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What is Dynamical Sampling?

Let x0 ∈ CN be an unknown vector.

We only know a few samples (components) of x0.

So, the information is not enough to reconstruct x0.
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This is the main question of Dynamical sampling!!
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Example

The space-time for C5.
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Consider the following matrix acting on C5.

A =


9/2 1/2 −7 5 −3

15/2 3/2 −11 5 −7

5 0 −7 5 −5

4 0 −4 3 −4

1/2 1/2 −1 0 1


For the matrix A, any f ∈ C5 can be recovered from the data sampled

at the single “spacial” point i = 2, i.e., from

Y = {f(2), Af(2), A2f(2), A3f(2), A4f(2)}.
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Consider the following matrix acting on C5.

A =


9/2 1/2 −7 5 −3

15/2 3/2 −11 5 −7

5 0 −7 5 −5

4 0 −4 3 −4

1/2 1/2 −1 0 1


For the matrix A, any f ∈ C5 can be recovered from the data sampled

at the single “spacial” point i = 2, i.e., from

Y = {f(2), Af(2), A2f(2), A3f(2), A4f(2)}.

However, if i = 3, i.e., Y = {f(3), Af(3), A2f(3), A3f(3), A4f(3)} the
information is not sufficient to determine f . In fact if we do not sample
at i = 1, or i = 2, the only way to recover any f ∈ C5 is to sample at all
the remaining “spacial” points i = 3, 4, 5.

For example, Y = {f(i), Af(i) : i = 3, 4, 5} is enough data to recover
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f , but Y = {f(i), Af(i), ..., ALf(i) : i = 3, 4}, is not enough information no
matter how large L is.
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Let A be the evolution operator acting in `2(I), Ω ⊂ I a fixed set of
locations, and {li : i ∈ Ω} where li is a positive integer or +∞.

Problem 1 Find conditions on A,Ω and {li : i ∈ Ω} such that any vector
f ∈ `2(I) can be recovered from the samples Y = {f(i), Af(i), . . . , Alif(i) :

i ∈ Ω} in a stable way.

Writing Asf(i) =< Asf, ei > we can say that f can be recovered from
Y = {f(i), Af(i), . . . , Alif(i) : i ∈ Ω} in a stable way if and only if there exist
constants c1, c2 > 0 such that

c1‖f‖2
2 ≤

∑
i∈Ω

|〈Asf, ei〉|2 ≤ c2‖f‖2
2. (1)

That is

c1‖f‖2
2 ≤

∑
i∈Ω

li∑
j=0

|〈f,A∗jei〉|2 ≤ c2‖f‖2
2.
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Thus we get

Lemma 1 Every f ∈ `2(I) can be recovered from the measurements set
Y = {f(i), Af(i), . . . , Alif(i) : i ∈ Ω} in a stable way if and only if the set of
vectors {A∗jei : i ∈ Ω, j = 0, . . . , li} is a frame for `2(I).

The problem can be further reduced as follows: Let B be any invertible
matrix with complex coefficients, and let Q be the matrix Q = BA∗B−1,
so that A∗ = B−1QB. Let bi denote the ith column of B. Since a frame
is transformed to a frame by invertible linear operators, we can just study
when {Qjbi : i ∈ Ω, j = 0, . . . , li} is a frame of Cd.

This allows us to replace the general matrix A∗ by a possibly simpler
matrix and we have:

Lemma 2 Every f ∈ Cd can be recovered from the measurement set Y =

{Ajf(i) : i ∈ Ω, j = 0, . . . , li} if and only if the set of vectors {Qjbi : i ∈
Ω, j = 0, . . . , li} is a frame for Cd.
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The Jordan Decomposition

V vector space over C , dim(V ) = d, N : V −→ V a nilpotent operator.

V = V1 ⊕ · · · ⊕ Vh the cyclic decomposition (N|Vj is cyclic on Vj.)

ωs ∈ Vs a cyclic vector for each s. We associate to N the subspace:

WN = span{ws : s = 1, .., h}.

FoCM-2014



The Jordan Decomposition

V vector space over C , dim(V ) = d, N : V −→ V a nilpotent operator.

V = V1 ⊕ · · · ⊕ Vh the cyclic decomposition (N|Vj is cyclic on Vj.)

ωs ∈ Vs a cyclic vector for each s. We associate to N the subspace:

WN = span{ws : s = 1, .., h}.

Now for a general transformation T : V −→ V let

mT (x) = (x − λ1)r1 . . . (x − λn)rn the minimal polynomial of T. with
λ1, . . . , λn distinct elements of C.

Let Ts = Ns + λsI be the restriction of T to Vs = Ker(T − λsI)rs, s =

1, . . . , n, and
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Ns nilpotent on Vs with associate Ws.
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Theorem. Let {bi : i ∈ Ω} be a set of vectors in V . Then,

the set {bi, T bi, . . . , T libi : i ∈ Ω} is a frame of V ,

if and only if

{PWsbi : i ∈ Ω} is complete in Ws for each s = 1, . . . , n

Here ri is the degree of the T -annihilator of bi and li = ri − 1.
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Now, for a general matrix A, we can state:

Corollary. Let A be a matrix, such that A∗ = B−1JB, where J ∈ Cd×d
is the Jordan matrix for A∗. Let {bi : i ∈ Ω} be a subset of the column
vectors of B, ri be the degree of the J-annihilator of the vector bi, and let
li = ri − 1.
Then, every f ∈ Cd can be recovered from the measurement set Y =

{(Ajf)(i) : i ∈ Ω, j = 0, . . . , li} of Cd if and only if {Ps(bi), i ∈ Ω} form a
frame of Ws.

In other words, we will be able to recover f from the measurements Y ,
if and only if the Jordan-vectors of A∗ (i.e. the columns of the matrix B

that reduces A∗ to its Jordan form) corresponding to Ω satisfy that their
projections on the spaces Ws form a frame.
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The infinite dimensional case

The setting for the general case is:

H will be Hilbert space that we can assume is `2(I) with I = N.

The class of evolution operators will be

A = {A ∈ B(`2(N)) : A = A∗, and ∃ a basis of `2(N) of eigenvectors of A}.

So A = B∗DB with D a diagonal operator with pure spectrum {λi : i ∈
N}, and B a unitary operator.

Ω will be a finite subset of N.

We want to find conditions on Ω and A in order to be able to recover
every f ∈ `2(I) in an stable way from Y = {f(i), Af(i), ..., Alif(i) : i ∈ Ω}.
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Because of the special form of A, we have that for any f ∈ `2(N) and
l = 0, . . .

< f,Alej >=< f,B∗DlBej >=< Bf,Dlbj > and ‖Al‖ = ‖Dl‖.

It follows that:

FΩ =
{
Alei : i ∈ Ω, l = 0, . . . , li

}
is complete, (minimal, frame)

if and only if{
Dlbi : i ∈ Ω, l = 0, . . . , li

}
is complete (minimal, frame).

Here bi = Bei.
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Completeness

Theorem. Let A be as above and Ω ⊂ N. The set FΩ =
{
Alei : i ∈

Ω, l = 0, . . . , ri − 1
}

is complete in `2(N) if and only if for each j, the set{
Pj(bi) : i ∈ Ω

}
is complete on the range Ej of Pj.

Here ri is the degree of the D-annihilator of bi if such annihilator exists,
or ri =∞.
Pj is the orthogonal projection onto the subspace associated to the
eigenvalue λj.

In that case f is determined uniquely from the set

Y = {f(i), Af(i), A2f(i), . . . , Alif(i) : i ∈ Ω}

i.e.
Alf(i) = 0, i ∈ Ω, l = 1, ..., li then f = 0.
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Minimality and Basis
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Minimality and Basis

Theorem. Let A ∈ A and let Ω be a non-empty subset of N. If there
exists bi, i ∈ Ω such that ri =∞, then the set FΩ is not minimal.
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Minimality and Basis

Theorem. Let A ∈ A and let Ω be a non-empty subset of N. If there
exists bi, i ∈ Ω such that ri =∞, then the set FΩ is not minimal.

(The proof of this result uses the well known Müntz-Szász theorem).

As an immediate corollary we get

Theorem. Let A ∈ A and let Ω be a finite subset of N. If FΩ =
{
Alei :

i ∈ Ω, l = 0, . . . , li
}

is complete in `2(N), then FΩ is not minimal in `2(N).
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Minimality and Basis

Theorem. Let A ∈ A and let Ω be a non-empty subset of N. If there
exists bi, i ∈ Ω such that ri =∞, then the set FΩ is not minimal.

(The proof of this result uses the well known Müntz-Szász theorem).

As an immediate corollary we get

Theorem. Let A ∈ A and let Ω be a finite subset of N. If FΩ =
{
Alei :

i ∈ Ω, l = 0, . . . , li
}

is complete in `2(N), then FΩ is not minimal in `2(N).

So, FΩ =
{
Alei : i ∈ Ω, l = 0, . . . , li

}
never is a basis !!
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Frames

Necessary conditions:
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Frames

Necessary conditions:

If FΩ =
{
Alei : i ∈ Ω, l = 0, . . . , li

}
is a frame, then

i) inf{‖Alei‖2 : i ∈ Ω, l = 0, . . . , li} = 0. (Kadison-Singer conjecture)
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So know we will concentrate on the case |Ω| = 1, that is when we have
only one sampling point.

So we are looking for conditions on b ∈ `2(N) and D = diag{λj} such
that {Dlb : l = 0, . . . } is a frame for `2(N).

Recall that 1 or −1 should be cluster points.

We also get in that case the following necessary conditions:

i) |λk| < 1 for all k

ii) |λk| → 1.

iii) |{j ∈ N : b(j) 6= 0}| = +∞
iV) Pj have rank 1 for each j ∈ N.
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Existence of Frames

Theorem. Let D =
∑

j λjPj be such that Pj have rank 1 for all j ∈ N, and
let b ∈ `2(N). Then {Dlb : l = 0, 1, . . . } is a frame if and only if

i) |λk| < 1 for all k.

ii) |λk| → 1.

iii) {λk} satisfies Carleson’s condition

inf
n

∏
k 6=n

|λn − λk|
|1− λ̄nλk|

≥ δ, for some δ > 0. (2)

iv) bk = mk

√
1− |λk|2 for some sequence {mk} satisfying 0 < C1 ≤ |mk| ≤

C2 <∞.
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Existence of Frames

Theorem. Let D =
∑

j λjPj be such that Pj have rank 1 for all j ∈ N, and
let b ∈ `2(N). Then {Dlb : l = 0, 1, . . . } is a frame if and only if

i) |λk| < 1 for all k.

ii) |λk| → 1.

iii) {λk} satisfies Carleson’s condition

inf
n

∏
k 6=n

|λn − λk|
|1− λ̄nλk|

≥ δ, for some δ > 0. (2)

iv) bk = mk

√
1− |λk|2 for some sequence {mk} satisfying 0 < C1 ≤ |mk| ≤

C2 <∞.

Condition (2) comes from Carleson’s theorem on interpolating
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sequences in the Hardy space H2(D) on the open unit disk D in the complex
plane. The connection was pointed us by J. Antezana.
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Frames of the form {Dlbi : i ∈ Ω, l = 0 . . . , li} for the case when |Ω| ≥ 1

or when the projections Pj have finite rank but possibly greater than or
equal to 1 can easily be found using the last theorem.
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