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Example with complex coefficients (λ = e
2πi
3 ).
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reconstruction using 30% of transform coefficients

original Haar filter



reconstruction using 30% of transform coefficients

original real SG filter



reconstruction using 10% of transform coefficients

Haar filter real SG filter



reconstruction using 3% of transform coefficients

Haar filter real SG filter



reconstruction using 0.1% of transform coefficients

real SG filter Haar filter
same as original



Introduction

The Cuntz algebra ON , is the C∗-algebra generated by N
isometries Si , i = 0, . . . ,N − 1 with the properties:

S∗i Sj = δij , i , j = 0, . . . ,N − 1,
N−1∑
i=0

SiS∗i = I. (0.1)

Orthonormal wavelet bases are constructed from various
choices of quadrature mirror filters (QMF). These filters are in
one-to-one correspondence with certain representations of the
Cuntz algebra.



Introduction
I The proposition shows representations of the Cuntz

algebra are obtained from a choice of a quadrature mirror
filter (QMF) basis (Definition 4).

I We then show how QMF bases can be constructed using
some unitary matrix valued functions (Theorem 7). This
gives us a large variety of representations of the Cuntz
algebras, which we use to construct various orthonormal
bases.

I We present a general criterion for a Cuntz algebra
representation to generate an orthonormal basis.
Specifically when applied to some affine iterated function
systems, we obtain a construction of piecewise exponential
bases on some Cantor fractal measures which extends a
result of Dutkay and Jorgensen. In particular, we obtain
piecewise exponential orthonormal bases on the middle
third Cantor set which is known not to have any
orthonormal bases of exponential functions.



QMF bases and representations of the Cuntz algebra

Definition
A quadrature mirror filter (QMF) for r is a function m0 in
L∞(X , µ) with the property that

1
N

∑
r(w)=z

|m0(w)|2 = 1, (z ∈ X ) (0.2)



QMF bases and representations of the Cuntz
algebra-cont’d

Theorem
Let m0 be a QMF for r . Then there exists a Hilbert space H, a
representation π of L∞(X ) on H, a unitary operator U on H and
a vector ϕ in H such that



QMF bases and representations of the Cuntz
algebra-cont’d

1. (Covariance)

Uπ(f )U∗ = π(f ◦ r), (f ∈ L∞(X )) (0.3)

2. (Scaling equation)

Uϕ = π(m0)ϕ (0.4)

3. (Orthogonality)

〈π(f )ϕ , ϕ〉 =

∫
f dµ, (f ∈ L∞(X )) (0.5)

4. (Density)

span
{

U−nπ(f )ϕ : f ∈ L∞(X ),n ≥ 0
}

= H (0.6)



QMF bases and representations of the Cuntz
algebra-cont’d

Definition
The system (H,U, π, ϕ) in Theorem 2 is called the wavelet
representation associated to the QMF m0.
To construct a multiresolution, for a wavelet representation, one
needs a QMF basis.

Definition
A QMF basis is a set of N QMF’s m0,m1, . . . ,mN−1 such that

1
N

∑
r(w)=z

mi(w)mj(w) = δij , (i , j ∈ {0, . . . ,N−1}, z ∈ X ) (0.7)



QMF bases and representations of the Cuntz
algebra-cont’d

Next, we show how a QMF basis induces a representation of
the Cuntz algebra.

Proposition
Let (mi)

N−1
i=0 be a QMF basis. Define the operators on L2(X , µ)

Si(f ) = mi f ◦ r , i = 0, . . . ,N − 1 (0.8)

Then the operators Si are isometries and they form a
representation of the Cuntz algebra ON , i.e.

S∗i Sj = δij , i , j = 0, . . . ,N − 1,
N−1∑
i=0

SiS∗i = I (0.9)

The adjoint of Si is given by the formula

S∗i (f )(z) =
1
N

∑
r(w)=z

mi(w)f (w) (0.10)



QMF bases and representations of the Cuntz
algebra-cont’d

Proof.
We compute the adjoint: take f , g in L2(X , µ). We use the
strong invariance of µ.

〈S∗i f , g〉 =

∫
fmig ◦ r dµ =

∫
1
N

∑
r(w)=z

mi(w)f (w)g(z)dµ(z)

Then (0.10) follows. The Cuntz relations in (0.9) are then easily
checked with Proposition.



QMF bases and representations of the Cuntz
algebra-cont’d

Every QMF basis generates a multiresolution for the wavelet
representation associated to m0. Since the ideas are simple
and they are the same as in the classical wavelet theory.



QMF bases and representations of the Cuntz
algebra-cont’d

Proposition
Let (mi)

N−1
i=0 be a QMF basis. Let (H,U, π, ϕ) be the wavelet

representation associated to m0. Define

V0 := span {π(f )ϕ : f ∈ L∞(X )} , Vn = U−nV0, n ∈ Z
(0.11)

ψi = U−1π(mi)ϕ, i = 1, . . . ,N − 1 (0.12)

Wi := span {π(f )ψi : f ∈ L∞(X )} (0.13)



QMF bases and representations of the Cuntz
algebra-cont’d

Then
1. ∪n∈ZVn = H
2. V1 = V0 ⊕W1 ⊕ · · · ⊕WN−1

3. If ∩n∈ZVn = {0} then⊕
n∈Z

Un (W1 ⊕ · · · ⊕WN−1) = H



QMF bases and representations of the Cuntz
algebra-cont’d

If B is a finite set and R−1B has spectrum Λ, then the set
{eλ : λ ∈ Λ} is a QMF basis, by Proposition. Then, with
Proposition 5, the operators Sλf = eλf ◦ r form a representation
of the Cuntz algebra. Such representations were studied in.



QMF bases and representations of the Cuntz
algebra-cont’d

Theorem
Fix (mi)

N−1
i=0 a QMF basis. There is a one-to-one

correspondence between the following two sets:

1. QMF bases (m′i )
N−1
i=0

2. Unitary valued maps A : X → UN(C)

Given a QMF basis (m′i )
N−1
i=0 the matrix A with entries

(1) Aij(z) =
1
N

∑
r(w)=z

m′i (w)mj(w), (z ∈ X , i , j = 0, . . . ,N−1)

is unitary.



QMF bases and representations of the Cuntz
algebra-cont’d

Given a unitary-valued map A : X → UN(C), the functions form
a QMF basis

(2) m′i (z) =
N−1∑
j=0

Aij(r(z))mj(z), (z ∈ X , i = 0, . . .N − 1)

These correspondences are inverse to each other.



QMF bases and representations of the Cuntz
algebra-cont’d

Proof.
The result requires some simple computations

N−1∑
j=0

Aij(z)Ai ′j(z) =
1

N2

∑
j

∑
r(w)=z

m′i (w)mj(z)·
∑

r(w ′)=z

m′i ′(w
′)mj(w ′)

=
1

N2

∑
w ,w ′

m′i (w)m′i ′(w
′) ·
∑

j

mj(w)mj(w ′)

=
1
N

∑
w ,w ′

m′i (w)m′i ′(w
′)δw ,w ′ = δii ′

Note that we used the equality∑
j

mj(w)mj(w ′) = δww ′



QMF bases and representations of the Cuntz
algebra-cont’d

which follows from the fact that the matrix
1√
N

[mi(w)]i=0,...N−1
w∈r−1(z)

is unitary, which, in turn, is a consequence of the QMF
property. Hence A is unitary.
If A is unitary, we check the QMF relations:

1
N

∑
r(w)=z

m′i (w)m′j (w)

=
1
N

∑
w

∑
k

Aik (r(w))mk (w)
∑

l

Ajl(r(w))ml(w) =

1
N

∑
k ,l

Aik (z)Ajl(z)
∑

w

mk (w)ml(w)

=
∑
k ,l

Ajk (z)Ajl(z)δkl = δij



QMF bases and representations of the Cuntz
algebra-cont’d

Hence (m′i )
N−1
i=0 is a QMF basis. The fact that the two

correspondences are inverse to each other follows from the
next computation:

∑
j

Aij(r(z))mj(z) =
∑

j

 1
N

∑
r(w)=r(z)

m′i (w)mj(w)

mj(z)

=
∑

r(w)=r(z)

m′i (w) · 1
N

∑
j

mj(w)mj(z)

=
∑

r(w)=r(z)

m′i (w)δwz = m′i (z)



Orthonormal bases generated by Cuntz algebras

A general criterion for a family generated by the Cuntz
isometries an orthonormal basis.

Theorem
Let H be a Hilbert space and (Si)

N−1
i=0 be a representation of the

Cuntz algebra ON . Let E be an orthonormal set in H and
f : X → H a norm continuous function on a topological space X
with the following properties:



Orthonormal bases generated by Cuntz algebras

1. E = ∪N−1
i=0 SiE .

2. span{f (t) : t ∈ X} = H and ||f (t)||= 1, for all t ∈ X .
3. There exist functions mi : X → C, gi : X → X ,

i = 0, . . . ,N − 1 such that

S∗i f (t) = mi(t)f (gi(t)), t ∈ X . (0.14)

4. There exist c0 ∈ X such that f (c0) ∈ spanE .
5. The only function h ∈ C(X ) with h ≥ 0, h(c) = 1, ∀

c ∈ {x ∈ X : f (x) ∈ spanE}, and

h(t) =
N−1∑
i=0

|mi(t)|2h(gi(t)), t ∈ X (0.15)

are the constant functions.

Then E is an orthonormal basis for H.



Piecewise exponential bases on fractals

We consider affine iterated function systems with no overlap.
Let R be a d × d expansive real matrix, i.e., all the eigenvalues
of R have absolute value strictly greater than 1.Let B ⊂ Rd a
finite set such that N = |B|. Define the affine iterated function
system

τb(x) = R−1(x + b) (x ∈ Rd , b ∈ B) (0.16)

There exists a unique compact subset XB of Rd which satisfies
the invariance equation

XB = ∪b∈Bτb(XB) (0.17)



Piecewise exponential bases on fractals-cont’d

XB is called the attractor of the iterated function system (τb)b∈B.
Moreover XB is given by

XB =

{ ∞∑
k=1

R−kbk : bk ∈ B for all k ≥ 1

}
(0.18)

There is a unique probability measure µB on Rd satisfying the
invariance equation∫

fdµB =
1
N

∑
b∈B

∫
f ◦ τbdµB (0.19)

for all continuous compactly supported functions f on R. We
call µB the invariant measure for the iterated function system
(IFS) (τb)b∈B. µB is supported on the attractor XB.



Piecewise exponential bases on fractals-cont’d

We say that the IFS has no overlap if
µB(τb(XB) ∩ τ ′b(XB)) = ∅ for all b 6= b′ in B.
Assume that the IFS (τb)b∈B has no overlap. Define the map
r : XB → XB

r(x) = τ−1
b (x), if x ∈ τb(XB) (0.20)

Then r is an N-to-1 onto map and µB is strongly invariant for r .
Note that r−1(x) = {τb(x) : b ∈ B} for µB.a.e. x ∈ XB.



Piecewise exponential bases on fractals-cont’d

Definition
Let L in R, |L| = N, R > 1 such that L is a spectrum for the set
1
R B. We say that c ∈ R is an extreme cycle point for (B,L) if
there exists l0, l1, . . . , lp−1 in L such that, if c0 = c,
c1 = c0+l0

R , c2 = c1+l1
R . . . cp−1 =

cp−2+lp−2
R then cp−1+lp−1

R = c0,
and |mB(ci)| = 1 for i = 0, . . . ,p − 1 where

mB(x) =
1
N

∑
b∈B

e2πibx x ∈ R.



Orthonormal bases generated by Cuntz
algebras-cont’d

Definition
We denote by L∗ the set of all finite words with digits in L,
including the empty word. For l ∈ L let Sl be given as in (0.8)
where ml is replaced by the exponential el . If w = l1l2 . . . ln ∈ L∗

then by Sw we denote the composition Sl1Sl2 . . .Sln .



Orthonormal bases generated by Cuntz
algebras-cont’d

Definition
We denote by L∗ the set of all finite words with digits in L,
including the empty word. For l ∈ L let Sl be given as in (0.8)
where ml is replaced by the exponential el . If w = l1l2 . . . ln ∈ L∗

then by Sw we denote the composition Sl1Sl2 . . .Sln .



Orthonormal bases generated by Cuntz
algebras-cont’d

Theorem
Let B ⊂ R, 0 ∈ B, |B| = N, R > 1 and let µB be the invariant
measure associated to the IFS τb(x) = R−1(x + b), b ∈ B.
Assume that the IFS has no overlap and that the set 1

R B has a
spectrum L ⊂ R, 0 ∈ L. Then the set

E(L) = {Swe−c : c is an extreme cycle point for (B,L),w ∈ L∗}

is an orthonormal basis in L2(µB). Some of the vectors in E(L)
are repeated but we count them only once.



Orthonormal bases generated by Cuntz
algebras-cont’d

Corollary
In the hypothesis of Theorem 8, if in addition B,L ⊂ Z and
R ∈ Z, then there exists a set Λ such that {eλ : λ ∈ Λ} is an
orthonormal basis for L2(µB).



Orthonormal bases generated by Cuntz
algebras-cont’d

Example
We consider the IFS that generates the middle third Cantor set:
R = 3, B = {0,2}. The set 1

3{0,2} has spectrum L = {0,3/4}.
We look for the extreme cycle points for (B,L).
We need |mB(−c)| = 1 so |1+e2πi2c

2 | = 1, therefore c ∈ 1
2Z. Also

c has to be a cycle for the IFS g0(x) = x/3, g3/4(x) = x+3/4
3 so

0 ≤ c ≤ 3/4
3−1 = 3/8. Thus, the only extreme cycle is {0}. By

Theorem 8 E = {Sw1 : w ∈ {0,3/4}∗} is an orthonormal basis
for L2(µB). Note also that the numbers e2πiα(b,l,c) are ±1
because 2πiB · L ⊂ πiZ.



Orthonormal bases generated by Cuntz
algebras-cont’d

Walsh Bases: We will focus on the unit interval, which can be
regarded as the attractor of a simple IFS and we use step
functions for the QMF basis to generate Walsh-type bases for
L2[0,1].

Example
The interval [0,1] is the attractor of the IFS τ0x = x

2 , τ1x = x+1
2 ,

and the invariant measure is the Lebesgue measure on [0,1].
The map r defined is rx = 2xmod1. Let m0 = 1,
m1 = χ[0,1/2) − χ[1/2,1). It is easy to see that {m0,m1} is a QMF
basis. Therefore S0, S1 defined as in Proposition 5 form a
representation of the Cuntz algebra O2.



Orthonormal bases generated by Cuntz
algebras-cont’d

Theorem
Let N ∈ N, N ≥ 2. Let A = [aij ] be an N × N unitary matrix
whose first row is constant 1√

N
. Consider the IFS τjx = x+j

N ,
x ∈ R, j = 0, . . . ,N − 1 with the attractor [0,1] and invariant
measure the Lebesgue measure on [0,1]. Define

mi(x) =
√

N
N−1∑
j=0

aijχ[j/N,(j+1)/N](x)

Then {mi}N−1
i=0 is a QMF basis. Consider the associated

representation of the Cuntz algebra ON . Then the set
E := {Sw1 : w ∈ {0, ...N − 1}∗} is an orthonormal basis for
L2[0,1].



Orthonormal bases generated by Cuntz
algebras-cont’d

Proof.
We check the conditions in Theorem 8. Let f (t) = et , t ∈ R.
To check (i) note that S01 ≡ 1. (ii) is clear. For (iii) we compute:

S∗ket =
1
N

N−1∑
j=0

mk (τjx)et (τjx)

=
1√
N

N−1∑
j=0

akje2πit ·(x+j)/N

= e2πit ·x/N 1√
N

N−1∑
j=0

akje2πit ·j/N

So (iii) is true with mk (t) = 1√
N

∑N−1
j=0 akje2πit ·j/N and gk (t) = t

N .



Orthonormal bases generated by Cuntz
algebras-cont’d

(iv) is true with c0 = 0. For (v) take h ∈ C(R), 0 ≤ h ≤ 1,
h(c) = 1 for all c ∈ R with ec ∈ spanE ( in particular h(0) = 1),
and

h(t) =
N−1∑
k=0

|mk (t)|2h(t/N)

= h(t/N)
N−1∑
k=0

1
N
|
N−1∑
j=0

akje−2πit ·j/N |2

= h(t/N) · 1
N
||Av ||2

where v = (e−2πit ·j/N)N−1
j=0 . Since A is unitary,

||Av ||2= ||v ||2= N. Then h(t) = h(t/Nn). Letting n→∞ and
using the continuity of h we obtain that h(t) = 1 for all t ∈ R.
Thus, Theorem 8 implies that E is an orthonormal basis.
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