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Votivation

Chemists want to build
“Google of molecules”

Pharmaceutical industry
Materials science

Need to compute energy of
each molecule

Billions of molecules

Complex, time consuming
computation




Energy Computation

e [EXxact:
Schrédinger’s Equation
Extremely high dimensional eigenvalue problem
Example: Alcohol CoHgO is ~2°°° dimensional

* Approximate:
Coupled cluster methods
Density functional theory
Scales as O(N®) where 4 <a <7

\ Number of electrons



Regression

* High dimensional x & R®

» Approximate a functional f(x)
given n sample values {z;, f(;) }iy

Position

 Many body problems: / Charge, mass, etc...
Energy f(x) of a state x = {(pg, q'k)i/
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Curse

* f(x)can be a
from samples{x;,

L g

proximated

n
1=1

by local interpolation if f

'S regular and there are

close example

e Need n = ¢ ¢

of Dimensionality
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oints to cover [0, 1]¢ at a Euclidean

distance ¢ = ||z — x;|| is always large



Sparse Linear Regression

« Representation of z : ®(x) = {¢, ()},

. Regression f(z )off( )Iinear in®(x):

( ) = Z 0 Pp (X

e Interpolates: f(:z:) ( )

n

« Few samples{x;, f(x;)}i_;

— can only learn small number of coefficients {«,, },
— must have a sparse expansion of f in{ ¢y}, to
obtain good regression

+ Sparsity= f inherits the properties of {¢, },
—> {¢®p }» must possess the properties of f



Energy Properties

» State: = = {(pr, qx) }x
o Energy: f(z)

1. Invariant to actions of the isometry group:
E(d) = R% x O(d)

2. Multiscale potential

3. Lipschitz continuous to the action of diffeomorphisms

e \Want a representation ® with these three properties



Classical Physics

 Energy of N interacting bodies (Coulomb, gravitation)
Invariant to isometries
Multiscale potential

* Point charges/masses: x — p(u qug (u — pp)
e Potential: V(u) = |u| " = f(x) = qrqe :
7 Pk — P

* Diagonalized by Fourier modulus: @

ON)  fp) = [T )l do (03)wt
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Wavelets

 Complex wavelet:
p(u) = g(u)e™™, ueR? d=2,3

e Dilated and rotated:
Vir(u) = 2_dj¢(2_jru), (j,7) € Z x O(d)

W/ e\ N

IN =5 N

Real parts Imaginary parts




Potential Diagonalized by
Wavelet Energy Coetfticients

* Properly defined L“ wavelet energy coefficients define
a representation that is invariant over isometries and
gives a multiscale decomposition of the potential.

Theorem (H., Mallat, Poilvert; 2014): For any € > 0
there exists wavelets with

(1+0) Za;,/ o5 |7 dr

O(3)
S —
¢ (p)

O(log N) coefficients




Quantum Chemistry
Density Functional Theory

o State: = {(pk, qx) } » = Positions and total protonic charges of the atoms
f(z) = Energy of the molecule

e |nvariant to isometries
Multiscale potential
Stability to diffeomorphisms

« Electronic density: x — p(u)
Complex

variational

 Hohenberg-Kohn, 1964: / S roblom

f(z) = f(p) = min E(p), p = argminE(p)

 Will have to learn representation as = — ®(p) where p is an
approximate electronic density that can be efficiently derived from x




=lectronic Density

Solution to variational problem:

p = argmin E(p)

0
E(p) =

T(p) Kinetic energy

Electron-nuclei

+ / p(u)V(u) attraction
_|_1 p(u)p(v) Electron-electron

2 lu — v Coulomb repulsion
+FE (,0) Exchange

XC

correlation energy




=lectronic Density

Locally
Kato Cusp Condition:

p(u) ~ o 24k |u—pr]|




Approximate Density




Stability to Diffeomorphisms

e Diffeomorphism1 — 7 :
D:p(u) = p(u — 7(u))

* Amplitude of diffeomorphism: ||V 7|«

 Want Lipschitz stability to diffeomorphisms:
p=Drp=||2(p) — ©(D7p)|| < C||VT||lpll



Fourier Unstable to
Diffeomorphisms

* Fourier modulus representation:

®(p) = 19w (P)}w = Up(W)|}u

e Fourler:

Unstable to small diffeomorphisms pr(u) = p(u — 7(u))
|p(w)| — |p-(w)]|| is large at high frequencies

mﬁ(w)ﬂ*ﬂ e m

= [|2(p) = (o)l > [[VTlloollpl




Scattering Representation

Layer O
p="0

o0(p) = | i) du



Scattering Representation

Layer O Layer 1
p=1 D=

ﬁj” (U,T)
/ ﬁj/(U,T‘)
p > pi(u,m) = |p* ;. (u)]

o) = [ e o= [ st aun

E(d)




Scattering Representation

Layer O Layer 1 Layer 2
p=10 p=]J p = (J,A2)
pir(u, ) pj ® Wy (u, )
pjr (U, ) P ® Wy, (7))
p s pj(u,r) = [p* b (u)] E— |p; ® T, (u, 1)



Scattering Representation

Layer O Layer 1 Layer 2
p=10 p=J p = (j, X2)
pjr(u,r) 0 ® Way (u, )
pjr(u, ) 0 ® Wiy (u, 1)
L piu,r) =[xy (u)| £ [ ® U, (u, 7))



Scattering Properties

) ) 10| L1 (re)
()= lexvi oz
o s | @Vl @) /i,

e |nvariant to Isometries... yes

* Multiscale family of functions... yes

* Lipschitz stable to diffeomorphisms... yes
Mallat, 2012



Augment Scattering

» From classical physics, we know L“ energy
coefficients are needed to expand the Coulomb
potential, which Is also present in the quantum
chemistry molecular energy.

1AN Lo (e
®(p) = 10 * V5, o (B (ay
[1p* ;.| ® Wy, H]ZP(E(CZ))

j7>‘2; p:172



Quantum Chemistry
Regression

« Two data bases {z;, f(x;)}; of planar, organic molecules with up to
20 atoms

* Regression on Fourier and scattering coefficients:

L'/L? Fourier modulus coefficients

{optp = Ot
L'/L? Scattering coefficients

 M-term sparse regression with greedy Orthogonal Least Squares
computed on a training set:

M
— Z ak¢pk (.CE)
k=1



Vl-term Error

Fourler




Numerical Results

* Mean apbsolute error E(|f(X) — far(X)])In kcal/mol:

Fourier Coulomb Scattering
400 molecules 21.40 13.09 6.61
4000 molecules 18.61 4.10 2.05

e Scattering expansion terms:

» First term: én, (p) = / p(u) =) qi = total charge
k

e Selected scales: Important geometric scales



Conclusion

* [he scattering transform defines a representation
that captures the fundamental properties of
molecular energy.

* One can learn the energy through data and
compute it fast.

 Can we learn other physical functionals?

http://www.di.ens.fr/~hirn/



