Recent algorithmic and theoretical advances on graph matching

Marcelo Fiori

Universidad de la Repúblca Uruguay

Joint work with G. Sapiro, P. Sprechmann, J. Vogelstein, P. Musé, V. Lyzinski, D. Fishkind and C.E. Priebe.

Graph Isomorphisms

Graph Isomorphisms

 Graph Isomorphism Problem (GIP): determine whether two graphs are isomorphic.

- Graph Isomorphism Problem (GIP): determine whether two graphs are isomorphic.
 - Complexity: unknown (somewhere between P and NP-complete).

- Graph Isomorphism Problem (GIP): determine whether two graphs are isomorphic.
 - Complexity: unknown (somewhere between P and NP-complete).
- Graph Matching Problem (GMP): find the isomorphism between two graphs.

- Graph Isomorphism Problem (GIP): determine whether two graphs are isomorphic.
 - Complexity: unknown (somewhere between P and NP-complete).
- Graph Matching Problem (GMP): find the isomorphism between two graphs.
- Graph Automorphism Problem (GAP): decide whether a graph has nontrivial automorphism group.

In terms of the adjacency matrices A and B:

• Exact GM Find $P \in \mathcal{P}$ such that $A = PBP^T$ In terms of the adjacency matrices A and B:

- Exact GM Find $P \in \mathcal{P}$ such that $A = PBP^T$
- "Best Matching"

$$\hat{P} = \arg\min_{P \in \mathcal{P}} ||AP - PB||_F^2$$

Graph Matching Algorithms (convex relaxation)

$$\hat{P} = \arg\min_{P \in \mathcal{P}} ||AP - PB||_F^2$$

Graph Matching Algorithms (convex relaxation)

$$\hat{P} = \arg\min_{\substack{P \in \mathcal{H}_{\mathcal{D}}}} ||AP - PB||_{F}^{2}$$

Graph Matching Algorithms (convex relaxation)

$$\hat{P} = \arg\min_{\substack{P \in \mathcal{H}_{\mathcal{D}}}} ||AP - PB||_{F}^{2}$$

Then project:

$$P^* = \arg\min_{P \in \mathcal{P}} ||P - \hat{P}||_F^2$$

Idea: instead of asking $AP \approx PB$, ask them to have (approximately) the same support

Idea: instead of asking $AP \approx PB$, ask them to have (approximately) the same support

Idea: instead of asking $AP \approx PB$, ask them to have (approximately) the same support

Specially useful for:

- weighted graphs
- multimodal data
- joint graph inference + alignment:

Specially useful for:

- weighted graphs
- multimodal data
- joint graph inference + alignment:

 $\min_{\substack{\Theta^A \succ 0 \\ P \in \mathcal{P}}} \operatorname{tr}(S^A \Theta^A) - \log \det \Theta^A + \operatorname{tr}(S^B \Theta^B) - \log \det \Theta^B + \lambda \sum_{i,j} \left| \left| \left((\Theta^A P)_{ij}, (P \Theta^B)_{ij} \right) \right| \right|_2 \right|_2$

Results for real graphs

Figure: Matching error for the C. elegans connectome. Black: GLAG, blue: PATH, red: FAQ.

Graph Matching theory

Convex relaxation: When does it work?

$$P_o = \arg\min_{P \in \mathcal{P}} ||AP - PB||_F^2 \tag{P_1}$$

$$\hat{P} = \arg\min_{P \in \mathcal{D}} ||AP - PB||_F^2 \tag{P_2}$$

Graph Matching theory I (probabilistic)

Theorem ([L14])

Suppose *A* and *B* are adjacency matrices for ρ -correlated Bernoulli(Λ) graphs, and there is an $\alpha \in (0, 1/2)$ such that $\Lambda_{i,j} \in [\alpha, 1-\alpha]$ for all $i \neq j$. Let $P^* \in \Pi$, and denote $A' := P^*AP^{*T}$.

Graph Matching theory I (probabilistic)

Theorem ([L14])

Suppose *A* and *B* are adjacency matrices for ρ -correlated Bernoulli(Λ) graphs, and there is an $\alpha \in (0, 1/2)$ such that $\Lambda_{i,j} \in [\alpha, 1-\alpha]$ for all $i \neq j$. Let $P^* \in \Pi$, and denote $A' := P^*AP^{*T}$.

a) If the between graph correlation ρ < 1, then it almost always holds that P^{*} ∉ arg min_{D∈D} ||A'D − DB||_F.

Graph Matching theory I (probabilistic)

Theorem ([L14])

Suppose *A* and *B* are adjacency matrices for ρ -correlated Bernoulli(Λ) graphs, and there is an $\alpha \in (0, 1/2)$ such that $\Lambda_{i,j} \in [\alpha, 1-\alpha]$ for all $i \neq j$. Let $P^* \in \Pi$, and denote $A' := P^*AP^{*T}$.

- a) If the between graph correlation ρ < 1, then it almost always holds that P^{*} ∉ arg min_{D∈D} ||A'D − DB||_F.
- b) If $(1 \alpha)(1 \rho) < 1/2$, then it almost always holds that

$$\arg\min_{D\in\mathcal{D}} -\langle A'D, DB\rangle = \arg\min_{P\in\Pi} \|A' - PBP^T\|_F = \{P^*\}.$$

Figure: Non-convex optimization with different initializations: J (gray).

Figure: Non-convex optimization with different initializations: J (gray), convex relaxation in black.

Figure: Non-convex optimization with different initializations: J (gray), convex relaxation in black, and GLAG in blue.

Figure: Non-convex optimization with different initializations: D^* (green), and J (gray), convex relaxation in black, and GLAG in blue.

Figure: Non-convex optimization with different initializations: P^* (red), D^* (green), and J (gray), convex relaxation in black, and GLAG in blue.

Based on spectral properties

- eigenvalues multiplicity
- eigenvectors u s.t. $u^T \mathbf{1} = 0$

Based on spectral properties

- eigenvalues multiplicity
- eigenvectors u s.t. $u^T \mathbf{1} = 0$

Problems equivalent for "Friendly" graphs [A14]

Theorem ([F14])

If *A* has no repeated eigenvalues (simple spectrum), and there are *k* eigenvectors u_i such that $u_i^T \mathbf{1} = 0$, each one of these vectors having at least 2k + 1 nonzero entries, then problems (P_1) and (P_2) are equivalent.

Theorem ([F14])

If *A* has no repeated eigenvalues (simple spectrum), and there are *k* eigenvectors u_i such that $u_i^T \mathbf{1} = 0$, each one of these vectors having at least 2k + 1 nonzero entries, then problems (*P*₁) and (*P*₂) are equivalent.

Corollary

In the same conditions as above, the automorphism group of the corresponding graph G_A is the trivial group.

Asymmetric

Thank you!

M. Fiori, P. Sprechmann, J.T. Vogelstein, P. Musé, G. Sapiro. Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching. *Advances in Neural Information Processing Systems 26 (NIPS 2013).*

V. Lyzinski, D. Fishkind, M. Fiori, J.T. Vogelstein, C.E. Priebe, G. Sapiro. Graph Matching: Relax at Your Own Risk. *arXiv preprint 2014 arXiv:1405.3133.*

Y. Aflalo, A. Bronstein, R. Kimmel Graph matching: relax or not?. *arXiv preprint 2014 arXiv:1401.7623.*.

M. Fiori, G. Sapiro. On spectral properties for graph matching and graph isomorphism problems. *arXiv preprint 2014 arXiv:1409.6806.*