High Dimensional Learning rather than Computing in Quantum Chemistry

Matthew Hirn*, Stéphane Mallat*, Nicolas Poilvert**

*École normale supérieure **Pennsylvania State University

Motivation

- Chemists want to build "Google of molecules"
- Pharmaceutical industry
 Materials science
- Need to compute energy of each molecule
- Billions of molecules
- Complex, time consuming computation

Energy Computation

• Exact:

Schrödinger's Equation Extremely high dimensional eigenvalue problem Example: Alcohol C_2H_6O is $\sim 2^{300}$ dimensional

• <u>Approximate:</u>

Coupled cluster methods Density functional theory Scales as $O(N^a)$ where $4 \le a \le 7$ Number of electrons

Regression

- High dimensional $x \in \mathbb{R}^d$
- Approximate a functional f(x)given n sample values $\{x_i, f(x_i)\}_{i=1}^n$

Curse of Dimensionality

 f(x) can be approximated from samples {x_i, f(x_i)}ⁿ_{i=1} by local interpolation if f is regular and there are close examples

• Need $n = \epsilon^{-d}$ points to cover $[0, 1]^d$ at a Euclidean distance $\epsilon \implies ||x - x_i||$ is always large

Sparse Linear Regression

- Representation of $x : \Phi(x) = \{\phi_p(x)\}_p$
- Regression $\tilde{f}(x)$ of f(x) linear in $\Phi(x)$:

$$f(x) = \langle \alpha, \Phi(x) \rangle = \sum \alpha_p \phi_p(x)$$

p

- Interpolates: $\tilde{f}(x_i) = f(x_i)$
- Few samples $\{x_i, f(x_i)\}_{i=1}^n$ \implies can only learn small number of coefficients $\{\alpha_p\}_p$ \implies must have a sparse expansion of f in $\{\phi_p\}_p$ to obtain good regression
- Sparsity $\implies \tilde{f}$ inherits the properties of $\{\phi_p\}_p$ $\implies \{\phi_p\}_p$ must possess the properties of f

Energy Properties

- State: $x = \{(p_k, q_k)\}_k$
- Energy: f(x)

1. Invariant to actions of the isometry group: $E(d) = \mathbb{R}^d \rtimes O(d)$

2. Multiscale potential

3. Lipschitz continuous to the action of diffeomorphisms

• Want a representation Φ with these three properties

Classical Physics

 Energy of N interacting bodies (Coulomb, gravitation) Invariant to isometries Multiscale potential

 $\phi_{\omega}(\rho)$

- Point charges/masses: $x \mapsto \rho(u) = \sum q_k \delta(u p_k)$
- Potential: $V(u) = |u|^{-\beta} \Longrightarrow f(x) = f(\rho) = \sum_{k \neq \ell} \frac{q_k q_\ell}{|p_k p_\ell|^{\beta}}$

 α_{ω}

• Diagonalized by Fourier modulus:

 $O(N) \qquad f(\rho) = \int \widehat{V}(\omega) |\hat{\rho}(\omega)|^2 \, d\omega$

coefficients

Wavelets

• Complex wavelet:

$$\psi(u) = g(u)e^{i\xi \cdot u}, \ u \in \mathbb{R}^d, \ d = 2, 3$$

• Dilated and rotated: $\psi_{j,r}(u) = 2^{-dj}\psi(2^{-j}ru), \ (j,r) \in \mathbb{Z} \times O(d)$

Real parts

Imaginary parts

Potential Diagonalized by Wavelet Energy Coefficients

• Properly defined L^2 wavelet energy coefficients define a representation that is invariant over isometries and gives a multiscale decomposition of the potential.

<u>Theorem</u> (*H., Mallat, Poilvert; 2014):* For any $\epsilon > 0$ there exists wavelets with

$$f(\rho) = (1 + \epsilon) \sum_{j} \alpha_{j} \underbrace{\int_{O(3)} \|\rho * \psi_{j,r}\|^{2} dr}_{\phi_{j}(\rho)}$$
$$O(\log N) \text{ coefficients}$$

Quantum Chemistry Density Functional Theory

- State: $x = \{(p_k, q_k)\}_k$ = Positions and total protonic charges of the atoms f(x) = Energy of the molecule
- Invariant to isometries Multiscale potential Stability to diffeomorphisms
- Electronic density: $x \mapsto \rho(u)$
- Hohenberg-Kohn, 1964:

$$f(x) = f(\rho) = \min_{\tilde{\rho}} E(\tilde{\rho}), \ \rho = \arg\min_{\tilde{\rho}} E(\tilde{\rho})$$

- Will have to learn representation as $x\mapsto \Phi(\tilde\rho)\,$ where $\,\tilde\rho\,$ is an approximate electronic density that can be efficiently derived from x

Electronic Density

Solution to variational problem: $\rho = \arg\min_{\tilde{\rho}} E(\tilde{\rho})$ $E(\rho) =$ $T(\rho)$ Kinetic energy $+\int \rho(u)V(u)$ Electron-nuclei attraction $+\frac{1}{2}\iint\frac{\rho(u)\rho(v)}{|u-v|}$ Electron-electron Coulomb repulsion Exchange $+E_{\rm xc}(\rho)$ correlation energy

Electronic Density

Locally Kato Cusp Condition:

$$\rho(u) \sim e^{-2q_k|u-p_k|}$$

Approximate Density

$$\tilde{\rho}(u) = \sum_{k} q_k^4 e^{-2q_k|u-p_k|}$$

Stability to Diffeomorphisms

• Diffeomorphism $1 - \tau$:

$$D_{\tau}\rho(u) = \rho(u - \tau(u))$$

- Amplitude of diffeomorphism: $\|\nabla \tau\|_{\infty}$
- Want Lipschitz stability to diffeomorphisms:

 $\tilde{\rho} = D_{\tau}\rho \Longrightarrow \|\Phi(\rho) - \Phi(D_{\tau}\rho)\| \le C \|\nabla\tau\|_{\infty} \|\rho\|$

Fourier Unstable to Diffeomorphisms

• Fourier modulus representation: $\Phi(a) = \int da(a) = \int \hat{a}(a)$

 $\Phi(\rho) = \{\phi_{\omega}(\rho)\}_{\omega} = \{|\hat{\rho}(\omega)|\}_{\omega}$

• Fourier:

Unstable to small diffeomorphisms $\rho_{\tau}(u) = \rho(u - \tau(u))$ $||\hat{\rho}(\omega)| - |\hat{\rho}_{\tau}(\omega)||$ is large at high frequencies

Scattering Representation

Layer 0 $p = \emptyset$

 $\begin{array}{c}
\rho\\
\downarrow\\
\phi_{\emptyset}(\tilde{\rho}) = \int_{\mathbb{R}^d} \tilde{\rho}(u) \, du
\end{array}$

Scattering Representation

Layer 0Layer 1 $p = \emptyset$ p = j

$$\tilde{\rho}_{j''}(u,r)$$

$$\tilde{\rho} \longrightarrow \tilde{\rho}_{j}(u,r) = |\tilde{\rho} * \psi_{j,r}(u)|$$

$$\downarrow$$

$$\phi_{\emptyset}(\tilde{\rho}) = \int_{\mathbb{R}^d} \tilde{\rho}(u) \, du \quad \phi_j(\tilde{\rho}) = \int_{E(d)} \tilde{\rho}_j(u,r) \, du \, dr$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Layer 0} \\ p = \emptyset \end{array} \begin{array}{c} \begin{array}{c} \text{Layer 1} \\ p = j \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Layer 2} \\ p = (j, \lambda_2) \end{array} \end{array}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Layer 0} \\ p = \emptyset \end{array} \begin{array}{c} \begin{array}{c} \text{Layer 1} \\ p = j \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Layer 2} \\ p = (j, \lambda_2) \end{array} \end{array}$$

Scattering Properties

$$\Phi(\tilde{\rho}) = \begin{pmatrix} \|\tilde{\rho}\|_{L^{1}(\mathbb{R}^{d})} \\ \|\tilde{\rho} * \psi_{j,\cdot}\|_{L^{1}(E(d))} \\ \||\tilde{\rho} * \psi_{j,\cdot}| \circledast \Psi_{\lambda_{2}}\|_{L^{1}(E(d))} \end{pmatrix}_{j,\lambda_{2}}$$

- Invariant to isometries... yes
- Multiscale family of functions... yes
- Lipschitz stable to diffeomorphisms... yes Mallat, 2012

Augment Scattering

 From classical physics, we know L² energy coefficients are needed to expand the Coulomb potential, which is also present in the quantum chemistry molecular energy.

$$\Phi(\tilde{\rho}) = \begin{pmatrix} \|\tilde{\rho}\|_{L^{p}(\mathbb{R}^{d})}^{p} \\ \|\tilde{\rho} * \psi_{j,\cdot}\|_{L^{p}(E(d))}^{p} \\ \||\tilde{\rho} * \psi_{j,\cdot}| \circledast \Psi_{\lambda_{2}}\|_{L^{p}(E(d))}^{p} \end{pmatrix}_{j,\lambda_{2}; p=1,2}$$

Quantum Chemistry Regression

- Two data bases $\{x_i, f(x_i)\}_i$ of planar, organic molecules with up to 20 atoms

• Regression on Fourier and scattering coefficients:

 $\{\phi_p\}_p = \begin{cases} L^1/L^2 \text{ Fourier modulus coefficients} \\ 0 \\ L^1/L^2 \text{ Scattering coefficients} \end{cases}$

 M-term sparse regression with greedy Orthogonal Least Squares computed on a training set:

$$f_M(x) = \sum_{k=1}^M \alpha_k \phi_{p_k}(x)$$

M-term Error

Numerical Results

• Mean absolute error $\mathbb{E}(|f(X) - f_M(X)|)$ in kcal/mol:

	Fourier	Coulomb	Scattering
400 molecules	21.40	13.09	6.61
4000 molecules	18.61	4.16	2.05

• Scattering expansion terms:

• First term:
$$\phi_{n_1}(\tilde{\rho}) = \int \tilde{\rho}(u) = \sum_k q_k = \text{total charge}$$

• Selected scales: Important geometric scales

Conclusion

- The scattering transform defines a representation that captures the fundamental properties of molecular energy.
- One can learn the energy through data and compute it fast.
- Can we learn other physical functionals?

http://www.di.ens.fr/~hirn/