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GIP/GMP/GAP

• Graph Isomorphism Problem (GIP):
determine whether two graphs are isomorphic.

◦ Complexity: unknown (somewhere between P and NP-complete).

• Graph Matching Problem (GMP):
find the isomorphism between two graphs.

• Graph Automorphism Problem (GAP):
decide whether a graph has nontrivial automorphism group.
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The Graph Matching Problem

In terms of the adjacency matrices A and B:

• Exact GM
Find P ∈ P such that A = PBP T

• “Best Matching”

P̂ = arg min
P∈P
||AP − PB||2F
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Graph Matching Algorithms (convex relaxation)

P̂ = arg min
P∈P
||AP − PB||2F
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Graph Matching Algorithms (convex relaxation)

P̂ = arg min
P∈�ZP

D

||AP − PB||2F

Then project:
P ∗ = arg min

P∈P
||P − P̂ ||2F
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Graph Matching Algorithms (GLAG) [F12]

Idea: instead of asking AP ≈ PB, ask them to have
(approximately) the same support
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Graph Matching Algorithms (GLAG) [F12]

Idea: instead of asking AP ≈ PB, ask them to have
(approximately) the same support

AP

PB

P̃ = arg min
P∈D

∑
i,j

∣∣∣∣((AP )ij , (PB)ij
)∣∣∣∣

2
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Graph Matching Algorithms (GLAG) [F12]

Specially useful for:
• weighted graphs
• multimodal data
• joint graph inference + alignment:

min
ΘA�0
ΘB�0
P∈P

tr(SAΘA)−log det ΘA+tr(SBΘB)−log det ΘB+λ
∑
i,j

∣∣∣∣((ΘAP )ij , (PΘB)ij
)∣∣∣∣

2

8 of 22



Graph Matching Algorithms (GLAG) [F12]

Specially useful for:
• weighted graphs
• multimodal data
• joint graph inference + alignment:

min
ΘA�0
ΘB�0
P∈P

tr(SAΘA)−log det ΘA+tr(SBΘB)−log det ΘB+λ
∑
i,j

∣∣∣∣((ΘAP )ij , (PΘB)ij
)∣∣∣∣

2

8 of 22



Results for real graphs
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(a) Electrical connection graph
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(b) Chemical connection graph

Figure: Matching error for the C. elegans connectome.
Black: GLAG, blue: PATH, red: FAQ.
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Graph Matching theory

Convex relaxation: When does it work?

Po = arg min
P∈P
||AP − PB||2F (P1)

P̂ = arg min
P∈D
||AP − PB||2F (P2)
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Graph Matching theory I (probabilistic)

Theorem ([L14])
Suppose A and B are adjacency matrices for ρ-correlated
Bernoulli(Λ) graphs, and there is an α ∈ (0, 1/2) such that
Λi,j ∈ [α, 1− α] for all i 6= j. Let P ∗ ∈ Π, and denote
A′ := P ∗AP ∗T .

a) If the between graph correlation ρ <1, then it almost always
holds that P ∗ 6∈ arg minD∈D ‖A′D −DB‖F .

b) If (1− α)(1− ρ) < 1/2, then it almost always holds that

arg min
D∈D
−〈A′D,DB〉 = arg min

P∈Π
‖A′ − PBP T ‖F = {P ∗}.
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Success rate in recovering P ∗
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Figure: Non-convex optimization with different initializations: J (gray).
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Figure: Non-convex optimization with different initializations: J (gray),
convex relaxation in black.
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Figure: Non-convex optimization with different initializations: J (gray),
convex relaxation in black, and GLAG in blue.
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Figure: Non-convex optimization with different initializations: D∗ (green),
and J (gray), convex relaxation in black, and GLAG in blue.
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Figure: Non-convex optimization with different initializations: P ∗ (red),
D∗ (green), and J (gray), convex relaxation in black, and GLAG in blue.
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Graph Matching theory II (deterministic)

Based on spectral properties

• eigenvalues multiplicity
• eigenvectors u s.t. uT1 = 0
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Graph Matching theory II (deterministic)

Based on spectral properties

• eigenvalues multiplicity
• eigenvectors u s.t. uT1 = 0

Problems equivalent for “Friendly” graphs [A14]
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Graph Matching theory II (deterministic)

Theorem ([F14])
If A has no repeated eigenvalues (simple spectrum), and there
are k eigenvectors ui such that uTi 1 = 0, each one of these
vectors having at least 2k + 1 nonzero entries, then problems (P1)
and (P2) are equivalent.
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Graph Matching theory II (deterministic)

Theorem ([F14])
If A has no repeated eigenvalues (simple spectrum), and there
are k eigenvectors ui such that uTi 1 = 0, each one of these
vectors having at least 2k + 1 nonzero entries, then problems (P1)
and (P2) are equivalent.

Corollary
In the same conditions as above, the automorphism group of the
corresponding graph GA is the trivial group.
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Thank you!
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