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Motivation
• Chemists want to build 

“Google of molecules” 

• Pharmaceutical industry  
Materials science  

• Need to compute energy of 
each molecule 

• Billions of molecules 

• Complex, time consuming 
computation



Energy Computation
• Exact:  

Schrödinger’s Equation  
Extremely high dimensional eigenvalue problem  
Example: Alcohol              is ~       dimensional 

• Approximate:  
Coupled cluster methods 
Density functional theory  
Scales as             where                

C2H6O 2300

O(Na) 4  a  7

Number of electrons



Regression
• High dimensional  

• Approximate a functional          
                    given    sample values 

• Many body problems:  
Energy         of a state  
 
 
 
 
 

x 2 Rd

f(x)

n
f(x)

Astronomy Classical 
Electrostatics

Quantum 
Chemistry

Position
Charge, mass, etc…

{xi, f(xi)}ni=1

x = {(pk, qk)}k



•        can be approximated 
from samples  
by local interpolation if     
is regular and there are  
close examples 

!

• Need               points to cover           at a Euclidean 
distance                         is always large 
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Sparse Linear Regression
• Representation of  

• Regression         of         linear in         :  

• Interpolates: 

• Few samples                                  
       can only learn small number of coefficients                                                             
       must have a sparse expansion of    in           to  
obtain good regression   

• Sparsity           inherits the properties of                         
                                must possess the properties of 

x : �(x) = {�p(x)}p

f̃(x) f(x) �(x)

{�p}p

=) f̃

{xi, f(xi)}ni=1
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=) f

{�p}p
=) {�p}p f

f̃(x) = h↵,�(x)i =
X

p

↵p�p(x)

f̃(xi) = f(xi)



• State: 

• Energy: 

1. Invariant to actions of the isometry group: 

2. Multiscale potential 

3. Lipschitz continuous to the action of diffeomorphisms 

• Want a representation     with these three properties

Energy Properties

�

f(x)

x = {(pk, qk)}k

E(d) = R

d
oO(d)



• Energy of     interacting bodies (Coulomb, gravitation)  
Invariant to isometries  
Multiscale potential 

• Point charges/masses:  

• Potential:  

• Diagonalized by Fourier modulus:  
 

Classical Physics
N

x 7! ⇢(u) =
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k=1
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Wavelets
• Complex wavelet:  

• Dilated and rotated: 
 
 
 
 
 
 

 (u) = g(u)ei⇠·u, u 2 Rd, d = 2, 3

Real parts Imaginary parts

 j,r(u) = 2�dj (2�jru), (j, r) 2 Z⇥O(d)

| b j,r(!)|2



Potential Diagonalized by 
Wavelet Energy Coefficients

• Properly defined       wavelet energy coefficients define 
a representation that is invariant over isometries and 
gives a multiscale decomposition of the potential. 
 
Theorem (H., Mallat, Poilvert; 2014): For any            
there exists wavelets with  
 
 
 
 

L2
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f(⇢) = (1 + ✏)
X

j
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Quantum Chemistry 
Density Functional Theory

• State:                                Positions and total protonic charges of the atoms 
            Energy of the molecule 

• Invariant to isometries 
Multiscale potential 
Stability to diffeomorphisms 

• Electronic density:  

• Hohenberg-Kohn, 1964: 

!

• Will have to learn representation as                    where      is an 
approximate electronic density that can be efficiently derived from 

f(x) =

x 7! ⇢(u)

f(x) = f(⇢) = min
⇢̃

E(⇢̃), ⇢ = argmin
⇢̃

E(⇢̃)

x = {(pk, qk)}k =

Complex 
variational 
problem

x 7! �(⇢̃) ⇢̃
x



Electronic Density
Solution to variational problem:

⇢ = argmin
⇢̃

E(⇢̃)

E(⇢) =

T (⇢)

+

Z
⇢(u)V (u)

+
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ZZ
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+E
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Kinetic energy

Electron-nuclei 
attraction

Electron-electron 
Coulomb repulsion

Exchange 
correlation energy



Electronic Density

Locally 
Kato Cusp Condition: 

⇢(u) ⇠ e�2qk|u�pk|



Approximate Density

⇢̃(u) =
X

k

q4ke
�2qk|u�pk|



Stability to Diffeomorphisms

• Diffeomorphism 

• Amplitude of diffeomorphism:  

• Want Lipschitz stability to diffeomorphisms:  

kr⌧k1

⇢̃ = D⌧⇢ =) k�(⇢)� �(D⌧⇢)k  Ckr⌧k1k⇢k

1� ⌧ :

D⌧⇢(u) = ⇢(u� ⌧(u))



Fourier Unstable to 
Diffeomorphisms

• Fourier modulus representation:  

• Fourier:  
Unstable to small diffeomorphisms  
                            is large at high frequencies  
 
 
 

|⇢̂(!)|

|⇢̂(!)| |⇢̂⌧ (!)|

|⇢̂⌧ (!)|| |
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�
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Scattering Representation
Layer 0
p = ;

⇢̃
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⇢̃(u) du



Scattering Representation
Layer 0 Layer 1
p = ;

⇢̃

p = j
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Scattering Representation
Layer 0 Layer 1 Layer 2
p = ;
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Scattering Representation
Layer 0 Layer 1 Layer 2
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Scattering Properties
!

!

• Invariant to isometries… yes 

• Multiscale family of functions… yes 

• Lipschitz stable to diffeomorphisms… yes  
Mallat, 2012
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Augment Scattering
• From classical physics, we know       energy 

coefficients are needed to expand the Coulomb 
potential, which is also present in the quantum 
chemistry molecular energy.  
 
 
 
 
 

L2
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B@
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Quantum Chemistry 
Regression

• Two data bases                     of planar, organic molecules with up to 
20 atoms  
 
 

• Regression on Fourier and scattering coefficients: 

!

• M-term sparse regression with greedy Orthogonal Least Squares 
computed on a training set:  
 

{xi, f(xi)}i

{�p}p =

8
<

:

L1/L2
Fourier modulus coe�cients

or

L1/L2
Scattering coe�cients

fM (x) =
MX

k=1

↵k�pk(x)



M-term Error

log2 M

log2 E(|f(X)� fM (X)|)

FourierScattering 1 Layer (Wavelets)

Scattering 2 Layers

Coulomb



Numerical Results
• Mean absolute error                                in kcal/mol:  
 
 

• Scattering expansion terms: 

• First term:  

• Selected scales: Important geometric scales

E(|f(X)� fM (X)|)

�n1(⇢̃) =

Z
⇢̃(u) =

X

k

qk = total charge

Fourier Coulomb Scattering

400 molecules 21.40 13.09 6.61

4000 molecules 18.61 4.16 2.05



Conclusion
• The scattering transform defines a representation 

that captures the fundamental properties of 
molecular energy. 

• One can learn the energy through data and 
compute it fast. 

• Can we learn other physical functionals?  
 

http://www.di.ens.fr/⇠hirn/


