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Abstract:
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1 Introduction

On the mathematical side, fractal geometry has two different origins: One is the quest for
non-smooth functions, rising from the following key question that motivated a large part of
the progresses in analysis during the nineteenth century: How irregular can a continuous
function be? And, more precisely, does a continuous function necessarily have points of
differentiability? The first (negative) answer to this question was supplied by B. Bolzano
in the first half of the 19th century: He constructed a counter-example, which actually
turned out to be, historically, the first example of a multifractal function. This example,
however, had no direct influence, because it remained unpublished. On the contrary, the
next counterexamples, namely the Weierstrass functions

Wa,H(x) =
+∞∑
n=0

sin(anx)

aHn
for a > 1 and H ∈ (0, 1) (1)

had a deep impact on the developments of analysis in the 19th century. The fact that
these functions are continuous and nowhere differentiable can be sharpened in a way which
requires the notion of pointwise Hölder regularity.

Definition 1 Let f : Rd → R be a locally bounded function, x0 ∈ Rd and let γ ≥ 0; f
belongs to Cγ(x0) if there exist C > 0, R > 0 and a polynomial P of degree less than γ such
that

if |x− x0| ≤ R, then |f(x)− P (x− x0)| ≤ C|x− x0|γ .

The Hölder exponent of f at x0 is

hf (x0) = sup {γ : f is Cγ(x0)} .

The polynomial P is clearly unique, and will be referred to in the following as the Taylor
polynomial of f at x0. Note that differentiability at x0 implies that hf (x0) ≥ 1.

The Hölder exponent ofWa,H is a constant function, which is equal to H at every point;
since H < 1 we thus recover the fact that Wa,H is nowhere differentiable, but the sharper
notion of Hölder exponent allows to draw a difference between each of the Weierstrass
functions, and classify them using a regularity parameter.

The connection with fractal geometry follows from the fact that the graphs of these
functions supply important examples of fractal sets that still motivate research. In order to
make this point explicit, we need to recall the notion of box dimension which is commonly
used to classify fractal sets.

Definition 2 Let A be a bounded subset of Rd; if ε > 0, let Nε(A) be the smallest number
such that there exists a covering of A by Nε(A) balls of radius ε.

The upper and lower box dimension of A are respectively given by

dimB(A) = lim sup
ε→0

logNε(A)

− log ε
, and dimB(A) = lim inf

ε→0

logNε(A)

− log ε
. (2)
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When both limits coincide (as it is the case for the graphs of the Weierstrass functions),
they are referred to as the box dimension of the set A:

dimB(A) = lim
ε→0

logNε(A)

− log ε
. (3)

The box dimension of the graph of Wa,H is 2 − H; note that the determination of its
Hausdorff dimension (see Definition 6 below) still is an open problem (it is however con-
jectured to coincide with the box dimension). Other examples of functions with fractal
graphs were introduced in the nineteenth century: The proper mathematical definition of
Brownian motion was obtained by Louis Bachelier in his thesis in 1900, for the purpose
of modeling in finance, and its sample paths now supply some of the simplest examples of
fractal sets: The box and Hausdorff dimensions of their graph a. s. is 3/2. Furthermore
Brownian motion displays the same qualitative property as the Weierstrass functions: Its
Hölder exponent is constant, and related with the box dimension of its graph by the same
relationship.

The other origin of fractal geometry came from the challenge of defining the notions of
“length” of a curve or “area” of a surface through a definition that would not require the
notion of differentiability: This requirement led to the notion of Hausdorff outer measure
(see Definition 6 below) first in the integer dimensional case, and then in non-integer cases,
and thus provided a mathematical tool fitted to the geometry of sets such as the triadic
Cantor set.

However, the use of a single parameter (e.g. the fractional dimension of the graph) is
too reductive as a classification tool in many situations that are met in applications. Let
us now review some additional parameters which have been used.

Consider for example the case of the triadic Cantor set: The fact that it is made of two
parts which are identical to the whole set scaled down by a factor of 3 leads to a similarity
dimension of log 2/ log 3. But one easily checks that its box and Hausdorff dimensions also
coincide with this number.

Let us now consider the example of fractional Brownian motion (hereafter referred
to as fBm), a family of stochastic processes introduced by Kolmogorov [35], and whose
importance for the modeling of scale invariance and fractal properties in data was made
explicit by Mandelbrot and Van Ness in [44]. This family is indexed by a parameter H ∈
(0, 1), and generalizes Brownian motion (which corresponds to the case H = 1/2); fBm of
index H is the only centered Gaussian random process BH satisfying

∀x, y ≥ 0 E(|BH(x)−BH(y)|2) = |x− y|2H .

The key role played by fBms in signal processing comes from the fact that they supply the
most simple one parameter family of stochastic processes with stationary increments, and
therefore are widely used in modeling.
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Weierstrass-Mandelbrot functions and fBm sample paths have everywhere the same and
constant Hölder exponent

∀x : hf (x) = H.

Furthermore, for these two families, the pointwise regularity exponent also coincides with
a uniform regularity exponent which can be defined as follows.

The Lipschitz spaces Cs(Rd) are defined for 0 < s < 1 by the conditions : f ∈ L∞ and

∃C,N, ∀x, y ∈ Rd, |f(x)− f(y)| ≤ C|x− y|s.

If s > 1, they are then defined by recursion on [s] by the condition: f ∈ Cs(Rd) if f ∈ L∞
and if all its partial derivatives (taken in the sense of distributions) ∂f/∂xi (for i = 1, · · · d)
belong to Cs−1(Rd). If s < 0, then the Cs spaces are composed of distributions, also defined
by recursion on [s] as follows: f ∈ Cs(Rd) if f is a finite sum of partial derivatives (in the
sense of distributions) of order 1 of elements of Cs+1(Rd). This allows to define the Cs

spaces for any s /∈ Z (note that a consistent definition using the Zygmund classes can also
be supplied for s ∈ Z, see [45], however we will not need to consider these specific values
in the following). A distribution f belongs to f ∈ Csloc if fϕ ∈ Cs for any C∞ compactly
supported function ϕ.

Definition 3 The uniform Hölder exponent of a tempered distribution f is

Hmin
f = sup{s : f ∈ Csloc(Rd)}. (4)

This definition does not make any a priori assumption on f : The uniform Hölder exponent is
defined for any tempered distribution, and it can be positive and negative. More precisely:

• If Hmin
f > 0, then f is a locally bounded function,

• if Hmin
f < 0, then f is not a locally bounded function.

Other parameters can also be considered in the case of (deterministic or random) func-
tions, which mimic, in a functional setting, the geometric property that we mentioned for
the triadic Cantor set, and allow to encapsulate the intuitive idea that the graph of f
“looks” the same after proper rescalings. The Weierstrass functions satisfy a deterministic
selfsimilarity relationship

∀x ∈ R, Wa,H(ax) = aHWa,H(x) + g(x) (5)

(where g is a C∞ function) thus yielding a selfsimilarity exponent equal to H. On the
other hand, fBm satisfies a stochastic selfsimilarity; this probabilistic notion means that,
∀a > 0, the (random) functions aHf(ax) do not coincide sample path by sample path, but
share the same statistical laws. Recall that two vectors of Rl: (X1, · · ·Xl) and (Y1, · · ·Yl)
share the same law if, for any Borel set A ⊂ Rl, P({X ∈ A}) = P({Y ∈ A}). Similarly, two
processes Xt and Yt share the same law if, ∀l ≥ 1, for any finite set of time points t1, · · · tl,
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the vectors of Rl (Xt1 , · · ·Xtl) and(Yt1 , · · ·Ytl) share the same law. A stochastic process Xt

is said to be selfsimilar, with selfsimilarity exponent H, iff

∀a > 0, {Xat, t ∈ R} L= {aHXt, t ∈ R} (6)

One can show that fBm is selfsimilar, and H also is the selfsimilarity exponent of fBm.

The fact that so many notions coincide (in the deterministic setting) for Weierstrass
functions and (in the random setting) for fBm, is indeed remarkable, but can be seen as a
drawback for modeling, in complex situations where this coincidence does not necessarily
exist, and where several parameters would be needed for classification. Concrete examples
are supplied by Lévy processes, which are another extension of Brownian motion: Indeed,
a Lévy process is a random process with independent and stationary increments (therefore
Brownian motion can be viewed as the only Lévy process with continuous sample paths),
see a sample path in Fig. 5. Lévy processes nowadays play an important role in modeling,
in situations for instance where Gaussianity is proved not to hold (such as in finance, see
[43, 12] for instance), or where modeling via probability laws with fat tails is mandatory.
Dropping the continuity assumption has drastic consequences on the regularity properties
of these processes and most Lévy processes display a Hölder exponent, which, far from
being constant, becomes an extremely erratic, nowhere continuous function, see [24]. This
observation has strong implications in modeling, showing that the parameters which are
used to characterize such models cannot be derived on real life data, and thus must be
reconsidered. Before following this idea, we start by working out two simple mathematical
examples where this situation occurs. We will first follow the intuition of Paul Lévy, who
proposed such functions as simple deterministic “toy-examples” displaying some of the key
properties of Lévy processes. We will also work out another example, in the setting of
measures: We will consider the simplest possible of multiplicative cascades which also
display such irregularity properties. Note that multiplicative cascades were introduced as
turbulence models, but now have a wide range of applications in modeling (see e.g. in
fragmentation theory [6]). In order to deal with this second example, we now introduce a
notion of pointwise regularity adapted to measures.

Definition 4 Let µ be a positive Radon measure defined on Rd. Let x0 ∈ Rd and let α ≥ 0.
Let x0 belong to the support of µ. The local dimension of µ at x0 is

hµ(x0) = sup{α : µ ∈ hα(x0)} = lim inf
r→0+

logµ(B(x0, r))

log r
. (7)

Note that we use the same notation as for the Hölder exponent, which will lead to no
ambiguity in the following. In Section 2 two examples (one function and one measure) of
the situation usually met in multifractal analysis are developed: Their pointwise regularity
exponent is shown to be extremely erratic, thus pointing to the necessity of other tools
to characterize and classify such behaviors. In Section 3, we show how to deal with such
situations by describing tools coming both from mathematics and signal processing: They
allow to associate to such examples several multifractal spectra, which present robustness
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properties, both from a mathematical and computational point of view. In Section 4,
we reformulate some of the analysis tools introduced in the previous section in terms of
wavelet coefficients, and introduce alternative ones that are based on wavelet leaders (i.e.
local suprema of wavelet coefficients) and are specific to the wavelet setting. In Section 5,
we show how to blend ideas coming from statistics (quantiles) and wavelet leaders to derive
new spectra that allow to put into light multifractal spectra that are not concave (which,
by construction, cannot be reached using Legendre transform techniques). One drawback
of the wavelet leader method is that it can be used only for locally bounded data, and the
mathematical results that back it even require some uniform smoothness which excludes
discontinuities. In Section 6, we show how to extend the multifractal framework to the Lq

setting; examples of random fields where these extensions are required are worked out.
The notions that we introduce are illustrated by selected applications where the method

described is shown at work on toy examples, and on real-life data; these illustrations are
collected at the end of the paper.

2 Pontwise regularity: Some examples

Our purpose in this section is to show that simply defined functions and measures can
display an extremely irregular pointwise regularity exponent. These examples will motivate
the introduction of specific tools which are now used in multifractal analysis, and which will
be developed in Section 3; they are also typical of the two large classes of multifractal objects
which have been considered: The first one falls in the additive setting (which also includes
Lévy processes, and random wavelet series), and the second one falls in the multiplicative
setting (which contains multiplicative cascades and their generalizations).

2.1 Lévy functions

Let

{x} = x− [x]− 1

2
,

where [x] denotes the integer part of the real number x; {x} is the 1-periodic “sawtooth”
function, which is nothing but the fractional part of x (recentered, so that its mean van-
ishes). The Lévy functions, which depend on a parameter β > 0, are defined by

Lβ =

∞∑
j=1

{2jx}
2βj

. (8)

Such functions were proposed by P. Lévy as a toy example of deterministic functions which
display some characteristics of Lévy processes; they have a dense set of discontinuities,
and are constructed through the accumulation of “compensated jumps”: Indeed, if β < 1,
all jumps are negative and the sum of their amplitudes is infinite; the compensation is
performed through the linear part of {2nx} which makes the series converge.

Since |{x}| ≤ 1, the series (8) is uniformly convergent towards a 1-periodic function.
Since the functions {2jx} are continuous except at dyadic points, Lβ is also continuous

7



except perhaps at dyadic points. Consider now such a point x0 = K
2J

; clearly Lβ has right
and left limits there and the amplitude of the jump of Lβ at x0 (difference between the
right and left limits) is

∆(x0) =
∑
j≥J

2−βj = C 2−βJ . (9)

In order to determine the pointwise regularity of these functions, we will use a general
result on functions with a dense set of discontinuities, which yields an upper bound on their
Hölder exponent. The jump of f at a point s is

∆f (s) = lim sup
x→s

f(x)− lim inf
x→s

f(x).

Lemma 1 Let f : Rd → R be a locally bounded function and let x0 ∈ Rd; then

hf (x0) ≤ lim inf
s→x0

log(∆f (s))

log(|x0 − s|)
. (10)

Proof: Let

L = lim inf
s→x0

log(∆f (s))

log(|x0 − s|)
,

and let P be the Taylor polynomial of f at x0. Let s be a discontinuity point of f , which
we can assume to differ from x0. Thus ∆f (s) > 0. Let ε = ∆f (s)/10. By definition of
∆f (s), there exist x1 and x2 which can be chosen arbitrarily close to s, and are such that

|f(x1)− f(x2)| ≥ ∆f (s)− ε

and, since P is continuous,

|P (x1 − x0)− P (x2 − x0)| ≤ ε;

so that
|f(x1)− P (x1 − x0)− (f(x2)− P (x2 − x0))| ≥ ∆f (s)− 2ε;

therefore, one of the points x1 or x2, which we will now denote by x(s), satisfies

|f(x(s))− P (x(s)− x0)| ≥ ∆f (s)/3, (11)

and, since x1 and x2 are arbitrarily close to s, we can assume that

1

2
|s− x0| ≤ |x(s)− x0| ≤ 2|s− x0|. (12)

Let sn be a sequence for which the liminf is reached in (10). We obtain a sequence x(sn)
such that

log(|f(x(sn))− P (x(sn)− x0)|)
log(|x(sn)− x0|)

−→ L. (13)

But, for any δ > 0, and for x close enough to x0,

|f(x)− P (x− x0)| ≤ |x− x0|hf (x0)−δ
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so that
log(|f(x)− P (x− x0)|)

log(|x− x0|)
≥ hf (x0)− δ;

and therefore it follows from (13) that L ≥ hf (x0).

The pointwise regularity of the Lévy functions can be expressed in terms of the dyadic
approximation properties of the point considered. Let us start by recalling this notion.

Definition 5 Let x0 ∈ R and α ≥ 1; x0 is α-approximable by dyadics if there exists a
sequence (kn, jn) ∈ Z× N such that ∣∣∣∣x0 −

kn
2jn

∣∣∣∣ ≤ 1

2αjn
. (14)

the dyadic exponent of x0 is the supremum of all αs such that x0 is α-approximable by
dyadics. This exponent will be denoted by α(x0).

We will denote by Dα the set of points that are α-approximable by dyadics, and by ∆α

the set of points where the dyadic exponent is exactly α. Note that D1 = R and, if α > α′,
then Dα ⊂ Dα′ . Furthermore,

∆α =
⋂
α′<α

Dα′ −
⋃
α′>α

Dα′ . (15)

Recall that the jump of fβ at the points K
2J

(where k is odd) is bJ = C · 2−βJ (see (9)).
It follows then from Definition 5 and Lemma 1 that,

if x0 ∈ Dα, then hf (x0) ≤ β

α
. (16)

Let us now prove regularity outside of Dα.

Lemma 2 If x0 /∈ Dα, then fβ ∈ Cβ/α(x0).

Proof: Suppose that 0 < β < 1; let

Iαj,k =

[
k

2j
− 1

2αj
,
k

2j
+

1

2αj

]
.

By hypothesis, there exists j0 such that, if j ≥ j0, then x0 does not belong to any of the
intervals Iαj,k. The function ∑

j<j0

2−βj{2jx}

is C∞ at x0 so that is does not play a role in the determination of the regularity of f ;
consider now the remaining part

g(x) =
∑
j≥j0

2−βj{2jx}.
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Let h > 0 and j1 be the integer such that

1

2α(j1+1)
≤ h < 1

2αj1
.

Let us estimate

g(x0 + h)− g(x0) =
∑
j≥j0

2−βj
(
{2j(x0 + h)} − {2jx0}

)
.

If j < j1, the function {2jx} has no jump in the interval [x0, x0 + h], so that

2−βj{2j(x0 + h)} − 2−βj{2jx0} = 2−βj2jh;

if j ≥ j1 we bound the increment {2j(x0 + h)} − {2jx0} by 2; we finally get

|g(x0 + h)− g(x0)| ≤
∑
j<j1

2(1−β)jh+
∑
j≥j1

2−βj ≤ C2(1−β)j1h+ C2−βj1

which, using h ∼ 2−αj1 and α ≥ 1, is bounded by Chβ/α.
The case h < 0 is similar; and if β > 1, we proceed as above, but subtract first from fβ

the “linear part”
∞∑
j=0

2−βj2jx,

which is the sum of a convergent series (even if β is large, we need not subtract higher order
terms in the Taylor expansion at x0).

The following result follows from (16), Lemma 2 and (15).

Proposition 1 The set ∆α is exactly the set of points where the Hölder exponent of Lβ
takes the value H = β/α.

Note that the sets ∆α are everywhere dense; indeed, by example, the point

xα =

∞∑
j=1

2−j
2

+ 2−[αj2]

clearly belongs to ∆α, which is thus not empty; ∆α is therefore dense, since it clearly is
invariant under any dyadic shift. It follows that, on any arbitrarily small interval, the
Hölder exponent of Lβ takes all possible values between 0 and β. In particular, it is an
everywhere discontinuous function.
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2.2 Binomial measures

We now consider another construction, in a multiplicative setting, which also leads to
an extremely irregular pointwise regularity function: Binomial measures supported by a
Cantor-like fractal set. We first define this support K in a recursive way.

Let l0 and l1 be two real numbers such that

l0 > 0, l1 > 0 and l0 + l1 < 1.

If I = [a, b] is an interval, its two children I0 and I1 are defined by

I0 = [a, a+ (b− a)l0] and I1 = [b− (b− a)l1, b].

We start the construction from I∅ = [0, 1]. The fundamental intervals of first generation
are its two children I(0) = (I∅)0 and I(1) = (I∅)1. We define thus iteratively intervals of
each generation using the same recipe: Each fundamental interval I(i1,·,ik) of generation k
has two children I(i1,···,ik,0) = (I(i1,···,ik))0 and I(i1,···,ik,1) = (I(i1,···,ik))1. Thus fundamental
intervals are indexed by the path that allowed to generate them in the tree.

We now construct the measure. Let m0 and m1 be two real numbers such that

m0 > 0, m1 > 0 and m0 +m1 = 1.

We define the measure m on the fundamental intervals by

m(I(i1,···,ik)) = mi1 · · ·mik .

It is clearly additive on the fundamental intervals, and it is then extended to all intervals as
follows: If I is an open interval of R, we define m(I) =

∑
m(Il), where the sum is taken on

all maximal fundamental intervals included in I. One easily checks that m can be extended
into a Borel measure on R supported by the Cantor-type set

K = supp(m) =
⋂
k≥0

⋃
Gen(Il)=k

Il, (17)

where Gen(Il) denotes the “generation” of the interval I; the union is thus taken on all
fundamental intervals of generation k. It is clear that K is a compact set (as intersection of
a decreasing sequence of compacts) with empty interior and without isolated points, i.e. is
a perfect set. Any point x ∈ K can be indexed by an infinite sequence (i1(x), · · · , ik(x), · · ·)
such that I(i1(x),···,ik(x)) is the unique fundamental intervals of generation k which contains
x; let us denote it by Ik(x). Thus

m(Ik(x)) = mi1(x) · · ·mik(x) and |Ik(x)| = li1(x) · · · lik(x). (18)

Let us now determine the pointwise regularity exponent of the measure m according to
Definition 4. It follows from (18) that an interval of diameter 2|ik(x)| centered at x has
measure at least m(Ik(x)). Therefore

∀x ∈ K hm(x) ≥ lim inf
log(mi1(x) · · ·mik(x))

log(li1(x) · · · lik(x))
. (19)
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The converse inequality follows from the condition l0 + l1 < 1 which implies a separation
property: If intervals of the same generation are “close” for the euclidean distance, then
they are also “close” for the tree distance; the following doubling property is a consequence
of this remark: If I is a fundamental interval, and if CI denotes the interval of same center
as I and C times wider, then

∀C ≥ 1, ∃C ′ > 0 such that, ∀I fundamental interval, m(CI) ≤ C ′m(I).

The upper bound in (19) follows from this estimate, together with (18) and we therefore
obtain the following result.

Proposition 2 The pointwise regularity exponent of the measure m satisfies

∀x ∈ K hm(x) = lim inf
log(mi1(x) · · ·mik(x))

log(li1(x) · · · lik(x))
. (20)

In particular, we note that, if x is such that

1

k

k∑
l=1

ik(x) −→ p when k →∞,

then

hm(x) =
p log(m1) + (1− p) log(m0)

p log(l1) + (1− p) log(l0)
. (21)

Therefore, the pointwise exponent of m can take any value in the interval of bounds
(logm0)/(log l0) and (logm1)/(log l1). The index p ∈ [0, 1] can be used to parametrize
the collection of sets of points EHm which share the same exponent H; clearly, each of these
sets is dense in K.

3 Mathematical notions pertinent in multifractal analysis

The two examples that we worked out in the previous section are by no means exceptional:
Many (deterministic or random) mathematical functions or measures share the same prop-
erty of having an everywhere discontinuous pointwise regularity. In the applications that
use such models, it is clear that a direct determination of pointwise regularity exponents
would lead to totally unstable algorithms, and therefore be meaningless as a way to derive
classification parameters. If one expects such mathematical examples to be relevant in mod-
eling, then, one should associate to them new parameters, which would involve some global,
numerically stable, quantities. We now describe the notions which have proved pertinent
when dealing with the functions and measures that we considered in the previous section.

3.1 Tools derived from geometric measure theory

In the two examples that we considered, the pointwise Hölder exponent hf takes all possible
values in an interval [Hmin, Hmax]. Rather than determining the exact behavior of hf
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which, in such cases, is extremely erratic, a more realistic option consists in deriving some
quantitative information about hf , namely, about the size of the sets where f has a given
regularity. We therefore consider the iso-Hölder sets defined as

EHf = {x : hf (x) = H}.

A first problem is to find a way to draw differences between these sets by using a notion
of “size” that would, in general, take different values for such sets. The examples supplied
by the Lévy functions and the binomial measure allow to test efficiently several natural
candidates:

One could first think of the notion of size supplied by the Lebesgue measure. However,
in the binomial measure case, since the support of the measure has a vanishing Lebesgue
measure, it follows that the size of all sets EHm would vanish. More generally, in any
situation where the function hf takes all values in an interval, the Lebesque measure of
almost all sets sets EHf will necessarily vanish: Indeed, as a consequence of the countable

additivity property of the Lebesgue measure, and since the sets EHf are disjoint, it follows

that the values of H for which meas(EHf ) > 0 (where meas denotes the Lebesgue measure)
necessarily form a countable set. (Note that the situation usually is even more extreme:
One (or none) of the sets EHf has full Lebesgue measure, and all others have a vanishing
one).

One should therefore use a tool that allows to draw differences between sets of vanishing
Lebesgue measure; pertinent notions in such settings are supplied by the different variants
of fractional dimensions. In the examples that we considered, the sets EHf are everywhere
dense, either in R (in the case of the Lévy functions), or in K (in the case of the binomial
measure); it follows that the box dimensions of these sets all coincide; therefore the box
dimensions will not allow to draw differences between them. The notion which is commonly
used in such settings is the Hausdorff dimension which we now recall.

Definition 6 Let A ⊂ Rd. If ε > 0 and δ ∈ [0, d], let

M δ
ε = inf

R

(∑
i

|Ai|δ
)
,

where R is an ε-covering of A, i.e. a covering of A by bounded sets {Ai}i∈N of diameters
|Ai| ≤ ε. (The infimum is therefore taken on all ε-coverings.)

For any δ ∈ [0, d], the δ-dimensional outer Hausdorff measure of A is

mesδ(A) = lim
ε→0

M δ
ε .

One easily checks that there exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞
∀δ > δ0, mesδ(A) = 0.

This critical δ0 is called the Hausdorff dimension of A, and is denoted by dim(A).
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An important convention, in view of the use of these dimensions in the context supplied
by the multifractal formalism, is that, if A is empty, then dim (A) = dim (∅) = −∞.

As a typical example of the way to compute Hausdorff dimensions, let us determine
dim(K), where K is defined in (17). This is done by obtaining first an upper bound, and
then a lower bound. For the upper bound, we use as ε-covering the set of all intervals at
generation n (if n is chosen large enough, the supremum of their lengths can clearly be
chosen arbitrarily small). This covering consists in intervals of length (l0)k (l1)n−k, and, for
a given k, there are

(
n
k

)
of them. Therefore, the quantity

∑
i |Ai|δ, introduced in Definition

6, takes the value
2n∑
k=0

(
n

k

)(
(l0)k (l1)n−k

)δ
=
(

(l0)δ + (l1)δ
)n
.

It follows that, if δ is the unique solution of the equation

(l0)δ + (l1)δ = 1, (22)

then
dimK ≤ δ.

In order to obtain lower bounds for the Hausdorff dimension of a set, it is sufficient to
consider, as above, a particular sequence of ε-coverings. On the other hand, deriving lower
bounds directly from the definition usually is unfeasible, because it requires to take into
account all possible ε-coverings. The following principle (the so called mass distribution
principle) efficiently replaces the study of all possible ε-coverings by the construction of a
particular measure.

Proposition 3 Let µ be a probability measure supported by a set A ⊂ Rd. If there exists
δ ∈ [0, d], C > 0 and ε > 0 such that, for any ball B of diameter at most ε,

µ(B) ≤ C|B|δ.

Then mesδ(A) ≥ 1/C.

Proof: Let {Bi} be an arbitrary ε-covering of A. We have

1 = µ(A) = µ
(⋃

Bi

)
≤
∑

µ(Bi) ≤ C
∑
|Bi|δ.

The result follows by passing to the limit when ε→ 0.

The lower bound for the dimension of K follows from Proposition 3 using for µ one of
the binomial measures m that we constructed: We pick m0 and m1 such that

m0 = (l0)δ and m1 = (l1)δ, (23)

so that m0 +m1 = 1. For these particular values, we have exactly, for fundamental intervals

m(I) = |I|δ,

and, a fortiori, for any interval I, m(I) ≤ |I|δ. The mass distribution principle therefore
implies then that dimK ≥ δ, so that we have obtained the following result.
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Proposition 4 Let K be the Cantor set K defined by (17). Then

dimK = δ,

where δ is the solution of (22).

The considerations developed at the beginning of Section 3 motivate the introduction
of the following general notion, which plays a central role in multifractal analysis.

Definition 7 Let f be a function, or a measure, and hf be its pointwise regularity exponent.
The multifractal spectrum of f is the function df (H) defined by

df (H) = dim(EHf ).

Note that, in the case of the Hölder exponent, one often refers to df (H) as the Hölder
spectrum, or the spectrum of singularities of f . This notion is sometimes used in other
contexts: We will see the example of the q-exponent in Section 6.2. It can also be used for
exponents of different nature, see for instance [3, 41] where the exponent considered is the
size of ergodic averages, or [4, 19] where it is the rate of divergence of Fourier series. In
Section 6.1 we will give an easy example in such an alternative setting: We will consider
the rate of divergence of the wavelet series of a function in a given Sobolev or Besov space.

It is remarkable that, though Lévy functions or binomial measures have an extremely
irregular Hölder exponent, their multifractal spectra are smooth functions, from which the
corresponding parameters can be recovered. Indeed, the Hausdorff dimensions of the level
sets are obtained by standard computations (see [26] for instance), and one obtains the
following results.

Theorem 1 The multifractal spectrum of the Lévy functions is given by

d(H) =

{
βH if H ∈ [0, 1/β]
−∞ else.

Since we determined the Hölder exponent of the Lévy functions at every point, and
showed that they only depend on the rate of dyadic approximation, this theorem follows
directly from the determination of the Hausdorff dimensions of these sets, which can be
found for instance in [24].

Similarly, the multifractal spectrum of the binomial measures can also be deduced from
its Hölder exponent and one finds a bell-shaped spectrum, which is a real-analytic concave
function supported by the interval whose ends are located at Hmin = log(m0)/ log(l0) and
Hmax = log(m1)/ log(l1) (assuming that log(m0)/ log(l0) ≤ log(m1)/ log(l1)). Let us just
give a brief idea of the proof: An upper bound for the spectrum is obtained using the
multifractal formalism (we give a version of it adapted to the function setting at the end of
Section 4.3, but it was first derived in the measure setting, see[18, 49]); lower bounds can be
obtained using the mass distribution principle applied to another measure m̃ constructed
as m but with different values for m0 and m1: One fixes such a couple arbitrarily (but
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satisfying m̃0 + m̃1 = 1, and one uses the law of large numbers, which yields that at m̃-
almost every point x satisfies that the right-hand side of (20) is a limit, therefore yielding
a lower bound of the spectrum for a particular value of H. Changing the values of m̃0 and
m̃1 makes H take all values in the interval [Hmin, Hmax] see [15, 16] for details.

Note however that these results do not suggest a practical way to derive the spectrum,
since its definition is based on the Hölder exponent, i.e. on quantities that are ultimately
unstable to compute. Therefore, the derivation of parameters used in signal processing
follow a different path.

3.2 Tools derived from physics and signal processing

Let us start by a few words concerning the seminal work of Kolmogorov in fully developed
turbulence. The stream-wise component of turbulent flow velocity spatial field exhibits very
irregular fluctuations over a large range of scales, whose statistical moments furthermore
behave, within the so-called inertial scale range, like power laws with respect to the scale
h; this velocity measured at a given point is therefore a function of time only, which we
denote by v(t). This power-law behavior is written∫

|v(t+ h)− v(t)|pdt ∼ hη(p). (24)

This statement means that the function η(p) can be determined as a limit when h→ 0 on a
log-log plot; it is called the scaling function of the velocity v. Characterization and under-
standing of the observed scaling properties play a central role in the theoretical description
of turbulence, and Kolmogorov in 1941 expected a linear scaling function for turbulent
flows [36]: η(p) = p/3. This prediction has been refined by Obukhov and Kolmogorov in
1962 who predicted a quadratic behavior of the scaling exponents [38, 48]. The non-linear
behavior of η(p) was confirmed by various experimental results and other models have been
proposed leading to different scaling functions η(p).

Definition 8 Let f : Rd → R. The scaling function of f (see [37]) is the function ηf (p)
defined by

∀p ≥ 1, ηf (p) = lim inf
|h|→0

log

(∫
|f(x+ h)− f(x)|pdx

)
log |h|

. (25)

Note that, if data are smooth (i.e., if one obtains that ηf (p) ≥ p), then one has to use
differences of order 2 (or more) in (25) in order to define correctly the scaling function.

In applications, multifractal analysis consists in the determination of scaling functions
(variants to the original proposition of Kolmogorov will be considered later). Such scaling
functions can then be involved into classification or model selection procedures.

An obvious advantage of the use of the scaling function ηf (p) is that its dependence
in p can take a large variety of forms, hence providing versatility in adjustment of models
to data. Therefore multifractal analysis, being based on a whole function rather than
on a single exponent, yields much richer tools for classification or model selection. The
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scaling function however satisfies a few constraints, for example, it has to be a concave
non-decreasing function (cf. e.g., [32, 51]).

Later refinements and extensions of the wavelet scaling function were an indirect conse-
quence of its interpretation in terms of fractal dimensions of Hölder singularities, proposed
by G. Parisi and U. Frisch in their seminal paper [49], and which relates this point of view
with the one developed above in Section 3.1.

The formula proposed by Parisi and Frisch is the following relationship between the
scaling function and the multifractal spectrum

dim(EHf ) = inf
p

(d+Hp− ηf (p)) , (26)

see [49]. Though the remarkable intuition which lies behind this formula proved extremely
fruitful (see for instance [49] for a heuristic justification based on statistical physics ideas)
we now know that it needs to be pushed further in order to be completely effective; indeed
many natural processes used in signal or image modeling, such as Brownian motion, or
fBm, are counterexamples, see [40]; additionally, the only mathematical result relating the
spectrum of singularities and the scaling function in all generality is very partial, see [22, 26].

Theorem 2 Let f : Rd → R be such that Hmin
f > 0. Define p0 by the condition:

ηf (p0) = dp0;

then
dim(EHf ) ≤ inf

p>p0
(d+Hp− ηf (p)). (27)

The motivation for introducing new scaling functions has been to obtain alternative
ones for which (26) would hold with some generality, and also for which the upper bound
stated in Theorem 2 would be sharper. An additional side advantage is that such new
scaling functions also yield new classification and model selection parameters. The best
results following this benchmark have been obtained through the use of wavelet based
scaling functions in the construction of such scaling functions. We now turn towards this
more recent approach.

4 Wavelet based scaling functions

4.1 Wavelet bases

Orthonormal wavelet bases are a privileged tool to study multifractal functions for several
reasons that will be made explicit. In this subsection, we only recall the properties of
orthonormal wavelet bases that will be useful in the sequel. We refer the reader for instance
to [13, 42, 45] for detailed expositions.

Orthonormal wavelet bases on Rd are of the following form. There exists a function
ϕ(x) and 2d − 1 functions ψ(i) with the properties: The functions ϕ(x − k) (k ∈ Zd) and
the 2dj/2ψ(i)(2jx − k) (k ∈ Zd, j ≥ 0) form an orthonormal wavelet basis of L2(Rd). This
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basis is r-smooth if ϕ and the ψ(i) are Cr and if the ∂αϕ, and the ∂αψ(i), for |α| ≤ r, have
fast decay.

Therefore,

∀f ∈ L2, f(x) =
∑
k∈Zd

c
(0)
k ϕ(x− k) +

∞∑
j=0

∑
k∈Zd

∑
i

cij,kψ
(i)(2jx− k); (28)

the cij,k and c
(0)
k are called the wavelet coefficients of f and given by

cij,k = 2dj
∫
Rd
f(x)ψ(i)(2jx− k)dx, and c

(0)
k =

∫
Rd
f(x)ϕ(x− k)dx.

Note that the computation of these coefficients makes sense with very little assumption
on f (a wide mathematical setting is supplied by tempered distributions). A natural setting
for functions is given by the space L1 with slow growth, which is defined as follows.

Definition 9 Let f be a locally integrable function defined over Rd; f belongs to L1
SG(Rd)

if

∃C,N > 0 such that

∫
Rd
|f(x)|(1 + |x|)−Ndx ≤ C.

The wavelet expansion of a function f ∈ L1
SG(Rd) converges a.e.; in particular at

Lebesgue points, it converges towards the Lebesgue value

lim
r→0

1

V ol(B(x0, r))

∫
B(x0,r)

f(x)dx.

Furthermore, let CSG(Rd) be the set of locally bounded and continuous functions which
satisfy

∃C,N > 0 : |f(x)| ≤ C(1 + |x|)N .

Then, if f ∈ CSG(Rd), its wavelet expansion converges uniformly on compact sets.

We will use more compact notations for indexing wavelets:

• Instead of using the three indices (i, j, k), we will use dyadic cubes. Since i takes
2d − 1 values, we can assume that it takes values in {0, 1}d − (0, . . . , 0); we introduce

λ (= λ(i, j, k)) =
k

2j
+

i

2j+1
+

[
0,

1

2j+1

)d
,

and, accordingly: cλ = cij,k and ψλ(x) = ψ(i)(2jx − k). Indexing by dyadic cubes
will be useful in the sequel because the cube λ indicates the localization of the corre-
sponding wavelet. Note that this indexing is one to one: If (i, j, k) 6= (i′, j′, k′), then
λ(i, j, k) 6= λ(i′, j′, k′).
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• In order to have a common notation for wavelets and functions ϕ, when j = 0, we
note ψλ(x) the function ϕ(x − k) (where λ is, in this case, the unit cube shifted by
k), and by cλ the corresponding coefficient.

• Finally, Λj will denote the set of dyadic cubes λ which index a wavelet of scale j, i.e.,
wavelets of the form ψλ(x) = ψ(i)(2jx − k) (note that Λj is a subset of the dyadic
cubes of side 2j+1).

Note that the wavelet ψλ is essentially localized near the cube λ; more precisely, when
the wavelets are compactly supported, then, ∃C > 0 such that when ψ(i) ⊂ [−C/2, C/2]d

then ψλ ⊂ 2−jk + 2−j [−C/2, C/2] ⊂ 2Cλ.

A key property of wavelets, which plays a central role in applications, is that they
are universal bases of many function spaces. Let us explain this notion. Recall that a
quasi-norm satisfies the requirements of a norm except for the triangular inequality which
is replaced by the weaker condition

∃C > 0, ∀x, y ∈ E, ‖ x+ y ‖≤ C(‖ x ‖ + ‖ y ‖).

A quasi-Banach space is a complete topological vector space endowed with a quasi-norm.
Typical examples are the real Hardy spaces Hp, and the Besov spaces Bs,p

p with p ∈ (0, 1)
or q ∈ (0, 1).

Definition 10 Let E be either a Banach space, or a quasi-Banach space; a sequence en is
an unconditional basis of E if:

• Each vector f ∈ E has a unique expansion f =
∑
anen, where the series converges

in E.

• ∃C ∀(an), ∀(εn) such that |εn| ≤ 1, ‖
∑
εnanen ‖≤ C ‖

∑
anen ‖.

Note that one can slightly weaken the first condition in cases where E is not separable
but is the dual of a separable space F , in which case one replaces strong convergence to f
by a weak∗ convergence; this is typically the case for the spaces Cα. The second condition
has the following consequence: The norm (or semi-norm) of a function (or a distribution)
f ∈ E is equivalent to a condition on the sequence |an|; we denote this condition by CE .
Suppose now that the sequence (en) also is an orthonormal (or a bi-orthogonal) basis of L2.
Then the coefficients an are defined by an = 〈f |en〉 (or an = 〈f |fn〉 in the bi-orthogonal
case, in which case (fn) will be the dual basis), and these coefficients can be well defined
even if f does not belong to L2. It is typically the case for wavelet bases: If the wavelet
basis belongs to the Schwartz class, then the coefficients are well defined as soon as f is a
tempered distribution (and if the wavelets have a limited regularity, it will still be the case
if f is a distribution of limited order). Assume now that f is a tempered distribution. In
many situations, one would like to have a criterium which allows to decide whether f ∈ E.
Note however that the fact that the coefficients of f satisfy the condition CE is, in general,
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not sufficient to imply that f ∈ E: A simple counter-example is supplied by wavelet bases
where one picks for basis the collection of functions

2dj/2ψ(i)(2jx− k) with k ∈ Zd, j ∈ Z,

which also forms an orthonormal basis of L2. However the constant function f(x) = 1 has
all vanishing coefficients in this basis (because ∀i,

∫
ψ(i)(x) dx = 0) and does not belong

to L2. We thus see that a stronger requirement on the basis is needed; hence the following
definition.

Definition 11 Let E be either a Banach space, or a quasi-Banach space of tempered dis-
tributions defined on Rd. Let (en) be an unconditional basis of E, whose elements belong to
the Schwartz class S, and which also is an orthonormal basis of E. The sequence (en) is a
universal basis of E if the following property holds: ∀f ∈ S ′, if the sequence of coefficients
an = 〈f |en〉 (defined in the sense of the (S,S ′) duality)satisfies CE, then f ∈ E.

This definition easily extends to the bi-orthogonal case and to settings of bases of limited
regularity (in which case one only deals with distributions of limited order). An important
result is the fact that wavelet bases, as defined in the expansion (28), are universal bases
of many function spaces, such as the Sobolev spaces Lp,s for p ∈ (1,∞) or the Besov spaces
Bs,q
p . This can be verified using the fact that they are unconditional bases of these spaces

(see [45]) and then using a localization argument: One picks a C∞ compactly supported
function ω which is equal to 1 on B(0, R) and one considers fω; its wavelet coefficients are
locally uniformly close to those of f , because of the uniform localization of the elements of
the basis (which does not hold for wavelets with j ∈ Z). The result then follows by passing
to the limit when R→ +∞.

4.2 The wavelet scaling function

An important property of wavelet expansions is that many function spaces have a simple
characterization by conditions bearing on wavelet coefficients. This property has a direct
consequence on the practical determination of the scaling function.

The function space interpretation of the scaling function ηf (p) can be obtained through
the use of the Sobolev spaces Lp,s(Rd). Let p ≥ 1 and s ∈ R; recall that a tempered
distribution f belongs to Lp,s(Rd) if its Fourier transform f̂ is a function satisfying the
following property: If ĝ(ξ) = (1 + |ξ|2)s/2ĝ(ξ), then g ∈ Lp. The different variants in the
definition of Sobolev spaces and the embeddings between them imply that

ηf (p) = p sup
{
s : f ∈ Lp,sloc

}
. (29)

Let
Sf (p, j) = 2−dj

∑
λ∈Λj

|cλ|p. (30)
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The wavelet characterization of Sobolev spaces implies that the Kolmogorov scaling function
can be re-expressed as (cf. [22])

∀p ≥ 1, ηf (p) = lim inf
j→+∞

log (Sf (p, j))

log(2−j)
. (31)

Note that this result only holds if the wavelets used are smooth enough. The rule of thumb
is that wavelets should be smoother and have more vanishing moments than the regularity
index appearing in the definition of the function space. In the following we will never specify
the required smoothness, and always assume that smooth enough wavelets are used (the
minimal regularity required being always easy to infer).

This characterization, which, again, yields the scaling function through linear regres-
sions in log-log plots, has several advantages when compared to the earlier version (25).
First, (31) allows to extend the scaling function to the range 0 < p ≤ 1 (in which case the
function space interpretation requires the use of Besov spaces, see [27, 30] and references
therein). We will call this extension supplied by (31) the wavelet scaling function, and we
will keep the same notation. The wavelet scaling function can be used for classification, but
it also meets specific purposes: Indeed, its function space interpretation implies that the
values it takes for particular values of p carry a key information in several circumstances.
Let us give a few examples.

We start by an application motivated by image processing. A function f belongs to the
space BV, i.e., has bounded variation, if its gradient, taken in the sense of distributions,
is a finite (signed) measure. A standard assumption in image processing is that real-world
images can be modeled as the sum of a function u ∈ BV which models the cartoon part,
and another term v which accounts for the noise and texture parts (for instance, the first
“u+ v model”, introduced by Rudin, Osher and Fatemi in 1992 ([39]) assume that v ∈ L2).
The BV model is motivated by the fact that if an image is composed of smooth parts
separated by contours which are piecewise smooth curves, then its gradient will be the
sum of a smooth function (the gradient of the image inside the smooth parts) and Dirac
masses along the edges, which are typical finite measures. On the opposite, characteristic
functions of domains with fractal boundaries usually do not belong to BV, see Fig. 2 for an
illustration. Therefore, a natural question in order to validate such models is to determine
whether an image (or a portion of an image) actually belongs to the space BV, or to the
space L2, or not. This question can be given a sharp answer using the wavelet scaling
function. Indeed, the values taken by the wavelet scaling function at p = 1 and p = 2 allow
practitioners to determine if data belong to BV or L2:

• If ηf (1) > 1, then f ∈ BV , and if ηf (1) < 1, then f /∈ BV

• If ηf (2) > 0, then f ∈ L2 and if ηf (2) < 0, then f /∈ L2.

Thus wavelet techniques allow to check if the assumptions which are made, in certain
denoising algorithms relying on then u+ v model, are valid.

Examples of synthetic images are shown in Fig. 2, together with the corresponding mea-
sures of ηf (1) and ηf (2). The image consisting of a simple discontinuity along a circle and
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no texture, (i.e., a typical cartoon part of the image in the u+ v decomposition) is in BV.
This is in accordance with the value found for ηf (1) which is close to 1. The image of tex-
tures or discontinuities existing on a complicated support (such as the Von Koch snowflake)
are not in BV., and the function η is found numerically in very good accordance with the
theoretical value, and yields that this characteristic function does not belong to BV.; Y.
Gousseau and J.-M. Morel were the first authors to raise the question of finding statistical
tests to verify if natural images belong to BV [17]. We finally show the scaling function of
the characteristic function of the Mandelbrot set, which is not known theoretically. An in-
teresting question would be to relate the values of the scaling function with some geometric
properties of this set, and see if the values computed can help to confirm some conjectures
concerning this set. Note that an advantage of the use of the scaling function is that the
answer is not given by a yes/no procedure, but tells how far the data are from belonging
to the space considered, allowing for the possible use of error bars.

Another illustration that we show is the numerical determination of the scaling function
of the uniform measure on the Sierpinski gasket, see Fig. 3. Let us sketch how it can be
derived mathematically: Each triangle of width 2−j has a measure 3−j . Therefore, if the
support of a wavelet intersects Sierpinski gasket, the corresponding wavelet coefficient will
be of size ∼ 22j3−j , and there are ∼ 3j such wavelet coefficients. It follows that

Sf (p, j) ∼ 2−2j3j
(
22j3−j

)p
,

so that

ηm(p) = (p− 1)(δ − 2) where δ =
log 3

log 2
.

Another motivation for function space interpretations of scaling functions will be pro-
vided in Section 4.4, for the estimation of the p-variation.

The computation of the wavelet scaling function also is a prerequisite in some variants
of multifractal analysis. This will be exposed in Section 6.2, where variants of multifractal
analysis are investigated: They requires that f ∈ Lqloc, a requirement that can be verified
by checking that ηf (q) > 0.

4.3 Wavelet leaders

At the end of Section 3, we mentioned the importance of looking for an “improved” scaling
function, i.e., one such that (26) would have a wider range of validity, and for which the
upper bound supplied by Theorem 2 would be sharper. This led to the construction of
the wavelet leader scaling function, which we now recall. The “basic ingredients” in this
formula are no more wavelet coefficients, but wavelet leaders, i.e., local suprema of wavelet
coefficients. The reason is that pointwise smoothness can be expressed much more simply
in terms of wavelet leaders than in terms of wavelet coefficients.

Definition 12 Let f ∈ CSG(Rd), and let λ be a dyadic cube; 3λ will denote the cube of
same center and three times wider. If f is a bounded function, the wavelet leaders of f are
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the quantities
dλ = sup

λ′⊂3λ
|cλ′ |

Note that it is important to require f to belong to CSG(Rd); otherwise, the wavelet
leaders of f can be infinite; therefore checking that Hmin

f > 0 is a prerequisite for the whole
method.

The reason for introducing wavelet leaders is that they give an information on the
pointwise Hölder regularity of the function. Indeed, let x0 ∈ Rd, and denote by λj(x0) the
dyadic cube of width 2−j which contains x0. If Hmin

f > 0, then

hf (x0) = lim inf
j→+∞

log
(
dλj(x0)

)
log(2−j)

. (32)

(see [26] and references therein). Therefore, constructing a scaling function with the help
of wavelet leaders is a way to incorporate pointwise smoothness information. It is therefore
natural to expect that (27) will be improved when using such a scaling function instead of
ηf (p).

The leader scaling function is defined by

∀p ∈ R, ζf (p) = lim inf
j→+∞

log

2−dj
∑
λ∈Λj

(dλ)p


log(2−j)

. (33)

Here again, this mathematical definition should be interpreted as meaning that∑
λ∈Λj

(dλ)p ∼ 2−ζf (p)j .

An important property of the leader scaling function is that it is “well defined” for all
values of p. By “well defined”, we mean that it has the following robustness properties if
the wavelets belong to the Schwartz class (partial results still hold otherwise), see [31, 26]:

• ζf is independent of the (smooth enough) wavelet basis.

• ζf is invariant under the addition of a C∞ perturbation.

• ζf is invariant under a C∞ change of variable.

The leader spectrum of f is defined through a Legendre transform of the leader scaling
function as follows

Lf (H) = inf
p∈R

(d+Hp− ζf (p)) . (34)

The following result of [26] shows the improvement obtained when using wavelet leaders.

Theorem 3 If Hmin
f > 0, then, ∀H, df (H) ≤ Lf (H).
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Not that, if compared with (27), the upper bound is sharpened since one can show
that, on one hand ηf (p) = ζf (p) if p > p0, and, on the other hand, the infimum in (34)
is taken for all p ∈ R. Furthermore, equality holds for large classes of models used in
signal and image processing, such as fBm, lacunary and random wavelet series, cascade
models,. . . see [5, 6, 32, 33, 31] and references therein; when this is the case, we will say
that the multifractal formalism based on wavelet leaders holds.

Note that ζf is a concave function by construction (a direct consequence of Hölder
inequality, see [31]), so that there is no loss of information when considering its Legendre
transform. However, by definition, this Legendre transform is always concave, so that, if
df (H) is not a concave function (and it has no reason to be in general), then, the multifractal
formalism won’t hold. In such cases, we can expect however a weaker result, namely that
the concave hull of df (H) is recovered by (34) (recall that the concave hull of a function
f is the smallest concave function g which is everywhere larger than f). We will then say
that the weak multifractal formalism holds.

4.4 Estimation of the p-oscillation and p-variation

Another motivation for the practical computation of scaling functions is supplied by the
finite quadratic variation hypothesis in finance. There exist several slightly different for-
mulations of such conditions depending on the notion of p-variation that is used. We start
by recalling these notions and their relationships.

Let A be a convex subset of Rd; the (first order) oscillation of f on A is

osc(f,A) = sup
x∈A

f(x)− inf
x∈A

f(x) (35)

The p-oscillation of f at scale j is defined by

Oscp(f, j) =
∑
λ∈Λj

(osc(f, 3λ))p .

For analyzing smooth functions, the definition of the p-oscillation using (35), which takes
into account only first order differences, has to be modified; one uses instead n-th order
differences, which are defined by induction as follows: At step 1,

∆1
f (t, h) = f(t+ h)− f(t)

and, for n ≥ 2,
∆n
f (t, h) = ∆n−1

f (t+ h, h)−∆n−1
f (t, h);

and, in the definition of the p-oscillation, (35) is replaced by

osc(f,A) = sup
[t,t+nh]⊂A

|∆n
f (t, h)|. (36)

The p-variation spaces V s,p(Rd) are defined by the condition

∃C ∀j ≥ 0,

2−dj
∑
λ∈Λj

(osc(f, 3λ))p

1/p

≤ C2−js (37)
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(one chooses here in the definition of the oscillation a fixed n larger than [s] + 1), see [30].
This scale of function spaces allows to introduce the p-oscillation exponent

ωp(f) = lim inf
j→∞

log (Oscp(f, j))

log(2−j)
.

Of course ωp(f) = sup{s : f ∈ V s/p,p}. The following result of [23, 28] allows to relate this
quantity with the leader scaling function.

Theorem 4 Let f be such that Hmin
f > 0. Then

∀p ≥ 1, ωp(f) = ζf (p).

This theorem yields a practical criterium in order to determine whether the p-oscillation
of a function is bounded, which can be used with p = 2 (and d = 1) in the context of finance
data:

• If ζf (p) > d, then f has a finite p-oscillation.

• If ζf (p) < d, then the p-oscillation of f is unbounded.

Note that the leader scaling function also has another role for p = 1: It yields the upper
box dimension of the graph of f , see [23]: Let f : Rd → R be a compactly supported
function such that Hmin

f > 0; then

dimb(Graph(f)) = sup (d, d+ 1− ζf (1)) .

In one variable, these notions are closely related with the p-variation. Recall that a
function f : [0, 1] → R has a bounded p-variation (we write f ∈ V p) if the following
condition holds: There exists C > 0 such that, for any arbitrary subdivision of [0, 1]
0 ≤ t1 ≤ · · · ≤ tn ≤ 1,

n−1∑
i=1

|f(ti+1)− f(ti)|p ≤ C. (38)

Clearly, if f belongs to V p,

Aj =
∑
k

| sup
λj,k

f(x)− inf
λj,k

f(x)|p ≤ C (39)

(take for subdivision the points where the supremum and the infimum are attained in each
dyadic interval of length 2−j). Thus, if f belongs to Vp, then f ∈ V 0,p. Conversely, suppose
that there exists a positive ε such that f ∈ V ε,p. It follows that for any j, Aj ≤ C 2−εj ; let
(ti)i=1,...,n be a finite subdivision; let J be such that each interval of length 2−J contains at
most two points of the subdivision. The sum of all indexes i such that ti+1 and ti belong
to the same dyadic interval of length 2−J is bounded by AJ . The sum of all indexes i such
that ti+1 and ti belong to the same dyadic interval of length 2−J−1 but do not belong to
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the same dyadic interval of length 2−J is bounded by AJ−1,... thus, since Aj ≤ C 2−εj ,
f ∈ Vp. Hence the following imbeddings

∀ε > 0 V ε,p ↪→ Vp ↪→ V 0,p, (40)

which also allow to estimate the p-variation from the knowledge of the leader scaling func-
tion.

In one space variable, the following alternative definition is also used for the p-variation.

Definition 13 Let fa(x) = f(x− a). The function f has a finite regular p-variation if

∃C, ∀a, h ∈]0, 1],
∑
n

|fa((n+ 1)h)− fa(nh)|p ≤ C.

Comparing the different notions of oscillation and variation allows to derive the following
practical criterium, see [23, 28, 30]:

• If Hmin
f < 0 or if ηf (p) < 1, then the regular p-variation of f is not bounded.

• If ηf (p) > 1, then ζf (p) = ηf (p) and the p-oscillation of f is bounded (and its regular
p-variation is therefore also bounded)

These theoretical results have found practical applications in [2], where it is shown that
the US Dollar vs. Euro, considered on 11 consecutive years can be considered as a function
of bounded quadratic variations.

5 The curse of concavity

Many deterministic functions and stochastic processes yield examples of non-concave multi-
fractal spectra. It is easy to construct toy-examples of such functions, typically by superpos-
ing, or concatenating, functions with known spectra. Note that, in the case of concatenation
of two functions: f1 supported by an interval I1 and f2 supported by an interval I2, these
intervals being such that I2 ∩ I2 = ∅, then the whole spectrum of f = f1 + f2 on I2 ∪ I2 will
be the supremum of the two spectra, hence, in general, not a concave spectrum. In such
situations, if the multifractal formalism holds separately for f1 and f2, yielding the spectra
D1 and D2, respectively, then, when applied to f , we expect the multifractal formalism
to yield the concave hull of sup(D1, D2). Note however that in such situations one could
solve the problem and obtain the correct spectrum by localizing the analysis, see [7] for a
corresponding mathematical development (see also [8] for an example of a Markov process
whose multifractal spectrum changes with time). We now start by reviewing a few instruc-
tive examples of situations naturally leading to non-concave spectra where where such a
localization is not feasible.
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5.1 Examples of non-concave spectra

A first example is supplied by the first function which was proved to be a multifractal
function, i.e. Riemann’s non-differentiable function

R(x) =
∞∑
1

sin(πn2x)

n2
,

see [21] and the top of Fig. 1 for its graph. The multifractal spectrum of R is given by

D(H) = 4H − 2 if H ∈ [1
2 ,

3
4 ]

= 0 if H = 3/2
= −∞ else,

(41)

see bottom of Fig. 1 for this spectrum. The point H = 3/2 in the spectrum corresponds to
the differentiability points found by J. Gerver: They are the rational numbers of the form
(2p+ 1)/(2q + 1) (and form a set of vanishing Hausdorff dimension). However, since these
points are dense, it is clear that one could not “separate” the two parts of the spectrum
corresponding to H ≤ 3/4 and H = 3/2 by using a localized multifractal analysis. It
is actually an easy consequence of the computations performed in [21] that the Riemann
function is an homogeneous multifractal, i.e. on any interval of non-empty interior, the
spectrum is given by (41). The Riemann function is plotted in Figure 1, together with its
theoretical multifractal spectrum and its numerically computed Legendre spectrum, which,
predictably is the concave hull of the theoretical multifractal spectrum. This illustration
puts in light an ambiguity of the Legendre spectrum: In the case of the Riemann function, it
yields two segments of straight lines, and one cannot decide whether the actual multifractal
spectrum is this whole straight line (as it is the case of the left hand-side) or only the two
end-points (as it it the case for the right hand side)... or some intermediate behavior! The
purpose of the introduction of the Quantile Leader Spectrum in Section 5.3 is to propose
a numerically stable method in order to lift this type of ambiguities.

Other examples of homogeneous multifractal functions are supplied by an important
subclass of the Lévy processes. Recall that a pure jump function is a function whose
derivative can be written as the sum of a constant term and a series of Dirac masses. An
important classification result of P. Lévy states that any Lévy process X can be decomposed
as the sum of a (possibly vanishing) Brownian part, and an independent pure jump process.
This pure jump process can itself be decomposed as a series of compound compensated
Poisson processes. We now exclude the case where the sum of the series is itself a compound
compensated Poisson process (therefore assuming that the Lévy measure associated with
X is infinite); then X will have a dense set of discontinuities. The multifractal properties
of the sample paths of X are governed by an index β ∈ [0, 2], the Blumenthal and Getoor
lower index which describes how the Lévy measure diverges at the origin, and also by the
presence or absence of a Brownian component. If X has no Brownian component, then
with probability one, its multifractal spectrum is given by

dX(H) =

{
βH if H ∈ [0, 1/β]

−∞ else.
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On the other hand, if X has a Brownian component (which can be achieved by adding
an independent Brownian motion to the previous process), then with probability one, its
multifractal spectrum is given by

dX(H) =


βH if H ∈ [0, 1/2)

1 if H = 1/2

−∞ else

(see [24], and also [14] for extensions to random fields). Note that, in this case too, the
restriction of this process to any interval of non-empty interior yields the same spectrum, so
that the spectrum cannot be “split” into several concave ones by localization. The sample
path of such a Lévy process with Brownian component is showed at the top of Fig. 5;
below, we show its theoretical multifractal spectrum together with its Legendre spectrum
numerically computed form sample paths. Here again, the Legendre spectrum is the con-
cave hull of the theoretical multifractal spectrum, thus missing to show the non-concavity
in the increasing part of the spectrum.

A slightly different situation is supplied by the square of a fBm as considered in [2].
As already mentioned, the sample paths of fBm BH(t), are not multifractal: The Hölder
exponent is everywhere equal to H. Let us now consider its square YH(t) = (BH(t))2:
On one hand, at points where the sample path of fBm does not vanish, the action of the
mapping x → x2 locally acts as a C∞ diffeomorphism, and the pointwise regularity is
therefore preserved. On other hand, consider now the (random) set A of points where fBm
vanishes. The uniform modulus of continuity of fBm implies that a.s., for s small enough,

sup
t
|BH(t+ s)−BH(t)| ≤ C|s|H

√
log(1/|s|).

Therefore, if BH vanishes at t, then BH(t + s)2 ≤ C|s|2H log(1/|s|), so that hY (t) ≥ 2H.
The converse estimate follows from the fact that, for every t,

lim sup
s→0

|BH(t+ s)−BH(t)|
|s|H

≥ 1,

so that, if BH(t) = 0, then

lim sup
s→0

(BH(t+ s))2

|s|2H
≥ 1,

so that hY (t) ≤ 2H. Thus, at vanishing points of BH , the action of the square is to shift
the Hölder exponent from h = H to h = 2H. This set of points has been the subject
of investigations by probabilists (cf. the flourishing literature on the local time either of
Brownian motion, or of fBm); in particular, it is known to be a fractal set of dimension
1−H, cf [47]. It follows that the multifractal spectrum of YH(t) is given by

DYH (h) =


1 if h = H,
1−H if h = 2H,
−∞ elsewhere.

(42)
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Because of Theorem 3, the multifractal formalism will yield for Legendre spectrum a func-
tion above the segment of endpoints (H, 1) and (2H, 1−H) thus suggesting to practitioners
that YH(t) is a fully multifractal function whose spectrum is supported (at least) by the
interval [H, 2H]. This is illustrated in Figure 4, where a smaple path is shown (top), and
the thoretical multifarctal spectrum is also shown (bottow) together with the Legendre
spectrum numerically computed from sample paths.

Note also that the sample paths of fBm are homogeneous (i.e., the spectrum measured
from a restriction of the sample path to any interval (a, b) on the real line is the same as that
corresponding to the whole one); this is no longer true for (BH)2: The spectrum measured
on a restricted interval (a, b) will vary depending on whether the interval includes or not a
point where BH vanishes. However, since the set A is of empty interior, it follows that we
cannot localize (BH)2 in regions where the exponent 2H only would be present.

5.2 The Large Deviation Leader Spectrum

After this review of a few characteristic examples, we now come back to the general situation
supplied by non-concave spectra. In such situations, as already mentioned, one can expect,
at best, the weak formalism to hold (see Figures 4 and 5 where it is the case), and it is clear
that one should introduce new non-concave quantities in order to hope to put into light
non-concave spectra. The first line of ideas which has been developed in this respect is to
replace scaling functions (which are necessarily concave by construction) by an Increment
Large Deviation Spectrum, which, roughly speaking, indicate (on a log-log scale) the number
of increments of the function of size ∼ 2−Hj after a discretization of the function on a time
step 2−j . Let us be more precise: Starting with a function defined on (say) [0, 1], we
consider its 2j increments

δj,k =

∣∣∣∣f (k + 1

2j

)
− f

(
k

2j

)∣∣∣∣ k = 0 · · · 2j − 1. (43)

Let
Lj(α, β) = Card

{
δj,k : 2−βj ≤ δj,k ≤ 2−αj

}
Then the large deviation increment spectrum is

νf (H) = lim
ε→0

lim sup
j→+∞

log(Lj(H − ε,H + ε))

log(2j)
. (44)

Considering this spectrum leads however to several problems, either on the mathematical
side (non-invariance with respect to translations, or to small smooth perturbations of f),
but also it is very hard to compute in a numerically stable way because of the double
limit in the definition, which in practice has to be computed as a single limit. Recall
that shifting from the Kolmogorov scaling function to the Leader scaling function was an
important improvement on the mathematical and practical side; following the same line of
ideas, one can replace increments of the function by wavelet leaders in (43), and define a
Large Deviation Leaders Spectrum as follows.
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Definition 14 Let f be such that Hmin
f > 0; for 0 ≤ α < β, let

Mj(α, β) = Card
{

(dλ)λ∈Λj : 2−βj ≤ dλ ≤ 2−αj
}
.

The Large Deviation Leader Spectrum (LDLS) is of f is

µf (H) = lim
ε→0

lim sup
j→+∞

log(Mj(H − ε,H + ε))

log(2j)
(45)

The heuristic behind this definition is that, at scale j, there are ∼ 2µf (H)j leaders
of size ∼ 2−Hj . Note that an important advantage of working with quantities that are
defined through quantiles is that they are not sensitive to instabilities due to the possible
presence of fat tails in the probability distributions of the quantities observed (whether they
be increments, wavelet coefficients or leaders); their presence often makes high moments
diverge theoretically, and creates numerical instabilities in practical computations, whereas
quantiles remain well defined, and insensitive to these phenomena. The following result
shows that, if µf (H) is not concave, then estimating the multifractal spectrum with the
help of the LDLS leads to a sharper estimation than with the Legendre spectrum.

Theorem 5 If Hmin
f > 0, then,

∀H, df (H) ≤ µf (H) ≤ Lf (H),

and Lf (H) is the concave hull of µf (H).

Proof: We first prove that df (H) ≤ µf (H). Let H be fixed; if x0 ∈ EfH , then it follows
from (32) that ∃jn →∞ such that

2(−H−ε)jn ≤ djn(x0) ≤ 2(−H+ε)jn ; (46)

let
Dj = {λ : 2(−H−ε)j ≤ dλ ≤ 2(−H+ε)j}

It follows that
EfH ⊂ lim supDj .

Let now δ > 0 be fixed. We pick ε such that∣∣∣∣∣lim sup
j→+∞

log(Mj(H − ε,H + ε))

log(2j)
− µf (H)

∣∣∣∣∣ ≤ δ;
then, for j large enough,

log(Mj(H − ε,H + ε))

log(2j)
≤ µf (H) + 2δ,

so that
Mj(H − ε,H + ε) ≤ 2(µf (H)+2δ)j .
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Therefore Dj is covered by 2(µf (H)+2δ)j dyadic cubes of generation j, and it follows that

dim(lim supDj) ≤ µf (H) + 2δ.

Since this estimate holds for any δ > 0, the first upper bound is proved. We now turn to
the second one.

We first assume that the support of µf is a closed interval of the form [Hmin, Hmax].
Let ε > 0 be given; ∀H ∈ [Hmin, Hmax], ∃δ(H) > 0 such that

∀j Mj(H − δ(H), H + δ(H) ≤ 2(µf (H)+ε)j ;

the union of the intervals (H − δ(H), H + δ(H)) covers [Hmin, Hmax]. By compacity, we
extract a finite covering thus obtaining H1, · · · , Hn such that

2−dj
∑
λ∈Λj

(dλ)p ≤ 2−dj
n∑
i=1

2(µf (Hi)+ε)j2(−Hip+δ|p|)j ,

so that, ∀p
ζf (p) ≥ inf

i=1,···,n
d+Hip− δ|p| − µf (H − i)− ε.

Since this is true for ε and δ arbitrarily small, the second bound follows.
If the support of µf is not bounded from above, then Lf is an increasing function.

We now prove the last assertion of the theorem. Let ε > 0 be fixed; by definition of
µf (H), ∀δ > 0, ∃jn →∞ such that

Mjn(H − δ,H + δ) ≥ 2(µf (H)−δ)jn .

Therefore
∀p > 0, ζf (p) ≤ d+ p(H + δ)− µf (H) + ε

and
∀p < 0, ζf (p) ≤ d+ p(H − δ)− µf (H) + ε

Since this estimate holds for ε and δ arbitrarily small, the result follows from the definition
of Lf (H).

5.3 The Quantile Leader Spectrum

Note that some of the drawbacks attached with the Increment Large Deviation Spectrum
remain with its leader variant, and, in particular the numerical instabilities due to the
definition through the double limit in (44). Therefore, we now develop and intermediate
method, which yields a spectrum defined as a single limit, but still allows put into light
non-concave spectra. It is based on quantities which are in the spirit of the definitions of
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quantiles in statistics, and therefore, we call the quantity that it yields the Quantile Leader
Spectrum.

We now assume that the Large Deviation Leader Spectrum has a unique maximum at
a point H = Hmed for which

µf (Hmed) = d (47)

(note that this condition is equivalent to the fact that the Legendre spectrum has the same
property). Note that Hmed can then be computed using the median of the (dλ) at scale j,
which we denote by Medj(f). Indeed,

Hmed = lim
j→+∞

log(Medj(f))

log(2−j)
. (48)

Proof of (48): Because of the uniqueness of the maximum, ∀ε > 0, ∃δ > 0, such
that, for j large enough,

Card
{
λ : dλ ≤ 2−(Hmed+ε)j

}
≤ 2(d−δ)j

and
Card

{
λ : dλ ≥ 2−(Hmed−ε)j

}
≤ 2(d−δ)j ;

therefore,

Card
{
λ : 2−(Hmed+ε)j ≤ dλ ≤ 2−(Hmed−ε)j

}
≤ 2dj − 2 · 2(d−δ)j ,

so that, for j large enough, the median of the dλ belongs to
[
2−(Hmed+ε)j , 2−(Hmed−ε)j

]
.

Since ε can be chosen arbitrarily small, (48) follows.

Definition 15 The Quantile Leader Spectrum (QLS) Qf (H) is an increasing function for
H ≤ Hmed and decreasing for H ≥ Hmed, defined by:

• If H < Hmed, let
Mj(H) = Card

{
(dλ)λ∈Λj : dλ ≥ 2−Hj

}
,

Then

Qf (H) = lim sup
j→+∞

log(Mj(H))

log(2j)
.

• If H > Hmed, let
Mj(H) = Card

{
(dλ)λ∈Λj : dλ ≤ 2−Hj

}
,

Then

Qf (H) = lim sup
j→+∞

log(Mj(H))

log(2j)
.

The following result shows that, if Qf (H) is not concave, then estimating the multifrac-
tal spectrum with the help of the QLS leads to a sharper estimation than with the Legendre
spectrum. Recall that the increasing hull of a function f is the smallest increasing function
g which is everywhere larger than f (the definition is similar for the decreasing hull).
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Theorem 6 Let f be a function such that Hmin
f > 0. The Quantile Leader Spectrum

Qf (H) is the increasing hull of µf (H) for H ≤ Hmed and its decreasing hull for H ≥ Hmed.
Therefore, the following inequalities hold

∀H, df (H) ≤ µf (H) ≤ Qf (H) ≤ Lf (H).

The proof follows follows directly from the definition of the QLS.
In Figures 1, 4 and 5, we show several examples of functions and random processes

with non-concave spectra, and the additional information which is supplied by the quan-
tile spectrum. The example supplied by the Riemann function (Fig. 1) is particularly
instructive: The Legendre spectrum shows two straight lines in the spectrum, which may
potentially both be signatures of non-concavities in the multifractal spectrum; the analysis
through leader quantiles allows to settle these ambiguities and put into light two different
behaviors: The increasing part is indeed a straight line whereas the decreasing part is the
concave hull of a non-concave part of the spectrum. A similar conclusion can be drawn
for the example of Lévy processes with Brownian component: The nonconcavity of the in-
creasing part of the spectrum is revealed by the quantile method. The third example (Fig.
5,) however shows the limitations of the method: The quantile method does not allow the
reveal the non-concavity of the multifractal spectrum. One possible explanation is supplied
by finite size effects: In theory the only two pointwise exponents that can appear are H and
2H, yielding wavelet leders of size ∼ 2−Hj and ∼ 2−2Hj ; however, regions where the fBm is
close to vanish but does not do so are expected to generate wavelet leaders of intermediate
size; ans this phenomenon can happen at all scales, because of the selfsimilarity of the
underlying fBm. Hence the presence of a spurious numerical spectrum that is responsible
for a “phase transition” between H and 2H, and is also present in the quantile spectrum.

Note that the quantile procedure will allow to recover large deviation leader spectra
that are increasing for H < Hmed and then decreasing for H > Hmed; however, it only
yields partial results in situations where this spectrum has several local maxima. If such is
the case, one can however often reduce to the one maximum case, while still avoiding the
double limit problem inherent with Definition 14, by using the following strategy: One first
performs a quantile analysis, which will indicate the positions of some local maxima at the
extremity of the flat regions. This allows for a first guess of the locations of the local minima
(taking for instance the middle points of these flat regions). A localization of the spectrum
is then performed by picking two consecutive “guessed” local minima H1 and H2, and then
considering the “localized histogram” obtained by only keeping the wavelet leaders that
satisfy 2−H2j ≤ dλ ≤ 2−H1j , and then performing a new quantile analysis on these reduced
data. Note that, if the “region” selected in the LDLS does not contain Hmed, then (47) will
not hold for this set of coefficients. However, assuming that the LDLS for these coefficients
still displays a unique local maximum for a value H = H3 with νf (H3) = δ < d, then the
same arguments as above can be reproduced, indeed, the number of leaders selected will be
∼ 2δj and the median of this new set will be located close to 2δj ; this second step allows to
reveal new local maxima of the LDS which become global maxima of the reduced spectrum,
an it also allows to reveal new parts of the LDS that were “hidden” below the flat parts of
the first quantile spectrum. One can iterate this procedure allowing to sharpen the position
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of the local minima, and to multiply them, until one reaches a situation where the accuracy
of the procedure is not sufficient to proceed further.

Note that an alternative procedure in order to deal with non-concave spectra has been
proposed by C. Beck and H. Touchette, which has the effect of adding a parabola (which
can be arbitrarily tailored) to the spectrum, therefore allowing to “dig into the holes” of
the spectrum, while still using a Legendre-type method, see [50]. A comparison (both
theoretical and numerical) between these methods still needs to be performed.

6 Multifractal analysis of non-locally bounded functions

6.1 Convergence and divergence rates for wavelet series

In this section, we investigate how the concepts of multifractal analysis can be developed in
a different framework: The convergence and divergence rates of series. We start by recalling
some results concerning the multifractal analysis of the divergence of Fourier series. We
denote by Snf the partial sums of the Fourier series of a 2π periodic function f :

Snf(x) =
n∑

k=−n
cke

ikx where ck =
1

2π

∫ π

−π
f(t)e−iktdt.

Let

Eβf =

{
x : lim sup

n→∞
n−β|Snf(x)| > 0

}
.

J.-M. Aubry proved that, if f ∈ Lp([−π, π]), and if β > 0, then dim(Eβf ) ≤ 1 − βp, and
he showed the optimality of this result, see [4]. This was later extended and refined by
F. Bayart and Y. Heurteaux, who, in particular, showed that optimality holds for generic
functions (in the sense supplied by prevalence), see [19].

We now consider wavelet series. Recall that, if f ∈ Lp, then its wavelet series converges
almost everywhere; however this leaves open the problem of improving this result if f is
smoother (typically f ∈ Lp,s for an s > 0) or, in the opposite direction, determining how
fast the wavelet series diverges, when it does. The first result of this type stated that, if
f ∈ Lp,s(Rd) for a s > 0, then the wavelet series of f converges outside of a set of dimension
at most d− sp, see [20].

The consideration of sets of divergence such as Eβf can also be done in the wavelet
setting. For simplicity, we assume that the wavelets used are compactly supported. We
rewrite the series (28) under the form

f(x) =
∞∑

j=−1

∆jf(x), where ∆jf(x) =
∑
i,k

cij,kψ
(i)(2jx− k).

Note that, for a given x, ∆jf(x) only contains a finite number of terms, bounded by a
constant which depends only on the size of the support of the wavelets and on the space
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dimension. Let β > 0 and let F βf denote the set of points where the partial sums are not

bounded by 2βj . J.-M. Aubry put into light an interesting similarity between Fourier series
and wavelet series, showing that, if f ∈ Lp(R), then dim(F βf ) ≤ 1− βp, see [4].

Our purpose now is to show some simple extensions of these results; we will prove their
optimality through a simple use of random wavelet series in Section 6.3.

Definition 16 Let β > 0.

• The wavelet series of a distribution f converges at rate β at x if

∃C > 0 : |∆jf(x)| ≤ C2−βj ;

we denote by F βf the complement of this set.

• The wavelet series of a distribution f diverges at rate β at x if

∃C > 0 : lim sup
j→+∞

2−βj |∆jf(x)| > 0.

we denote this set by Dβ
f .

Proposition 5 Let f ∈ Lp,s where s < d/p, and let β be such that

−s < β <
d

p
− s;

then
dim

(
Dβ
f

)
≤ d− sp− βp.

Let f ∈ Lp,s with s ∈ R, and let β > 0; then

dim
(
F βf

)
≤ d− sp+ βp.

Remark: If s ≥ d/p, then f ∈ Cs−d/p so that its wavelet coefficients are bounded
by C2−(s−d/p)j and therefore the wavelet series of f converges everywhere (and at rate at
least s− d/p). This explains why we make the assumption s < d/p in the first part of the
proposition.

Proof: Let f ∈ Lp,s. Using the classical embedding between Sobolev and Besov spaces
Lp,s ⊂ Bs,∞

p , we obtain that

2−dj
∑
λ∈Λj

|cλ|p ≤ C · 2−spj (49)

Let α ∈ R, and
Ej,α = {λ : |cλ| ≥ 2−αj}.

35



Let A be an odd integer larger than the support of the wavelets, and

Fj,α = {A · λ}λ∈Ej,α .

It follows from (49) that Card(Ej,α) ≤ C · 2(d−sp−αp)j , so that

Card(Fj,α) ≤ C · 2(d−sp−αp)j .

Let Fα = lim supFj,α. Since Fj,α is composed of at most 2(d−sp−αp)j dyadic cubes of width
2−j , using these cubes for j ≥ J as a covering of Fα, we obtain that

dimFα ≤ d− sp− αp.

If x /∈ Fα, then |cλψλ(x)| ≤ C2−αj , and the localization of the wavelets implies that
|∆j(f)(x)| ≤ C2−αj . We apply this result with either β = α in the first part of the
proposition, or β = −α in the second part.

The optimality of Proposition 5 will be proved in Section 6.3 by considering random
wavelet series.

6.2 q-leaders

The construction of new scaling functions beyond (33) was motivated by the following re-
striction: In order to be used, the wavelet leader method requires the data to be locally
bounded. We saw a practical procedure in order to decide if this assumption is valid,
namely the determination of the uniform Hölder exponent Hmin

f . Experimental investiga-

tions showed that Hmin
f is negative for large classes of natural ”texture type” images, see

[1, 2, 30, 31, 52, 53], and therefore the method cannot be used as such.
In order to circumvent this problem, one can replace the wavelet leaders by alternative

quantities, which measure pointwise regularity (for another definition of regularity) and
make sense even if the data are no more locally bounded.

We will use the following extension of pointwise smoothness, which was introduced by
Calderón and Zygmund in 1961, see [11].

Definition 17 Let B(x0, r) denote the open ball centered at x0 and of radius r; let q ∈
[1,+∞) and α > −d/q. Let f be function which locally belongs to Lq(Rd). Then f belongs
to T qα(x0) if there exist C,R > 0 and a polynomial P such that

∀r ≤ R,

(
1

rd

∫
B(x0,r)

|f(x)− P (x− x0)|qdx

)1/q

≤ Crα. (50)

The q-exponent of f at x0 is

hqf (x0) = sup{α : f ∈ T qα(x0)}.
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Note that the Hölder exponent corresponds to the case q = +∞. This definition is
a natural substitute for pointwise Hölder regularity when dealing with functions which
are not locally bounded, but locally belong to Lq. In particular, the q-exponent can take
values down to −d/q, and therefore it allows to model behaviors which locally are of the
form 1/|x− x0|α for α < d/q, i.e., to deal with negative regularity exponents. Before going
further, let us give a practical criterium in order to determine if, indeed, data locally belong
to Lq.

The function space interpretation of the wavelet scaling function (29) implies that

• If ηf (q) > 0 then f ∈ Lqloc

• If ηf (q) < 0 then f /∈ Lqloc.

Therefore the value taken by the wavelet scaling function at q allows to determine if, indeed,
data locally belong to Lq. We see here another use of the wavelet scaling function, as a
preliminary quantity which is required to be computed. Therefore it plays a similar role
as the computation of Hmin

f when dealing with the multifractal analysis based on wavelet
leaders. The verification of the criterium ηf (q) > 0 is a prerequisite for the following.

Let us now show how the notion of T qα regularity can be related to local lq norms of
wavelet coefficients. This will be done with the help of the following quantity.

Definition 18 Let f ∈ Lqloc(R
d). The q-leaders of f are defined by

dqλ =

 ∑
λ′⊂3λj(x0)

|cλ′ |q2−d(j′−j)

1/q

. (51)

Under mild hypotheses on f , (see [29, 30, 34]) the pointwise q-exponent can be expressed
by a regression on a log-log plot of the q-leaders:

hqf (x0) = lim inf
j→+∞

log
(
dqλj(x0)

)
log(2−j)

. (52)

The definition of the q-scaling function follows the one of the leader scaling function,
except that wavelet leaders now are replaced by q-leaders:

∀p ∈ R, ζf (p, q) = lim inf
j→+∞

log

2−dj
∑
λ∈Λj

|dqλ|
p


log(2−j)

. (53)

Note that, as above, a multifractal spectrum can be attached to the q-exponent, and
a multifractal formalism can be worked out using the usual procedure; this spectrum is
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obtained as a Legendre transform of the q-scaling function: We denote by dqf (H) the mul-
tifractal spectrum associated with the q-exponent (i.e. the Hausdorff dimension of the set
of points where the q-exponent takes the value H). If ηf (q) > 0, then (see [29, 30, 34]),

dqf (H) ≤ inf
p∈R

(d+Hp− ζf (p, q)). (54)

Figures 6 and 7 plot numerically computed multifractal spectra associated with q-exponents
for random functions with negative q-exponents together with the theoretical spectra and
the leader spectra. In each case, the condition that f ∈ Lq has been verified; as mentioned
earlier, it is implied by the following condition on the wavelet scaling function: ηf (q) > 0.
It can be equivalently checked on the Legendre spectrum, by verifying that it lies below the
straight line in red (joining the points (−1/q, 0) and (0, 1)).

6.3 Variants of Random Wavelet Series

In this last section, we consider new simple examples of random multifractal functions,
which are a generalization of models already considered in [5, 25]. The generalization we
propose covers two aspects: First, the wavelet coefficients are not necessarily bounded, so
that the random fields generated do not necessarily satisfy Hmin

f > 0. It will follow that
the standard multifractal analysis as developed in Sections 3 and 4 cannot be worked out,
and we rather have to use the extension using q-exponent. The second generalization lies
in the fact that the wavelet coefficients are not drawn at random uniformly (i.e. using the
Lebesgue measure) but using a measure supported by a fractal set. This second point will
allow to take into account clustering of large wavelet coefficients, a feature which is often
observed in practice, and this model will generate different multifractal spectra than those
obtained in [25]. In order to state the results concerning these random wavelet series, we
need to start by recalling the techniques concerning points drawn at random in a fractal
set; these techniques are referred to as ubiquity methods.

We start by describing the kind of measures which will be used in order to draw points
at random.

Definition 19 A probability measure ν supported by a compact set B ⊂ Rd is a regular
δ-dimensional measure if it satisfies the following conditions:

1. ∃C1 > 0 such that

∀x ∈ B, ∀r > 0, ν(B(x, r)) ≤ C1r
δ,

2. ∃C2 > 0 such that ∀j ≥ 0, B can be covered by C2 · 2δj dyadic cubes of side 2−j.

Remark: We will also consider logarithmic corrections, i.e. (δ, γ)-dimensional measure
which satisfy

1. ∃C1 > 0 such that

∀x ∈ B, ∀r > 0, ν(B(x, r)) ≤ C1r
δ(log r)−γ ,
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2. ∃C2 > 0 such that ∀j ≥ 0, B can be covered by C2 · 2δjjγ dyadic cubes of side 2−j .

Typical examples of such measures are supplied by the measures m satisfying (23) which
we introduced in order to derive the Hausdorff dimensions of Cantor sets (in which case, B
is precisely the corresponding Cantor set).

Let xn be a sequence of points drawn independently using the probability measure ν,
and let L = (ln)n∈N be a decreasing sequence of positive real numbers that tends to 0.
Ubiquity theory deals with the study of the sets

AL = lim supB(xn, ln)

(i.e. AL is the set of points that belong to an infinite number of the balls B(xn, ln)).
Note that the covering of AL by the balls B(xn, ln) for n ≥ N always yields an upper

bound for the Hausdorff dimension of AL. The purpose of ubiquity methods is to obtain
lower bounds under mild hypotheses on the sequence of points xn, which express the fact
that such points are “well spread”, and which would coincide with the direct upper bounds
obtained with the help of the sequence B(xn, ln). Typically, drawing them independently
and at random will allow such hypotheses to be fulfilled (but many situations where the
points are not drawn at random are also efficiently covered by ubiquity techniques, see
[8, 9]).

In the situation supplied by random points that we considered, the following result is
an easy application of the Borel-Cantelli lemma.

Proposition 6 If the sequence L satisfies∑
n

lδn = +∞, (55)

then, a.s. ν-almost every point of B belongs to AL.
If the stronger condition ∑

n

lδn
(log ln)3

= +∞; (56)

holds, then a.s. B = AL (sufficient condition for almost sure covering).

The idea behind ubiquity techniques is that, if for a particular sequence L a.e. point of
B is covered by AL, then, for smaller sequences, the set AL cannot be too small, and, one
can obtain lower bounds on the Hausdorff dimension of AL.

Definition 20 Let ν be a regular δ-dimensional measure on B ⊂ Rd. An ubiquity system
associated with ν is a sequence (λn, εn) such that

• λn ∈ B,

• εn a decreasing sequence of positive real numbers that tends to 0.
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• ∃a > 0 such that ν-almost every point of B belongs to

Ea = lim supB(λn, ε
a
n).

The first part of Proposition 6 gives examples of ubiquity systems in a random setting.
In order to estimate the size of the sets Dα, we need a refinement of the notion of Hausdorff
δ-dimensional measure obtained through logarithmic corrections.

Definition 21 Let A be a Borel subset of Rd. Let ε > 0, δ ∈ [0, d], and γ ∈ R. Let

M δ,γ
ε (A) = inf

R

(∑
i

|Ai|δ| log(|Ai|)|γ
)
,

where R is an ε-covering of A. (The infimum is therefore taken on all ε-coverings.)
For any δ ∈ [0, d], the (δ, γ)-dimensional outer Hausdorff measure of A is

mesδ,γ(A) = lim
ε→0

M δ,γ
ε, (A). (57)

The following result is usually referred to as the ubiquity theorem. It is a slight variant
of similar results proved in [10, 25].

Theorem 7 Let (λn, εn) be an ubiquity system associated with ν. If ν-almost every point
of B belongs to Ea, then

∀b > a mesδa/b,2(Eb) > 0. (58)

We now describe the model of Random Wavelet Series that we will consider. We assume
that the wavelet basis used belongs to the Schwarz class.

Definition 22 Let η ∈]0, δ[ et α ∈ R. Let (xn) be a sequence of points drawn independently
using the probability measure ν. This sequence is split into subsets Ej of length [2ηj ]. For
each xn ∈ Ej let λn,j be the dyadic cube which contains xn. The random field Xα,η is

Xα,η(x) =
∑
j

∑
λn,j

2−αjψλn,j (x), (59)

where the sum on the λn,j is such that the corresponding points xn belong to Ej.

It follows form this definition that Hmin
f = α, and that the sample paths of Xα,η belong

to Cα(Rd).
Let us now determine under which condition the sample paths of Xα,η belong to Lq. For
each dyadic bloc

∆jf =
∑

λn,j∈Λj

2−αjψλn,j ,
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using the localization of the wavelets, ‖ ∆jf ‖q∼ 2−(α+(d−η)/q)j . So that the sample paths
of Xα,η belong to Lq(Rd) if and only if

α+
d− η
q

> 0. (60)

Note that, if α < −d, this condition will never be fulfilled. In such situations, a multifractal
analysis of Xα,η can still be performed, either using the notion of weak scaling exponent
(which allows to associate a pointwise regularity index in the general setting of tempered
distributions, see [30, 31, 46]) or by first performing a fractional integration on the data
(see [2, 30, 31] for a discussion on the practical implementation of the method as well as
numerical results).

By the same argument as in the Lq case, one obtains that the sample paths of Xα,η

belong to Lp,s(Rd) if and only if

α− s+
d− η
p

> 0. (61)

Let us now estimate the size of the sets of points where the series defining Xα,η will
converge or diverge at a given rate. Let A be a dyadic subcube of the support of ψ of width
2−a where

∀x ∈ A, |ψ(x)| ≥ C > 0.

The image of A under the mapping x→ 2jx−k yields a sub-cube λ′(λ) of λ of width 2−j−a

where |ψλ(x)| ≥ C. Let
D = lim sup

λn,j∈Ej
λ′(λn,j).

If α < 0, the series (59) diverges at rate −α on D; and if α > 0, the series (59) converges
at rate at most α on D. It follows from the ubiquity theorem that

dim(D) = η.

Let us now check that indeed these series yield the optimality of Proposition 5 (and there-
fore, taking s = 0, also of J.-M. Aubry’s result concerning the divergence of wavelet series
in Lp). We pick an ε > 0 arbitrarily small such that α− s+ d−η

p = ε. It follows from (61)
that the sample paths of Xα,η belong to Lp. We therefore obtain a set of dimension

η = d− (s− α)q − εq

where (59) diverges at rate −α if α < 0, or converges at rate at most α if α < 0. Since ε
can be picked arbitrarily small, the optimality of both parts of Proposition 5 follows.

Note that one could construct random wavelet series whose set of divergence has di-
mension exactly given by Proposition 5 by using logarithmic corrections in the measure ν,
as mentioned in the remark following Definition 19

We now study the pointwise regularity of the sample paths of Xα,η. Clearly, the sample
paths of Xα,η are C∞ outside of set B. The pointwise regularity at points of B follows from
the application of Theorem 7, together with (52), and one obtains the following description
of the multifractal q-spectrum.
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Theorem 8 Let

Hmin
X = α and Hmax

X =
αδ

η
+
d

q

(
δ

η
− 1

)
.

If (60) holds, then the q-spectrum of Xα,η is supported by the interval [Hmin
X , Hmax

X ], and,
on this interval, the multifractal spectrum of Xα,η is the segment joining the two points
(Hmin

X , η) and (Hmax
X , δ).

Let us sketch how the pointwise q-exponent of Xα,η can be obtained. A first remark is
that, if λ′(λ) denotes the (random) subcube of 3λ of smallest scale j′ such that Cλ′ 6= 0,
then, for j large enough, the p-leaders satisfy the following property:

a.s. ∀λ dpλ ≤ Cj
3cλ′ ;

this statement follows from the sparsity of the series, and an application of the Borel-Cantelli
lemma. In turn, it implies that we can disregard the factor j3 in the estimation of pointwise
exponents (because it only brings logarithmic corrections in the pointwise regularity); it
follows that the sets of points with the same p-exponents are of the same type as those
that appear in “classical random” wavelet series (where α is positive, and the exponent
considered in the Hölder exponent), and these sets of points can be expressed in terms of
the sets which show up in the ubiquity setting. More precisely, they are of the form⋂

γ<Γ

Eγ −
⋃
γ>Γ

Eγ . (62)

Upper bounds for the dimension of such sets follow from upper bounds for the dimension
of each of the Eγ for a given γ < Γ, and lower bounds follow from the construction of a
subset of positive Hausdorff measure on EΓ (which is supplied by the ubiquity theorem),
together with the fact that the upper bounds for dimensions yield that this Haudorff mea-
sure vanishes for the set

⋃
γ>ΓEγ (using the remark that the union can be rewritten as a

countable union).
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[34] S. Jaffard and C. Melot. Wavelet analysis of fractal boundaries. Communications In
Mathematical Physics, 258(3):513–565, 2005. 37, 38

[35] A.N. Kolmogorov. The Wiener spiral and some other interesting curves in Hilbert
space (russian),. Dokl. Akad. Nauk SSSR, 26:(2):115118, 1940. 4

[36] A.N. Kolmogorov. a) dissipation of energy in the locally isotropic turbulence. b) the
local structure of turbulence in incompressible viscous fluid for very large Reynolds
number. c) on degeneration of isotropic turbulence in an incompressible viscous liquid.
In S.K. Friedlander and L. Topper, editors, Turbulence, Classic papers on statistical
theory, pages 151–161. Interscience publishers, 1941. 16

[37] A.N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers. Comptes Rendus De L’Academie Des Sciences De
L’Urss, 30:301–305, 1941. 16

[38] A.N. Kolmogorov. A refinement of previous hypotheses concerning the local structure
of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid
Mech., 13:82–85, 1962. 16

[39] S. Osher L. Rudin and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992. 21

[40] B. Lashermes, S. Jaffard, and P. Abry. Wavelet leader based multifractal analysis.
2005 Ieee International Conference On Acoustics, Speech, and Signal Processing, Vols
1-5, pages 161–164, 2005. 17

[41] L. Liao and Seuret S. Diophantine approximation by orbits of expanding markov maps.
Ergod. Th. Dyn. Syst., 33:585–608, 2013. 15

[42] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA,
1998. 17

[43] B. Mandelbrot. The variation of certain speculative price. The Journal of Business,
36(4):394–419, 1963. 6

[44] B. Mandelbrot and J.W. van Ness. Fractional Brownian motion, fractional noises and
applications. SIAM Reviews, 10:422–437, 1968. 4
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Figure 1: Top: Riemann’s non-differentiable function. Bottom: theoretical spectrum (blue),
leaders Legendre spectrum (red), leaders quantile spectrum (black).
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Figure 2: Indicator functions (top), structure functions for moments p = 1 and p = 2
(second and third rows), and scaling exponents for p = {1, 2, 3, 4, 5} (bottom row): disc
(left column) and Von Koch snowflake (right column). The scaling functions of indicator
functions are constant and measure the fractal dimension of the sets as D = 2 − ηf (p)
(D = 1 for the disc and D = 2− ln(4)/ ln(3) ≈ 0.74 for the Koch snowflake).
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Figure 3: Indicator functions (top), structure functions for moments p = 1 and p = 2 (sec-
ond and third rows), and scaling exponents for p = {1, 2, 3, 4, 5} (bottom row): Mandelbrot
set (left column) and Sierpinski triangle (right column). The scaling functions of indicator
functions are constant and measure the fractal dimension of the sets as D = 2 − ηf (p)
(D = 1 for the disc and D = 2− ln(4)/ ln(3) ≈ 0.74 for the Koch snowflake).
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Figure 4: Square of fractional Brownian motion (H = 0.5). Top: single realization. Bottom:
theoretical spectrum (blue), leaders Legendre spectrum (red), leaders quantile spectrum
(black). Results obtained as means over 50 realizations of length N = 219.
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Figure 5: Lévy process which is the sum of a Brownian motion (H = 0.5) and pure jump
Levy process (α = 1.25). Top: single realization. Bottom: theoretical spectrum (blue),
leaders Legendre spectrum (red), leaders quantile spectrum (black). Results obtained as
means over 50 realizations of length N = 219.
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Figure 6: Fractional derivative of order 1/α−H of Levy-stable motion (α = 1.25, H = 0.55).
Top: single realization. Bottom: theoretical spectrum (blue), leaders Legendre spectrum
(black solid with circles), p-Leaders Legendre spectrum (red solid with circles). The red
line indicates the limit of Lp spaces (q = 2, results obtained as means over 50 realizations
of length N = 216).
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Figure 7: Fractional derivative of order 0.6 of MRW (H = 0.72, λ =
√

0.08). Top: single
realization. Bottom: theoretical spectrum (blue), leaders Legendre spectrum (black solid
with circles), p-Leaders Legendre spectrum (red solid with circles). The red line indicates
the limit of Lq spaces (q = 2, results obtained as means over 50 realizations of length
N = 216).
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