will be discussed in the next subsection: We will consider a homo-
geneous monohölder stochastic process, whose square is not homogeneous, and no longer
monohölder.

Note also that a test for the constancy along time of the multifractal properties measured
using the leader scaling function and relying on a non parametric bootstrap procedure was
proposed in [182].

5.4 Mono vs. Multifractality?

Disentangling issues. For practical purposes, it is often of interest to decide whether
data are mono- or multifractal. However, despite apparent simplicity, as such the question
is ill-posed and can be rephrased in different ways:

1. Are data characterized by a single Hölder exponent that takes the same and unique
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value everywhere or do there exist a variety of Hölder exponents in data?

2. Are data better described by a selfsimilar process (often implicitly meaning fBm)
or by a cascade based process? In this later formulation, the important underlying
question is: Is there an additive (as in random walk and hence selfsimilar models)
or a multiplicative (as in cascades) structure underlying data and hence revealing
significant differences in the nature of the data.

3. Are the scaling exponents (i.e., the scaling function) measured on data linear in p or
not?

Relying on the fBm (Gaussian based) intuition, these three different formulations are often
thought to be equivalent. This section aims at discussing some of the subtleties underlying
the relations between these three questions.

Log-cumulants. Recall that, if they exist, the cumulants of a random variable X are
the coefficients of the Taylor expansion of the second characteristic function of X, i.e. the
coefficients cm (if they exist) in the expansions

log
(
IE
(
epX

))
=
∞∑
m=1

cm
pm

n!
. (46)

Following [44, 46, 58], the cumulants of the log of the wavelet leaders are now introduced.
Let Cm(j) denote the m-th order cumulant of the random variables log(dj,k). Under station-
arity and ergodicity assumptions on this sequence, C1(j) is the expectation of the log(dj,k),
C2(j) their variance, etc. Assuming that the moments of order p of the leader dj,k exist,
starting from the assumption IE(dpj,k) = IE(dp0,0) · 2−jζf (p), one obtains that

log(IE(dpj,k)) = log(IE(dp0,0)) + ζf (p) log(2−j);

using (46), one obtains the following expansion for p close to 0:

log(IE(dpj,k)) = log(IE(ep log dj,k)) =
∑
m≥1

Cm(j)
pm

m!
.

Comparing these two expansions, we obtain that the Cm(j) are necessarily of the form

Cm(j) = C0
m + cm log(2−j), (47)

and that ζf (p) can be expanded around 0 as

ζf (p) =
∑
m≥1

cm
pm

m!
. (48)

The concavity of ζf implies that c2 ≤ 0. Note that, even if the moment of order p of dj,k
is not finite, the cumulant of order m of log(dj,k) is likely to be finite and (47) above is
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also likely to hold. Moreover, (47) provides practitioners with a direct way to estimate
the cm by means of linear regressions in Cm(j) versus log(2−j) diagrams [183]. The cm
are hence not derived from an a posteriori expansion performed from the estimates of the
ζf (p), but instead estimated directly. For the sake of completeness, let us mention that the
polynomial expansion of ζf (p) around 0 can be translated, via the Legendre transform, into
an expansion of Lf (h) around its maximum [181], on condition that c2 6= 0:

Lf (h) = d+
c2

2!

(
h− c1

c2

)2

+
−c3

3!

(
h− c1

c2

)3

+
−c4 + 3c3

2/c2

4!

(
h− c1

c2

)4

+ . . . (49)

Mono vs. Multi-Hölder. The only general mathematical result concerning the validity
of the multifractal formalism is supplied by Theorem 1, which, in general does not yield
the spectrum. However, it does yield an interval in which the support of the spectrum is
included: Indeed, let

hminf = inf{h : Lf (h) ≥ 0} and hmaxf = sup{h : Lf (h) ≥ 0}.

Then, the support of the spectrum Df (h) is included in the interval [hminf , hmaxf ]. (It

can indeed be checked that hminf thus defined actually coincides with the uniform Hölder
exponent, defined in Section 4.3.) An important particular case stems from the situation
where hminf and hmaxf coincide, in which case the spectrum is supported by the sole point

hminf = hmaxf , so that only one single Hölder exponent exists in the data, which therefore
constitute a monohölder function satisfying

∀x, hf (x) = hminf = hmaxf .

This puts into light the necessity to use both positive and negative values of p in the
estimation: If the leader scaling function was determined only for positive p, the upper
bound supplied by Theorem 1 would yield an increasing function, and therefore would, at
best, yield the increasing part of the spectrum. In particular, hmaxf would not be obtained,
hence preventing from drawing any conclusion with respect to data being monohölder or
not.

However, testing the theoretical equality hminf = hmaxf is practically difficult as the
estimation of these quantities turns out to be poor (cf. e.g., [183, 185]). Instead, one
can estimate the parameter c2 as defined above in (47). When the estimated c2 is found
strictly negative, this unambiguously indicates multi-Hölder function. As discussed below,
the converse is however not necessarily true: c2 = 0 does not necessarily imply monohölder
function, as may be incorrectly extrapolated from the Gaussian fBm case.

Let us also note that both approaches based on multifractal analysis can be regarded
as non parametric: Testing for mono- or multi-Hölder can be achieved without recourse
to any parametric setting, in sharp contradistinction with other existing estimators (for
example, many estimators evaluate the selfsimilarity index H assuming that the data are
sample paths of an fBm).

Estimated c2 measured on real-world data are reported in Section 6: Turbulence veloc-
ity is well-known as the emblematic real-world example where a non vanishing parameter
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c2 is met, (cf. Section 6.1, Fig. 6). This is observed to be also the case for the Euro-USD
price fluctuations (cf. Section 6.2 and Fig. 7, bottom row, left plot) and for fetal heart rate
variability (cf. Section 6.3 Fig. 8). However, Internet traffic aggregated count time series
are found to be characterized by c2 = 0 at coarse scales and weakly departing from 0 at
fine scales (cf. Section 6.4 and Figs. 10 and 11, bottom row, left plots).

Selfsimilarity? Selfsimilar processes are often obtained as renormalized limits of random
walks (see for instance the fBm, or stable Lévy processes). Because of the additive struc-
ture underlying their nature, selfsimilar models are appealing for describing data. From
the examples shown in Section 5.2, it can even be conjectured that scaling functions often
are piecewise linear functions. In particular, combining ergodicity and stationarity prop-
erties, the Kolmogorov scaling function of selfsimilar processes with stationary increments
should behave linearly in p, as ηf (p) = pH on an interval of p containing 0 (where H is the
selfsimilarity parameter). Conjecturing that this property also holds for ζf (p), it follows
that testing for selfsimilarity can be formulated as testing for c2 = 0. This has been con-
ducted in a non parametric bootstrap framework, cf. e.g., [182, 183]. Note, however, that
selfsimilarity with stationary increments together with c2 = 0 does not imply mono-Hölder
sample paths (cf. the example of Levy motion reported in Section 5.2 above). Furthermore,
c2 = 0 indicates selfsimilarity but does not necessarily imply that data follow a fBm model.
This would in addition require to test for joint Gaussianity of all finite distribution functions.

Non linear point transform. Let us give some further insights into the relevance of
the question of deciding whether data are mono or multi-Hölder. We aim at showing that
the notion of monoHölder function is, in some sense, unstable since it can be altered under
the action of the most simple smooth non-linear operator. To that end, let us consider fBm
BH(t), which is the simplest example of a mono-Hölder stochastic process: The Hölder
exponent is everywhere equal to h = H. Let us now further consider its square transform
YH(t) = (BH(t))2. On one hand, at points where the sample path of fBm does not vanish,
the action of the mapping x→ x2 locally acts as a C∞ diffeomorphism, and the pointwise
regularity is therefore preserved. On other hand, consider now the (random) set A of points
where fBm vanishes. The uniform modulus of continuity of fBm implies that a.s., for s small
enough,

sup
t
|BH(t+ s)−BH(t)| ≤ C|s|H

√
log(1/|s|).

therefore, if B vanishes at t, then BH(t+ s)2 ≤ C|s|2H log(1/|s|), so that hY (t) ≥ 2H. The
converse estimate follows from the fact that, for every t,

lim sup
s→0

|BH(t+ s)−BH(t)|
|s|H ≥ 1,

so that, if BH(t) = 0, then

lim sup
s→0

(BH(t+ s))2

|s|2H ≥ 1,

so that hY (t) ≤ 2H. Thus, at vanishing points of BH , the action of the square is to shift
the Hölder exponent from h = H to h = 2H. This set of points has been the subject
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of investigations by probabilists (cf. the flourishing literature on the local time either of
Brownian motion, or of fBm); in particular, it is known to be a fractal set of dimension
1−H, cf [145]. It follows that YH(t) is a bi-Hölder process, whose spectrum is given by

DYH (h) =


1 if h = H,
1−H if h = 2H,
−∞ elsewhere.

(50)

Because the multifractal formalism yields the Legendre transform, i.e., the concave hull,
of the multifractal spectrum, the leader based estimated multifractal spectrum would sug-
gest practitioners to (wrongly) conclude that YH(t) is a fully multifractal function whose
spectrum is supported by the interval [H, 2H]. This is illustrated in Fig 5 where it can
be observed that the leader based measured multifractal spectrum yields a very precise
estimation of the exact concave hull of DYH (h). Again, note that this is made possible only
because negative values of p can be used in the leader framework.

Further, the analysis of the y = x2 point transform of fBm raises another disturbing
issue. The multifractal properties of fBm are homogeneous (i.e., the spectrum measured
from a restriction of the sample path to any interval (a, b) on the real line is the same
as that corresponding to the whole one). This is no longer true for (BH)2: the spectrum
measured on a restricted interval (a, b) will vary depending on whether the interval includes
or not a point where BH vanishes. This example shows that the multifractal properties are
not preserved under simple non linear transformations.

6 Real-World Applications

Reviewing the literature dedicated to real-world applications reveals that the concepts of
scaling, scale invariance, selfsimilarity, fractal geometry and multifractal analysis have been
and continue to be used to analyze data in numerous contexts of very different natures,
ranging from natural phenomena — physics (hydrodynamic turbulence [76, 124, 144], as-
trophysics and stellar plasmas [174], statistical physics [25, 104], roughness of surfaces [15]),
biology (human heart rate variabilities [86, 87, 110, 119, 117], fMRI [53, 81], physiological
signals or images), geology (fault repartition, [73]) — to human activities — computer net-
work traffic [152], texture image analysis [15], population geographical repartition [57, 74],
social behaviors or financial markets [42, 157]. B. Mandelbrot himself significantly con-
tributed to the studies of many different applications, two of the most prominent possibly
being hydrodynamic turbulence, the scientific field that actually gave birth to the essence
of multifractal, (cf. e.g., [124, 132]) and finance (cf. e.g., [21, 22, 43, 135]).

As a tribute to B. Mandelbrot’s outstanding research work, a small number of applica-
tions from widely different origins have been selected to be revisited. Their presentations
are not intended as state-of-the-art reviews, but rather as illustrations, both of the theoret-
ical arguments developed in the previous sections and of the benefits obtained from using
multifractal analysis in these applications.
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6.1 Hydrodynamic Turbulence

In the early 20s, Richardson, combining empirical observations with the analysis of Navier-
Stokes equations, that mostly govern fluid flows, formulated a heuristic description of the
apparently random movements observed in hydrodynamic turbulence flows, in terms of a
cascade of energy: Between a coarse scale (where energy is injected by an external forcing)
and a fine scale (where energy is dissipated by viscous friction), no characteristic scale can
be identified. This seminal contribution paved the road to tremendous amounts of works
involving the concept of scaling to model turbulence flows (cf. [76, 144] for ancient and
modern reviews, respectively). In 1941, Kolmogorov proposed a non explicit version of fBm
to model velocity (which implies that c1 = H, and cm ≡ 0 for m ≥ 2) [106]. However, a
general consensus (a rare situation worth mentioning for the field of turbulence) amongst
practitioners conducting real experiments rejected fBm as a valid model because the empir-
ically observed scaling exponents (Kolomogorov scaling function) did not behave linearly
in p, for p ≥ 0. Framed in seminal contributions due to A. Yaglom [186] and supported by
physical arguments developed by Kolmogorov (and his collaborator A. Obukhov) in 1962
[108, 149], the energy transfer from coarse to fine scales has been modeled via split/multiply
iterative random procedures that account for the physical intuitions beyond the vorticity
stretching mechanisms implied by the Navier-Stokes equation. In 1974, B. Mandelbrot
studied these various declinations of cascades and their properties [124], paving the way
for their interpretation as a collection of singularities and hence to the first formulation of
the multifractal formalism by G. Parisi and U. Frisch, based on the Kolmogorov scaling
function [151].

This work triggered enourmous amounts of analysis of experimental and real-world
turbulence data, aiming at measuring as precisely as possible scaling exponents (i.e., the
scaling function). The earliest contributions relied on the Kolmogorov scaling function (cf.
e.g. [16, 14, 45, 47, 51, 158]), and later work initiated by A. Arneodo, E. Bacry and J.-F.
Muzy relied on the use of wavelets (cf. e.g. [58, 114, 142, 146, 147, 183]).

Fig. 6 (top plot) shows an example of a turbulence longitudinal Eulerian velocity signal,
measured with hot-wire anemometry techniques. It has been collected on a jet turbulence
experiment [50], at average Reynolds number ' 580, and has been made available to us by
C. Baudet and collaborators (LEGI, Université Joseph Fourier, INPG, CNRS, Grenoble,
France), who are gratefully acknowledged. Middle row plots depict its scaling property
in the so-called inertial range, a priori defined from the physical characteristics of the flow
conditions: Left, the wavelet leader based log2 Tf (j, q) versus log2 2j (for p = 3), and hminf on
the right. In the bottom row the measured wavelet leader scaling function and multifractal
spectrum are plotted, clearly indicating multifractality.

While the generic multifractality of turbulence data (understood as a strict departure
from linearity in p of the scaling function) has never been called into question by any of
these studies, a major open issue remains: Which precise cascade model better describes
turbulence? This question is not purely theoretical, since the precise ingredients entering the
cascade that best match data may reveal physical mechanisms of importance for turbulence.
Two such models are emblematic of this issue: In 1962, Obukhov and Kolmogorov [108, 149]
proposed a model mostly based on a law of large numbers argument and referred to as the
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log-normal multifractal model. It predicts that ζf (p) = c1p+ c2p
2/2 and hence that cm ≡ 0

for m ≥ 3. In 1994, She and Lévêque [172] proposed an alternative construction based on
the key ingredient that energy dissipation gradients must remain finite within turbulence
flows. It is referred to as the log-Poisson model and yields a multifractal process with all
non zero cms.

Fig. 6 (bottom plots) compares the scaling function (left) and multifractal spectrum
(right) measured from data (solid black), together with bootstrap based confidence intervals
(cf. [183] for details) against those predicted by the log-normal (solid red) and log-Poisson
(dashed blue) model. Together with the fact that the measured c3 can not be distinguished
from 0 (c3 = 0.001 ± 0.001), these plots clearly indicate that the log-normal model is
preferred by turbulence data. This has been studied systematically and on larger data sets
in [114, 183] and unambiguously confirms earlier findings reported in [14, 58].

6.2 Finance Time Series: Euro-USD rate fluctuations

Modeling stock market prices received considerable efforts and attention starting with the
seminal early contribution of Bachelier in 1900 who, in his thesis, based his description
of stock market on Brownian motion, i.e., on an ordinary Gaussian random walk [18].
Essentially, this model implies that daily returns, i.e., increments of (or differences between)
prices taken along two consecutive days, X(t) = P (t) − P (t − 1), consist of independent,
identically distributed Gaussian zero-mean random variables. This hence leaves little room
to earn money from stock market investments by pure statistical model based prediction.
However, it has long been observed and/or expected that stock market prices significantly
depart from the Brownian model: First, returns may exhibit statistics that significantly
depart from Gaussian distributions. Second, it is often observed that volatility, a quantity
essentially based on the squared (or absolute) value of the returns, display some form of
dependency. Notably, in their celebrated contribution, Granger and Joyeux indicated that
volatility is well characterized by long memory, or long term dependence [78, 79], a model
that is closely related with selfsimilarity and fBm. This motivated substantial efforts to
model stock market returns with the GARCH models family or FARIMA alternatives (cf.
e.g., [36, 60, 178]).

B. Mandelbrot significantly contributed to the analysis of the statistical properties of
stock market returns by performing an iconoclastic analysis of commonly used finance
models, emphasizing heavy tails, as opposed to Gaussian distributions (the Noah effect),
and long memory, as opposed to independence (the Joseph effect), cf. [133] for a review,
and several seminal contributions of B. Mandelbrot; see also e.g., [121, 122]. In particular,
this called into question the Black and Scholes model strongly relying on Gaussianity, and
led B. Mandelbrot and collaborators to explicitly propose that stock market prices may
have multifractal properties in [70] in contradistinction with most Itô-martingale based
models used so far. B. Mandelbrot’s work paved the way towards numerous efforts to
assess multifractality empirically in stock market prices and exploit it (cf. e.g., [20, 21, 41,
42, 157]).

Almost one century after Bachelier, B. Mandelbrot and collaborators proposed a new
model for stock market prices: fBm in multifractal time [43, 135], a process that explicitly
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incorporates multifractal properties by a multifractal time jittering, obtained by a multi-
plicative cascade construction. In this model, a new generation of cascades is used, based
on Compound Poisson distributions, following again an original idea of B. Mandelbrot
[29, 30, 31]. Let F denote the distribution function of the multiplicative cascade µ on [0, 1]:
F (t) = µ([0, t)). Then, fBm in multifractal time is defined as

Xt = BH(F (t)), (51)

where BH stands for fBm with selfsimilarity parameter H (which is independent of µ).
Note that, as a consequence of (20), the spectrum of X is deduced from the spectrum of F
by a simple dilation along the h axis

DX(h) = DF (h/H);

see the results of R. Riedi and S. Seuret [165, 171] for additional discussions concerning mul-
tifractal subordination, i.e. understanding multifractal properties of composed processes).
Numerous rich and interesting declinations of such constructions of cascades and multifrac-
tal processes have been proposed since (cf. e.g., [19, 20, 21, 23, 24, 42, 48, 49]). Note that
the idea of multifractal subordination (i.e., composition by a multifractal change of time) is
extremely powerful, and can be applied in many settings. Let us mention just one example:
In [101], B. Mandelbrot and one of the authors performed the multifractal analysis of the
Polya function (a famous example of continuous space-filling function) by simply remarking
that it can be factorized as the composition of the repartition function of a simple dyadic
cascade with a monohölder function.

As a tribute to B. Mandelbrot’s contributions, though the authors have not personally
contributed to the field, the multifractal properties of the Foreign exchange Euro-USD price
fluctuations are now studied. Fig. 7 (top row) shows the hourly Euro-USD quotations (and
hourly returns) since the birth of Euro (Data Courtesy Vivienne Investissement, Lyon,
France, /www.vivienne-investissement.com/). The return (or increment) time series
clearly shows large fluctuations that are not consistent with a constant along time Gaussian
distribution. Scaling properties analyzed here are found to hold for scales ranging from the
day to the month, and hence correspond to long term characteristics, as opposed to intra-
day analysis, not conducted here. Multifractal spectra measured over one year long time
series (second and third rows, left plots), using the wavelet leader multifractal formalism,
show that the Euro-USD quotations exhibit multifractal spectra that are in agreement with
the fBm in multifractal time model, yet indicate that the multifractal properties may vary
along the years. To further analyze these variations, scaling attributes are measured in
one year long time windows (with a 3-month sliding time shift) and reported (together
with confidence intervals) in Fig. 7 (bottom row). Interestingly, it is found that hminf is

permanently above 0: hminf > 0, which clearly rules out the use of jump processes to model

ForEx time series. Moreover, because hminf > 0, the finiteness of quadratic variations can
be evaluated using the leader scaling function at p = 2, ζf (2) (as in (39), cf. Section 4.4).
Fig. 7 (bottom row, 2nd plot) shows that ζf (2) fluctuates and often remains below the
finite quadratic variations limit of 1: ζf (2) < 1. This result validates the hypothesis of the
finiteness of quadratic variations, underlying the use of Itô-martingale processes as models
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to describe the Euro-USD variations, at least when long term variations are analyzed, as is
the case here; this does not exclude that shorter term (or intra-day) variations might show
different properties. In Fig. 7 (bottom row, 3rd and 4th plots), parameters c1, c2 are plotted
as functions of time. These plots furthermore indicate that though a fBm in multifractal
time-like process provides a valid model to describe the price fluctuations, the multifractal
properties may vary along time. Two different regimes are suggested by these plots: Before
2007, with a c1 ' 0.45 < 0.5 and c2 ' −0.02 ; and after 2008, with c1 ' 0.5 and c2 ' −0.01.
Recalling that the ordinary Brownian motion (proposed by Bachelier) would correspond to
c1 = 0.5 and c2 = 0, it may be concluded that the (long term) fluctuations of the Euro-
USD quotations show less structure for the later period than for the former, hence making
predictions for investments more difficult (see also discussion in Section 5.3 on homogeneous
multifractal properties).

Assuming that the fBm in multifractal time model studied by L. Calvet, A. Fisher and B.
Mandelbrot is the correct description of prices, let us now show how the parameter H of the
corresponding fBm can be inferred from the observed data using the wavelet scaling function
(the heuristic argument that follows can easily be turned into a mathematical proof). Let
us first return to the definition of the Kolmogorov scaling function (8). Approximating the
integral by a Riemann sum, and taking h = 2−j , one obtains∫
|Xt+h−Xt|pdt ∼ 2−j
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In particular, for p = 1/H, using the fact that F is continuous and increasing, we obtain

2−j
∑
k

∣∣∣∣F (k + 1

2j

)
− F

(
k

2j

)∣∣∣∣ = 2−j
∑
k

(
F

(
k + 1

2j

)
− F

(
k

2j

))
= 2−j

Since this quantity is, by definition, of the order of magnitude of (2−j)ηf (p), we obtain that
the exponent H of the fBm used in this model (cf. [43]) satisfies

ηf

(
1

H

)
= 1. (52)

Using the fact that the Kolmogorov and the wavelet scaling function coincide in the range
of exponents involved here, (52) allows to recover the selfsimilarity exponent of the fBm
in this model from the wavelet scaling function. In the example considered in Fig. 7, one
obtains that, in practice, the parameter H thus estimated is very close to c1.
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6.3 Fetal Heart Rate Variability

Heart rate variability (HRV), which refers to the short time fluctuations (within the minute)
of heart rate, has long been considered as a powerful tool to characterize the health status
of a given subject: In a nutshell, the more variability, the healthier the subject is (cf.
e.g., the seminal contribution [10]). To characterize variability in heart rate time series,
spectral analysis has long been used to measure the so called LF/HF balance, i.e., the ratio
of energies measured in frequency bands attached to the sympathic and parasympathic
activities of the autonomous central nervous system [10]. Yet, it has long been observed
that heart rate time series display fractal properties and that the corresponding fractal
exponent could be used as a non invasive tool for non healthy status detection (cf. [10]).
This opened the way to numerous analyses aiming at describing HRV data with fBm-
like models and at correctly estimating the corresponding selfsimilarity parameter H; later,
multifractal analysis has naturally been considered as an analysis tool potentially improving
the characterization of HRV scaling properties (cf. e.g., [86, 87, 110]). Recently, multifractal
analysis has been involved in the detection of per partum fetal asphyxia. Obstetricians are
monitoring fetal-HRV during the delivery process to detect potential fetal asphyxia. Using
a set of analysis criteria (the international FIGO rules), obstetricians measure the health
status of the fetus and decide on operative delivery or not. A major difficulty they are facing
is the high number of False Positive (fetuses diagnosed as unhealthy during the delivery
process but a posteriori evaluated as perfectly healthy), and hence of operative delivery that
might have been avoided. This constitutes an important public health issue, as operative
deliveries are accompanied by a significant number of serious posterior complications for
both newborns and their mothers.

Fig. 8 (top row) shows examples of heart rate time series (in Beats-per-Minute) for
a healthy subject, correctly diagnosed as such by the obstetrician (left) (True Negative),
for a healthy subject, incorrectly diagnosed as suffering from per partum asphyxia (False
Positive), and for a fetus actually suffering form per partum asphyixia and diagnosed as
such (True Positive). Data Courtesy M. Doret, Obstetrics Dept. of the University Hos-
pital Femme-Mère-Enfant, Lyon, France, [9, 61]. As shown in Fig. 8 (second and third
rows), for all three classes (True Negative, True Positive, False Positive), HRV exhibits
scaling properties for scales ranging from the second to the minute. The fourth row in
Fig. 8 shows multifractal spectra, estimated from 15 min. long heart rate time series using
wavelet leaders, which suggests that the healthier the subject, the larger its variability in
the sense that its c1 parameter is smaller (spectrum shifted to the left). To confirm such
an observation, multifractal parameters are estimated within 15 min. long sliding windows
(with a 50% time overlap) for the last hour before delivery. The 15 min. window duration
is chosen after the obstetrician’s request that asphyxia should be detected as early as pos-
sible. Multifractal parameters are then averaged within the three classes (each containing
15 patients carefully selected as representative by obstetricians). A Wilcoxon ranksum test
is conducted for each time window between the True Positive and False Positive classes.
The results reported in Fig. 8 (bottom row) clearly indicate a significant increase of c1 and
hminf (hence a significant decrease in HRV) for the Unhealthy True Positives compared to
the Healthy True Negatives and False Positives. The p-value of the Wilcoxon ranksum test
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is observed to be below 5% (cf. red � in Fig. 8 (bottom row)) often 30 min earlier than the
time the decision to operate the delivery was actually taken. These promising results are
reported in details in [9, 61] and will be further investigated.

It is worth noting that for heart rate time series (as for many other types of human
rhythms signals, cf. e.g., fMRI applications [53, 81]), hminf can be found either positive or
negative depending on the subject, or its health status. This is consistent with the fact that
practitioners, in applications, noticed that they often had to switch from fBm to fGn (or
conversely) to model data and understood this as a puzzling inconsistency (see for instance
discussions in [81]). To some extent, the general framework developed here alleviates such
inconsistency by introducing hminf as one of the various parameters that can be used to
analyze scaling without a priori assumptions on the data. In the analysis of fetal HRV
described above, a fractional integration of order 1/2 (larger than the absolute value of
the most negative hminf encountered in the whole database) has been applied to enable the
use of the wavelet leader multifractal formalism in a consistent manner on the whole set of
data.

6.4 Aggregated Internet Traffic

Internet traffic engineering currently is a challenging task involving a variety of issues rang-
ing from economy development planning and security assessment to statistical data char-
acterization. The earliest versions of statistical models used for Internet traffic modeling
were stemming from the experience gained on the previous large communication network:
Telephone communications. B. Mandelbrot himself made very early contributions to such
modeling (cf. e.g., [37]), and this certainly was a major source of inspiration for the later
developments he made in the theory of fractal stochastic processes. However, such tele-
phone communications models were all based on the assumption that there exist one or
several characteristic scales of time in data, while it has soon been recognized that Internet
traffic is well characterized by long memory and self similarity (cf. [8, 115, 116, 153, 154]
for seminal articles). This later raised the question of multifractality of Internet traffic (cf.
e.g., [1, 69, 84, 166]) that we briefly illustrate here.

Any activity performed on the net (emailing, web browsing, Video-On-Demand, data
downloading, IP telephony,. . . ) amounts to establishing a connection between hosts (server-
clients, peer to peer, . . . ), consisting of computers located all over the world, according to
an agreed-on protocol, and exchanging a (very) large number of elementary quanta of
information, the Internet Protocol packets (in short, IP Pkts). Collecting Internet traffic
data hence naturally consists of recording the IP Pkt time stamp and header (IP source,
IP destination, Port Source, Port Destination). Obviously, analyzing the marked point
process resulting of the tremendous number of IP Pkts exchanged is beyond feasible, and
it is classical to instead monitor so-called aggregated (or count) time series: Practitioners
select a given aggregation-level ∆, whose choice depends on the application, and construct
either the Pkt or Byte time series that counts the number of IP Pkts whose timestamp falls
within [k∆, (k + 1)∆), or the corresponding volume in Byte.

An example of such Pkt time series is plotted in Fig. 9 (left). It consists of traffic from
the MAWI repository, made available by the Japanese WIDE research program [141]. The

48



MAWI repository consists of data that have been collected everyday for 15min at 2 pm
(Tokyo time) since January 2001 on major backbone links (100Mbps or 1Gbps) connecting
Japan and the United States (cf. [39, 52, 59].

The left plot of the same figure displays the wavelet coefficient based log2(Sf (2, j)) vs.
log2(2j) = j (as in (34)) and clearly shows that, for Internet traffic, there exist two ranges
of scales for which scaling can be identified: Coarse scales, above 1s, and fine scales, below
1s. For each of those ranges of scales, the wavelet leader based multifractal formalism is
applied.

For the coarse scales, Fig. 10 clearly indicates on a 15min long set of data aggregated at
1ms that the leader scaling function is linear, and that the multifractal spectrum collapses
on a single point, hence suggesting monofractality or that multifractality is at best very
weak. To further investigate this point, the parameters c1 and c2 are estimated on sliding
15min long windows for a trace collected during 24 hours (on Sept., 22nd, 2005), for scales
ranging from 1s to 1 min. Results are reported for the last 8 hours for simplicity and
show, first, that the estimated parameters are remarkably constant along the day (while
the changes in amplitude of the time series may be drastic) and, second, that c2 ' 0. This
indicates no multifractality at coarse scale and, because c1 ∼ H ' 0.9, a significant long
memory in the data. These experimental results corroborate those reported in [84] and are
consistent with the main model due to Taqqu et al. (cf. [176]) relating selfsimilarity and
heavy-tails of the web file size distribution, see also [2, 83, 118]).

For the fine scales, Fig. 11 shows on the same 15min long set of data aggregated at
1ms that the leader scaling function is linear for p around 0, hence indicating a very weak
multifractality or no multifractality at all. Parameters c1 and c2, estimated on sliding 15min
long windows for the 24 hour trace, again turn out to be constant along time, with c1 '
0.55±0.05 and c2 ' 0.007±0.005. This hence validates that fine scales of aggregated traffic
show at best little multifractality. Furthermore, estimations of the selfsimilarity parameters
(not shown here) being close to 0.5 also indicate little correlation. These analyses tend
to show that fine scales of aggregated traffic are characterized by the quasi-absence of
dependence structure. Moreover, the estimated parameters c1 and c2 remain remarkably
constant along time for the whole day and across the various days analyzed, a highly
unexpected result for Internet traffic, which is often described as widely varying, and which
is continuously subject to numerous occurrences of anomalies and attacks. This is essentially
because data have been pre-processed using a random projection and a median procedure
that robustify estimation against anomalous behaviors (cf. [39, 59]). In practice, the effect
of this procedure is to eliminate abnormal components in the traffic. The results reported
here can hence be associated with the properties of regular and legitimate background
Internet traffic, corresponding to the usual Internet user behaviors. Furthermore, this
quasi-absence of dependence structure at fine scales is consistent with the Cluster Point
Process modeling of Internet traffic aggregated count time series proposed in [84], which
implies that fine scales are actually not possessing strictly scaling properties. However, it
also shows that the statistical properties of the fine scales are satisfactorily approximated
by scaling behaviours. Therefore, the fact that regular or legitimate traffic does not show
multifractality does not imply however that multifractal parameters like c1 and c2 can not be
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used for traffic monitoring, such as anomaly detection for instance. Indeed, the occurrence
of anomalies is likely to change the dependence structure of the fine scale statistics (as shown
in e.g., [59]) and consequently the empirically estimated parameters c1 and c2, which may
thus prove very useful, even if scaling properties are measured that actually consist of
approximations of the true statistical properties of the fine scales.

Finally, let us mention that for aggregated count time series hminf < 0, as shown on the
top left plots of Figs. 10 and 11, hence a fractional integration of order 1 is systematically
applied prior to performing the wavelet leader multifractal formalism.

6.5 Texture classification: Vincent Van Gogh meets Benôıt Mandelbrot

Applications described so far all implied the multifractal analysis of 1D signals only. How-
ever, B. Mandelbrot always advocated that fractal analysis should be applied to images, to
characterize the roughness of textures (cf. e.g., [125, 126]). The wavelet coefficient based
analysis of selfsimilarity analysis has been readily and immediately extended to 2D fields
and images, thanks to the straightforward formulation of the 2D discrete wavelet trans-
form (cf. e.g., [120]). The estimation of the corresponding H parameter has then been
used to characterize textures in images, often in the context of biomedical applications (cf.
[38, 97]). The extension of multifractal formalisms to images turned out to be significantly
more intricate. Direct extension of the Kolmogorov scaling function were used to analyze
rainfall repartitions by D. Schertzer and S. Lovejoy, see [169]. A second attempt based
on the modulus maxima of the coefficients of the 2D continuous wavelet transform was
proposed by A. Arneodo and his collaborators; it employed in medical [13] or geophysical
applications [15]. The wavelet leader formalism recently proposed and based on a 2D dis-
crete wavelet transform enabled a significant step forward toward the use of multifractal
analysis in higher dimensions. Its potential benefits have been assessed in [184], and it has
recently been used to characterize texture in paintings [6].

The paintings that Van Gogh performed while he was living in France are grouped into
two periods by art experts and art historians: The Paris period, ending early 1888, and
the later Provence period. While art experts agree on the classification of most of Van
Gogh’s paintings, some are still not clearly attributed to either period. To perform such
classification, art experts often make use of material or stylometric features such as the
density of brush strokes, their size or scale, the thickness of contour lines, the layers, the
chemicals of the colors, . . . .

Aiming at promoting the investigation of computer-based image processing procedures
to assist art experts in their judgement, the Image Processing for Art Investigation research
program (cf. www.digitalpaintinganalysis.org/), in collaboration with the Van Gogh
and Kröller-Müller Museums (The Netherlands), made available to research teams two sets
of (partial and low resolution digitized versions of) 8 Van Gogh’s paintings each from the
Paris and Provence period, and 3 painting whose period remains undecided (nomenclature
below corresponds to the Van Gogh museum catalog). The digitized copies are available
through the usual RGB (Red, Blue, Green) channels and converted into the HSV (Hue,
Saturation, Value) channels, hence enabling to process the gray-level light intensity infor-
mation and the color information.

50



Three examples, corresponding to the Paris period, the Provence period and unclassi-
fied paintings, respectively, are shown in Fig. 12 (left column) together with examples of
homogenous patches selected for analysis (second column). The 2D wavelet leader based
multifractal formalism has been applied, for each selected patch, independently to the six
RGB and HSV channels. Examples of obtained multifractal spectra are shown in Fig. 12
(right column) and suggest, for example, that f605 is closer to f475 than to f452 and
hence is likely to belong to the Provence period. For each patch of the 2× 8 + 3 paintings
and each channel, multifractal attributes hminf , ηf (1), c1, . . . are estimated. Fig. 12 (bottom
row) shows 2D projections of various pairs of such attributes, which all indicate that on
average the Paris paintings (blue clusters) are globally more regular than the Provence
paintings (red clusters). Also, the Saturation and Red channels are found to be the most
discriminant. This suggests that both a color and an intensity information (saturation and
Red) are useful for discrimination. Interestingly, it has been reported by art experts that
saturation is a key feature to distinguish between the Paris and Provence periods in Van
Gogh’s paintings. Finally, these 2D projections suggest that f605 and f386 belong to the
lower left red cluster and hence to the Provence period, while conclusion is less straightfor-
ward for f572. Such results are left to the appreciation of art experts. These analyses are
detailed in [6].

7 Conclusion

A key issue for the future developments of multifractal analysis is to disentangle (at least)
four different acceptations that can be associated with the key word multifractal, and that
are often misleadingly confused one with another, sometimes leading to potential misun-
derstandings and erroneous interpretations.

Theoretical multifractal analysis and local regularity. From the theoretical or
mathematical side, multifractal analysis is deeply tied with the analysis of the fluctuations
along time (or space) of the local regularity of the function or data of interest, these fluctu-
ations being often coined as irregularity. Usually, this local regularity is measured in terms
of Hölder exponents hf (x). The global description of the irregularity of f is gathered in
the multifractal spectrum Df (h), which consists of the Hausdorf dimensions of the geo-
metrical iso-Hölder sets. For mathematics, multifractal is hence all about Hölder exponent
and (fractal, or box or Haussdorf) dimensions of geometrical sets. Though listed first here,
the mathematical formulation of multifractal analysis theory can be considered as the most
recent piece of the history of multifractal, as it really started in the 90s only, see [40], as a
consequence of the seminal article of G. Parisi and U. Frisch [151]. Note however that pre-
cursors can be found, for instance in articles dealing with slow and fast points of Brownian
motion: Recall that this specific process displays exceptional points where the modulus of
continuity is slightly smaller (resp. bigger) than a.e.; the corresponding sets are random
fractals. Following the seminal contribution of J.-P. Kahane, their dimensions have been
precisely determined, respectively by S. Orey and S. J. Taylor for fast points, see [150], and
by E. Perkins for slow points, see [156].
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Multifractal formalism and scale invariance. From the more practical perspective
of real-world data analysis, scaling functions, consisting of time (or space) averages of the p-
th power of scale dependent quantities (such as increments, oscillations, wavelet coefficients
or wavelet leaders) — also often referred to, in statistical physics, as partition or structure
functions — constitute the core aspect of the notion of multifractal. Importantly, practical
multifractal analysis amounts in essence to assuming that scaling functions behave as power
laws with respect to the analysis scales, in the range of scales available in the data. The
description of these power laws naturally leads to the notion of scaling exponents. Equiv-
alently, these scaling exponents are termed scaling functions, with the practical and often
implicit request that the limit underlying its definition actually exists (cf. (8) versus (9)).

These power law behaviors — or scale invariance, or scaling — of scale dependent
quantities, and the corresponding scaling exponents (or scaling functions), were at the heart
of the intuition that B. Mandelbrot developed, connecting scaling properties to (fractal)
dimensions, to selfsimilarity and/or to fluctuations of local regularity, and relating scaling
to self similar random walks or multiplicative cascades.

The multifractal formalism (in reference to the Thermodynamic formalism) therefore
consists of the mathematical developments that relate scale invariance and scaling func-
tions to local regularity and multifractal spectra. In some sense, the multifractal spectrum
constitutes the link between formal mathematics and physics or data analysis.

Multifractal processes. Multifractal processes do not constitute a well-defined class.
In essence, this notion refers to processes (or functions) that can be fruitfully used to
model scale invariance properties in data. Following the seminal distinctions proposed by
B. Mandelbrot, they can be thought of as falling into two major classes: Selfsimilar random
walks and multiplicative cascades (or martingales).

The first one, now very classical after the seminal review of B. Mandelbrot on fBm [138],
pertains to the class of additive models: A large step (or increment) can be obtained as the
sum of many different small steps, yet sharing the same statistical properties. This class is
hence deeply associated with selfsimilarity. Often, this class is confused with its emblematic
but restrictive representative fBm, the only Gaussian selfsimilar process with stationary
increments. The Gaussian nature of this process and its fully parametrized formulation lead
to the formulation of various parametric estimation of its selfsimilarity exponent H. Such
parametric estimation are sometimes incorrectly considered as a multifractal analysis of
data. This is inaccurate since multifractal analysis aims at measuring much richer properties
of data than the sole selfsimilarity and, above all, does not rely on the assumption that
data are selfsimilar or Gaussian. Multifractal analysis thus has a much broader scope and
can also be applied to limits of other random walks, such as Lévy processes (and, more
generally, jump processes), see [26] for overviews on the mathematical side.

The second class, multiplicative cascades, is usually considered as that of archetypal
multifractal processes, in the sense that their (scaling functions and) multifractal spectra
can be computed theoretically and found to often consist of continuous, smooth bell-shaped
functions. Therefore, for such processes, multifractal analysis unveils information that
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can not easily be obtained with other analysis tools (as opposed to the previous class of
selfsimilar random walks).

Furthermore, as mentioned earlier, and again following one of B. Mandelbrot’s intu-
itions, this particular class can be extended by combinations (or subordinations) of selfsim-
ilar process with multiplicative cascades (for instance fBm in multifractal time mentioned
above, or Lévy processes in multifractal time, as studied by J. Barral and S. Seuret [33, 34]).

It is however clear that these examples do not even give a vague idea of the tremendous
variety of all possible multifractal functions. A few mathematical results actually comfort
this idea (and allow to transform it into a precise mathematical statement): Generically,
most functions in a given function space are multifractal and satisfy the multifractal for-
malism, see [75, 92] for precise statements. Therefore, multifractality is not a rare property,
and is certainly not restricted to the few examples which have been investigated up to now.

The classical opposition between monofractal versus multifractal processes, often used
in practical data analysis, is not well grounded and somehow irrelevant. Confusion stems
from the fact that Gaussian fBm is characterized by a single Hölder parameter hf (x) = H
and is hence monohölder (its spectrum Df (h) is supported by a single point). But self-
similarity does not in general imply this monohölder property. Instead, the classification
of data might be by opposing additive to multiplicative structure. Indeed, the physics
(or the biology or else) underlying data production may significantly differ depending on
whether it is driven by additive mechanisms, or by multiplicative ones. In that respect,
multifractal analysis may help as the multifractal spectra of selfsimilar random walks gen-
erally differ from those of multiplicative constructions. However, in opposition to what
is often used in applications, multifractal analysis per se, understood as the measurement
of the scaling function and multifractal spectrum, is not sufficient for proving that there
exist any additive or multiplicative structures underlying the data. Multifractal analysis
does not aim at stating definite answers to fuzzy questions such as: Are data following a
cascade model or not? but, instead, it provides quantitative answers to more restricted
questions such as: Is hminf > 0? Is ζf (2) > 1? In turns, these precise measurements can
contribute to help practitioners to formulate hypotheses regarding data, or to classify them.

Practical multifractal analysis: signal and image processing. As stated in the
previous paragraph, practical multifractal analysis amounts to measuring from data mul-
tifractal attributes such as ηf (p), hminf , ζf (p), cm, Lf (h). These quantities can be computed
from data without assuming any a priori data model. In other words, data to which multi-
fractal analysis is applied need not stem from any exact selfsimilar random walk or multi-
plicative construction. Multifractal analysis is hence, by nature, a non parametric analysis
tool that can be applied to any type of data, be they (multi)fractal or not. Whether Lf (h)
can be related with Df (h) or not does not prevent practitioners to use these multifractal
attributes as tools for classification, diagnosis, detection, or else. This is notably the case
in image processing, where it is very unlikely that databases containing images of widely
different natures can be associated with specific construction models (such as random walks
or cascades).

Furthermore, in practice, one question is always central and was already raised by B.
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Mandelbrot: What multiresolution quantity should one start with? Increments, oscilla-
tions, wavelet coefficients, wavelet leaders? In this respect, the present contribution aims
at providing clear and general answers. First, increments and oscillations only address the
restricted case where 0 ≤ hf (t) < 1,∀t; while wavelet based quantities enable to bypass that
restriction by selecting smooth enough wavelets with a large enough number of vanishing
moments. Therefore, wavelet coefficients generalize increments and the wavelet leaders con-
stitute the generalized counterpart of oscillations. Second, wavelet coefficients and wavelet
leaders should not be opposed. Wavelet coefficients enable to measure information in data
such as the uniform Hölder exponent and a global selfsimilarity type scaling exponent; they
should hence always be applied first to data. Wavelet leaders should be applied next, when
relevant (hminf > 0) and when seeking for additional and more refined analysis of scaling
properties in data, via a full collection of scaling exponents ζf (p), or equivalently cm, or
equivalently Lf (h).

Multifractal toolbox. The practical solutions proposed here in terms of discrete
wavelet transform coefficients and leaders are believed to be one of the methods enabling
the best practical achievements in terms of combining firm mathematical grounding, satis-
factory estimation performance, low implementation and computational costs, robustness
and versatility. It can be accompanied with non parametric bootstrap procedures, pro-
viding confidence intervals for estimates and hypothesis test procedures. Technical details
are reported in [183] and Matlab toolboxes implementing these tools are made publicly
available by the authors.
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Figure 2: Functional space assumptions in image processing. Left column: Indicator functions of a
disc (top row) and of the Koch snowflake (2nd row) with superimposed polynomial trend, and of a disc
with F.B.M. texture (3rd row, H = 0.7); natural images (bottom rows). Corresponding Sf (j, p = 1)
(center column) and wavelet scaling functions ηf (p) (right column), estimated from the images in the
left column. For the indicator function of the Koch snowflake and of the disc, the scaling functions
are given by ηf (p) = 2 − log(4)

log(3) ≈ 0.74, and ηf (p) = 1, respectively. Therefore, the latter is in B.V.,
while the Koch snowflake is not because ηf (1) < 1. With an added texture, the latter is not any longer
in B.V., but remains in L2 since ηf (2) > 0. Both natural images are not in B.V., yet the image of
snow (4th row) is found to be in L2, while the image of trees (bottom row) is not in Lp.

2

Figure 1: Image processing. Different images (synthetic, 3 top rows, and natural, 2
bottom rows) together with log-log plots of their wavelet coefficients based Sf (1, j) (as
defined in (34)) (middle column) and their wavelet scaling functions ηf (p) (as defined in
(35)) (right column). From the wavelet scaling function, we obtain the very accurate
estimate D̂ = 1− ηf (1) ≈ 1.25 for the fractal dimension of the Von Koch snowflake (given
by D = log(4)/log(3) ≈ 1.26). Furthermore, we recover that the image of the simple disk
discontinuity is just in BV and not smoother since ηf (1) & 1, while the Von Koch snowflake
and the superimposition of disk and fBm texture are not. Both natural images are not in
BV, and the one at bottom row is not even in L2.
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Figure 1:

1

Figure 2: Selfsimilar processes. Top row: sample paths of fBm with H = 0.7 (left)
and of stable Lévy motion with H = 0.7 (right). Bottom row: estimated wavelet leader
scaling functions and Legendre spectra. Both processes have leader scaling functions that
behave linearly in p for p close to 0: ζf (p) = pH for fBm, ζf (p) = Hp (if p is close to 0)
for stable Lévy motion. These self similar processes with stationary increments are thus
characterized by c2 = 0. While fBm shows a linear in p leader scaling function and is mono-
Hölder, stable Lévy motion is multifractal and its leader scaling function is only piecewise
linear (cf. discussion in Section 5.4). Confidence intervals are constructed based on the non
parametric bootstrap procedure described in [183].
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Figure 3: 1D multifractal processes. Top row: sample paths of log-normal cascade
(left), log-Poisson cascade (middle), and a fBm in multifractal time (as defined in (51))
(right). 2nd and 3rd rows show the superimposition of the theoretical (blue) and estimated
(black) corresponding leader scaling functions and multifractal spectra. Theory and esti-
mation are strikingly in agreement both for positive and negative ps and across the entire
multifractal spectra (increasing and decreasing parts). Confidence intervals are obtained
by a non parametric bootstrap procedure described in [183].
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Figure 4: 2D multifractal processes. Top row: 2D realizations of fBm (left), log-normal
cascade (middle), log-Poisson cascade (right). 2nd and 3rd rows show the superimposition
of the theoretical (blue) and estimated (black) corresponding leader scaling functions and
multifractal spectra. As in the 1D case (cf. Figs. 2 and 3), theory and estimates are
strikingly in agreement both for positive and negative ps and across the entire multifractal
spectra (increasing and decreasing parts). Confidence interval are constructed using a non
parametric bootstrap procedure described in [183].
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1

Figure 5: Non linear transform. Top row: sample path of fBm, with H = 0.7 (left)
and its squared transform (right). Bottom row: estimated wavelet leader based Legendre
spectra. fBm is a mono-Hölder process and its estimated Legendre spectrum collapses on
the theoretical spectrum D(h) = 1 for h = H. Its squared non linear point transform,
however, is a bi-Hölder process, with theoretical multifractal spectrum given in (50): The
estimated Legendre spectrum perfectly reproduces its corresponding concave hull.
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Figure 6: Hydrodynamic Turbulence. Top: longitudinal Eulerian turbulence velocity
signal (hot-wire anemometry, Reynolds number: ' 500, Courtesy C. Baudet et al. [50])).
Middle: log-log plot for the wavelet leader based Tf (3, j) (as in (39)) and for the wavelet
coefficients based hminf (as in (37)). Bottom: Wavelet leader scaling function (left) and
multifractal spectrum (right) measured from a single run of data (black solid lines), com-
pared to the log-normal (red solid lines) and log-Poisson (dashed blue lines) models. Data
clearly select the log-normal model.
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Figure 7: Euro-USD. Top: Euro-USD rate fluctuations for 10 years (starting January
1st, 2001) (left) and hourly returns (right). Data Courtesy Vivienne Investissement, Lyon,
France. One year long time series (June 2003 to June 2004, 2nd row; June 2006 to June
2007, 3rd row), with log-log plots for the wavelet coefficients based hminf (cf. (37)), log-
log plots for the wavelet leader based Tf (2, j) (given by (39)), and multifractal spectra,
measured using the wavelet leader multifractal formalism. Bottom row: Estimation in one
year long time windows (with a 3-month sliding shift) of hminf , ηf (2), c1, c2 (together with

confidence intervals). These plots show that while hminf > 0, ζf (2) often remains below
the finite quadratic variations limit of 1. Parameter c1, c2 variations indicate that the
multifractal properties of the Euro-USD price fluctuations vary significantly along time.
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Figure 2: last 15 min – TN / FP / TP

2

Figure 8: Fetal-ECG. Top: Examples of cardiac frequency time series (in Beats-per-
Minute) for fetuses during delivery process - last 15 min. before delivery, for a healthy
subject, correctly diagnosed as such by the obstetrician (left) (True Negative), for a healthy
subject, incorrectly diagnosed as suffering from per partum asphyxia (middle) (False Posi-
tive), for a fetus actually suffering from per partum asphyixia and diagnosed as such (True
Positive). Data Courtesy M. Doret, Obstetrics Dept. of the University Hospital Femme-
Mère-Enfant, Lyon, France. Second Row: log-log plots for the wavelet leader based Tf (2, j)
(cf. (39)). Third Row: log-log plots for the wavelet coefficients based hminf (as in (37)).
Fourth Row: Multifractal spectra, measured using the wavelet leader multifractal formal-
ism. Bottom Row: Parameters hminf (left) and c1 (right) estimated over 15 min. long
sliding windows (with a 7.5min overlap) over the last hour before delivery, values are aver-
aged over the classes of 15 patients each: True Positive (dashed blue line with ’o’), False
Positive (dashed black line with squares, True Positive (solid red line with ∗). The red �
correspond to windows where a Wilcoxon ranksum test between True Positive and True
Negative gives a p−value below 5%. This analysis shows that unhealthy subjects (True
Positive) systematically display less HRV as compared to healthy ones (True Positive and
False Positive) (cf. [9, 61]).
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Figure 9: Internet Traffic: Aggregated time series and scaling. Left: Aggregrated
time series (Courtesy MAWI research project, [141]); Right: log-log plot for the wavelet
coefficient based Sf (2, j) (as in (34)). It clearly displays two independent scaling ranges,
below and above the second.
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Figure 10: Internet Traffic: Coarse scales. Top: log-log plots for the wavelet leader
based Tf (2, j) (cf. (39)) (left) and for the wavelet coefficients based hminf (as in (37)) (right).
Middle: Wavelet leader scaling function (left) and multifractal spectrum (right) measured
from 15-min long data. Bottom: Evolution along time of parameters c1 (left) and c2 (right),
measured from 15-min long sliding windows for 24 consecutive hours (9 hours shown here;
cf. [39]), suggesting that scaling properties are constant along time and clearly validating
that, at coarse scales, i.e., above 1s, aggregated Internet traffic are selfsimilar with long
memory (c1 ' H ' 0.9) and show no multifractality (c2 ' 0).
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Figure 11: Internet Traffic: Fine Scales. Top: log-log plots for the wavelet leader
based Tf (2, j) (as in (39)) (left) and for the wavelet coefficients based hminf (given by (37))
(right). Middle: Wavelet leader scaling function (left) and multifractal spectrum (right)
measured from 15-min long data. Bottom: Evolution along time of parameters c1 (left) and
c2 (right), measured from 15-min long sliding windows for 24 consecutive hours (9 hours
shown here). (cf. [39]), also suggest that scaling properties are constant along time and
indicate that, at fine scales (i.e., below 1s), aggregated Internet traffic are characterized by
c1 ' H ' 0.6 and c2 ' 0.005 ± 0.005, revealing at best a very weak multifractality or no
multifractality at all.
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Figure 7: R (j = [2, 5]) [Paris – QUESTIONED – Provence]

8

Figure 12: Van Gogh’s Paintings. Left columns: Representative examples of paintings
of the Paris (top), Provence (bottom) and unknown (middle) periods, with selected homo-
geneous patches (second column), Courtesy Image Processing for Art Investigation research
program, cf. www.digitalpaintinganalysis.org/, and the Van Gogh and Kröller-Müller
Museums (The Netherlands). Third column: log-log plots for the wavelet coefficient based
Sf (1, j) (as in (34)). Fourth column: hminf . Right column: Wavelet leader based multifrac-
tal spectra, suggesting that the questioned painting has multifractal properties close to that
of the Provence period example. Bottom row: 2D projections of multifractal attributes,
indicating that paintings from the Paris period (blue) are overall globally more regular than
paintings from the Provence period (red).
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