Dynamical Sampling

Carlos Cabrelli University of Buenos Aires and IMAS-CONICET

December, 2014

Dynamical Sampling

Carlos Cabrelli University of Buenos Aires and IMAS-CONICET

December, 2014

Joint work with Akram Aldroubi, Ursula Molter Sui Tang.

Dynamical Sampling

Carlos Cabrelli University of Buenos Aires and IMAS-CONICET

December, 2014

Joint work with Akram Aldroubi, Ursula Molter Sui Tang.

preprint: http://arxiv.org/pdf/1409.8333.pdf

Let $x_0 \in \mathbb{C}^N$ be an unknown vector.

We only know a few samples (components) of x_0 .

So, the information is not enough to reconstruct x_0 .

Let $x_0 \in \mathbb{C}^N$ be an unknown vector.

We only know a few samples (components) of x_0 .

So, the information is not enough to reconstruct x_0 .

Assume that A is a known operator acting on \mathbb{C}^N , (the evolution operator).

At time 1 we have $x_1 = Ax_0$ and at time 2 we have $x_2 = A^2x_0$.

We are only allowed to get some few samples from the vectors $x_1, x_2, ...$

Let $x_0 \in \mathbb{C}^N$ be an unknown vector.

We only know a few samples (components) of x_0 .

So, the information is not enough to reconstruct x_0 .

Assume that A is a known operator acting on \mathbb{C}^N , (the evolution operator).

At time 1 we have $x_1 = Ax_0$ and at time 2 we have $x_2 = A^2x_0$.

We are only allowed to get some few samples from the vectors $x_1, x_2, ...$

Can we compensate the loss of information from $x = x_0$ having some extra but coarse information from the evolved signals $x_1, x_2, ...?$

Let $x_0 \in \mathbb{C}^N$ be an unknown vector.

We only know a few samples (components) of x_0 .

So, the information is not enough to reconstruct x_0 .

Assume that A is a known operator acting on \mathbb{C}^N , (the evolution operator).

At time 1 we have $x_1 = Ax_0$ and at time 2 we have $x_2 = A^2x_0$.

We are only allowed to get some few samples from the vectors $x_1, x_2, ...$

Can we compensate the loss of information from $x = x_0$ having some extra but coarse information from the evolved signals $x_1, x_2, ...?$

This is the main question of Dynamical sampling!!

Example

The space-time for \mathbb{C}^5 .

Example

The space-time for \mathbb{C}^5 .

Consider the following matrix acting on \mathbb{C}^5 .

For the matrix A, any $f \in \mathbb{C}^5$ can be recovered from the data sampled at the single "spacial" point i = 2, i.e., from

 $Y = \{f(2), Af(2), A^2f(2), A^3f(2), A^4f(2)\}.$

Consider the following matrix acting on \mathbb{C}^5 .

For the matrix A, any $f \in \mathbb{C}^5$ can be recovered from the data sampled at the single "spacial" point i = 2, i.e., from

 $Y = \{f(2), Af(2), A^2f(2), A^3f(2), A^4f(2)\}.$

However, if i = 3, i.e., $Y = \{f(3), Af(3), A^2f(3), A^3f(3), A^4f(3)\}$ the information is not sufficient to determine f. In fact if we do not sample at i = 1, or i = 2, the only way to recover any $f \in \mathbb{C}^5$ is to sample at all the remaining "spacial" points i = 3, 4, 5.

For example, $Y = \{f(i), Af(i) : i = 3, 4, 5\}$ is enough data to recover

f, but $Y = \{f(i), Af(i), ..., A^L f(i) : i = 3, 4\}$, is not enough information no matter how large L is.

Let A be the evolution operator acting in $\ell^2(I)$, $\Omega \subset I$ a fixed set of locations, and $\{l_i : i \in \Omega\}$ where l_i is a positive integer or $+\infty$.

Problem 1 Find conditions on A, Ω and $\{l_i : i \in \Omega\}$ such that any vector $f \in \ell^2(I)$ can be recovered from the samples $Y = \{f(i), Af(i), \dots, A^{l_i}f(i) : i \in \Omega\}$ in a stable way.

Writing $A^s f(i) = \langle A^s f, e_i \rangle$ we can say that f can be recovered from $Y = \{f(i), Af(i), \ldots, A^{l_i}f(i) : i \in \Omega\}$ in a stable way if and only if there exist constants $c_1, c_2 > 0$ such that

$$c_1 \|f\|_2^2 \le \sum_{i \in \Omega} |\langle A^s f, e_i \rangle|^2 \le c_2 \|f\|_2^2.$$
(1)

That is

$$c_1 \|f\|_2^2 \le \sum_{i \in \Omega} \sum_{j=0}^{l_i} |\langle f, A^{*j} e_i \rangle|^2 \le c_2 \|f\|_2^2.$$

Thus we get

Lemma 1 Every $f \in \ell^2(I)$ can be recovered from the measurements set $Y = \{f(i), Af(i), \ldots, A^{l_i}f(i) : i \in \Omega\}$ in a stable way if and only if the set of vectors $\{A^{*j}e_i : i \in \Omega, j = 0, \ldots, l_i\}$ is a frame for $\ell^2(I)$.

The problem can be further reduced as follows: Let B be any invertible matrix with complex coefficients, and let Q be the matrix $Q = BA^*B^{-1}$, so that $A^* = B^{-1}QB$. Let b_i denote the ith column of B. Since a frame is transformed to a frame by invertible linear operators, we can just study when $\{Q^jb_i: i \in \Omega, j = 0, ..., l_i\}$ is a frame of \mathbb{C}^d .

This allows us to replace the general matrix A^* by a possibly simpler matrix and we have:

Lemma 2 Every $f \in \mathbb{C}^d$ can be recovered from the measurement set $Y = \{A^j f(i) : i \in \Omega, j = 0, ..., l_i\}$ if and only if the set of vectors $\{Q^j b_i : i \in \Omega, j = 0, ..., l_i\}$ is a frame for \mathbb{C}^d .

The Jordan Decomposition

V vector space over \mathbb{C} , dim(V) = d, $N : V \longrightarrow V$ a nilpotent operator. $V = V_1 \oplus \cdots \oplus V_h$ the cyclic decomposition $(N_{|V_j} \text{ is cyclic on } V_j.)$ $\omega_s \in V_s$ a cyclic vector for each s. We associate to N the subspace: $W_N = \text{span}\{w_s : s = 1, .., h\}.$

The Jordan Decomposition

V vector space over \mathbb{C} , dim(V) = d, $N: V \longrightarrow V$ a nilpotent operator.

 $V = V_1 \oplus \cdots \oplus V_h$ the cyclic decomposition ($N_{|V_j|}$ is cyclic on V_j .)

 $\omega_s \in V_s$ a cyclic vector for each s. We associate to N the subspace:

 $W_N = \text{span}\{w_s : s = 1, .., h\}.$

Now for a general transformation $T: V \longrightarrow V$ let

 $m_T(x) = (x - \lambda_1)^{r_1} \dots (x - \lambda_n)^{r_n}$ the minimal polynomial of T. with $\lambda_1, \dots, \lambda_n$ distinct elements of \mathbb{C} .

Let $T_s = N_s + \lambda_s I$ be the restriction of T to $V_s = \text{Ker}(T - \lambda_s I)^{r_s}$, $s = 1, \ldots, n$, and

 N_s nilpotent on V_s with associate W_s .

- **Theorem.** Let $\{b_i : i \in \Omega\}$ be a set of vectors in V. Then,
 - the set $\{b_i, Tb_i, \ldots, T^{l_i}b_i : i \in \Omega\}$ is a frame of V,
 - if and only if
 - $\{P_{W_s}b_i: i \in \Omega\}$ is complete in W_s for each $s = 1, \ldots, n$
 - Here r_i is the degree of the *T*-annihilator of b_i and $l_i = r_i 1$.

Now, for a general matrix A, we can state:

Corollary. Let A be a matrix, such that $A^* = B^{-1}JB$, where $J \in \mathbb{C}^{d \times d}$ is the Jordan matrix for A^* . Let $\{b_i : i \in \Omega\}$ be a subset of the column vectors of B, r_i be the degree of the J-annihilator of the vector b_i , and let $l_i = r_i - 1$. Then, every $f \in \mathbb{C}^d$ can be recovered from the massurement set V –

Then, every $f \in \mathbb{C}^d$ can be recovered from the measurement set $Y = \{(A^j f)(i) : i \in \Omega, j = 0, ..., l_i\}$ of \mathbb{C}^d if and only if $\{P_s(b_i), i \in \Omega\}$ form a frame of W_s .

In other words, we will be able to recover f from the measurements Y, if and only if the Jordan-vectors of A^* (i.e. the columns of the matrix B that reduces A^* to its Jordan form) corresponding to Ω satisfy that their projections on the spaces W_s form a frame.

The infinite dimensional case

The setting for the general case is:

H will be Hilbert space that we can assume is $\ell^2(I)$ with $I = \mathbb{N}$.

The class of evolution operators will be

 $\mathcal{A} = \{A \in \mathcal{B}(\ell^2(\mathbb{N})) : A = A^*, \text{ and } \exists a \text{ basis of } \ell^2(\mathbb{N}) \text{ of eigenvectors of } A\}.$

So $A = B^*DB$ with D a diagonal operator with pure spectrum $\{\lambda_i : i \in \mathbb{N}\}$, and B a unitary operator.

 Ω will be a finite subset of \mathbb{N} .

We want to find conditions on Ω and A in order to be able to recover every $f \in \ell^2(I)$ in an stable way from $Y = \{f(i), Af(i), ..., A^{l_i}f(i) : i \in \Omega\}$.

Because of the special form of A, we have that for any $f \in \ell^2(\mathbb{N})$ and $l = 0, \ldots$

$$< f, A^{l}e_{j} > = < f, B^{*}D^{l}Be_{j} > = < Bf, D^{l}b_{j} >$$
 and $||A^{l}|| = ||D^{l}||$

It follows that:

 $\mathcal{F}_{\Omega} = \{A^{l}e_{i}: i \in \Omega, l = 0, \dots, l_{i}\}$ is complete, (minimal, frame)

if and only if

 $\{D^l b_i : i \in \Omega, l = 0, \dots, l_i\}$ is complete (minimal, frame).

Here $b_i = Be_i$.

Completeness

Theorem. Let A be as above and $\Omega \subset \mathbb{N}$. The set $\mathcal{F}_{\Omega} = \{A^{l}e_{i} : i \in \Omega, l = 0, ..., r_{i} - 1\}$ is complete in $\ell^{2}(\mathbb{N})$ if and only if for each j, the set $\{P_{j}(b_{i}) : i \in \Omega\}$ is complete on the range E_{j} of P_{j} .

Here r_i is the degree of the *D*-annihilator of b_i if such annihilator exists, or $r_i = \infty$. P_j is the orthogonal projection onto the subspace associated to the eigenvalue λ_j .

In that case f is determined uniquely from the set

$$Y = \{ f(i), Af(i), A^2 f(i), \dots, A^{l_i} f(i) : i \in \Omega \}$$

i.e.

$$A^lf(i)=0, \quad i\in\Omega, \ l=1,...,l_i$$
 then $f=0.$

Theorem. Let $A \in \mathcal{A}$ and let Ω be a non-empty subset of \mathbb{N} . If there exists b_i , $i \in \Omega$ such that $r_i = \infty$, then the set \mathcal{F}_{Ω} is not minimal.

Theorem. Let $A \in \mathcal{A}$ and let Ω be a non-empty subset of \mathbb{N} . If there exists b_i , $i \in \Omega$ such that $r_i = \infty$, then the set \mathcal{F}_{Ω} is not minimal.

(The proof of this result uses the well known Müntz-Szász theorem).

As an immediate corollary we get

Theorem. Let $A \in \mathcal{A}$ and let Ω be a finite subset of \mathbb{N} . If $\mathcal{F}_{\Omega} = \{A^{l}e_{i} : i \in \Omega, l = 0, ..., l_{i}\}$ is complete in $\ell^{2}(\mathbb{N})$, then \mathcal{F}_{Ω} is not minimal in $\ell^{2}(\mathbb{N})$.

Theorem. Let $A \in \mathcal{A}$ and let Ω be a non-empty subset of \mathbb{N} . If there exists b_i , $i \in \Omega$ such that $r_i = \infty$, then the set \mathcal{F}_{Ω} is not minimal.

(The proof of this result uses the well known Müntz-Szász theorem).

As an immediate corollary we get

Theorem. Let $A \in \mathcal{A}$ and let Ω be a finite subset of \mathbb{N} . If $\mathcal{F}_{\Omega} = \{A^{l}e_{i} : i \in \Omega, l = 0, ..., l_{i}\}$ is complete in $\ell^{2}(\mathbb{N})$, then \mathcal{F}_{Ω} is not minimal in $\ell^{2}(\mathbb{N})$.

So, $\mathcal{F}_{\Omega} = \{A^{l}e_{i}: i \in \Omega, l = 0, \dots, l_{i}\}$ never is a basis !!

Necessary conditions:

Necessary conditions:

If $\mathcal{F}_{\Omega} = \{A^{l}e_{i}: i \in \Omega, l = 0, ..., l_{i}\}$ is a frame, then

i) $\inf\{\|A^l e_i\|_2: i \in \Omega, l = 0, ..., l_i\} = 0.$ (Kadison-Singer conjecture)

Necessary conditions:

If $\mathcal{F}_{\Omega} = \{A^{l}e_{i}: i \in \Omega, l = 0, \dots, l_{i}\}$ is a frame, then

i) $\inf\{\|A^l e_i\|_2: i \in \Omega, l = 0, ..., l_i\} = 0.$ (Kadison-Singer conjecture)

Let $A \in \mathcal{A}$ and let $\Omega \subset \mathbb{N}$ be a finite set. Then the unit norm sequence $\left\{\frac{A^{l}e_{i}}{\|A^{l}e_{i}\|_{2}}: i \in \Omega, l = 0, \dots, l_{i}\right\}$ is not a frame.

Necessary conditions:

If $\mathcal{F}_{\Omega} = \{A^{l}e_{i}: i \in \Omega, l = 0, \dots, l_{i}\}$ is a frame, then

i) $\inf\{\|A^l e_i\|_2: i \in \Omega, l = 0, ..., l_i\} = 0.$ (Kadison-Singer conjecture)

Let $A \in \mathcal{A}$ and let $\Omega \subset \mathbb{N}$ be a finite set. Then the unit norm sequence $\left\{\frac{A^{l}e_{i}}{\|A^{l}e_{i}\|_{2}}: i \in \Omega, l = 0, \dots, l_{i}\right\}$ is not a frame.

ii) 1 or -1 should be a cluster point of the spectrum $\sigma_A = \{\lambda_j\}$.

Necessary conditions:

If $\mathcal{F}_{\Omega} = \{A^{l}e_{i}: i \in \Omega, l = 0, \dots, l_{i}\}$ is a frame, then

i) $\inf\{\|A^l e_i\|_2: i \in \Omega, l = 0, ..., l_i\} = 0.$ (Kadison-Singer conjecture)

Let $A \in \mathcal{A}$ and let $\Omega \subset \mathbb{N}$ be a finite set. Then the unit norm sequence $\left\{\frac{A^{l}e_{i}}{\|A^{l}e_{i}\|_{2}}: i \in \Omega, l = 0, \dots, l_{i}\right\}$ is not a frame.

ii) 1 or -1 should be a cluster point of the spectrum $\sigma_A = \{\lambda_j\}$.

So know we will concentrate on the case $|\Omega| = 1$, that is when we have only one sampling point.

So we are looking for conditions on $b \in \ell^2(\mathbb{N})$ and $D = \text{diag}\{\lambda_j\}$ such that $\{D^l b : l = 0, ...\}$ is a frame for $\ell^2(\mathbb{N})$.

Recall that 1 or -1 should be cluster points.

We also get in that case the following necessary conditions:

- i) $|\lambda_k| < 1$ for all k
- ii) $|\lambda_k| \rightarrow 1.$
- iii) $|\{j \in \mathbb{N} : b(j) \neq 0\}| = +\infty$
- iV) P_j have rank 1 for each $j \in \mathbb{N}$.

Existence of Frames

Theorem. Let $D = \sum_{j} \lambda_{j} P_{j}$ be such that P_{j} have rank 1 for all $j \in \mathbb{N}$, and let $b \in \ell^{2}(\mathbb{N})$. Then $\{D^{l}b : l = 0, 1, ...\}$ is a frame if and only if

i) $|\lambda_k| < 1$ for all k. *ii)* $|\lambda_k| \rightarrow 1$. *iii)* $\{\lambda_k\}$ satisfies Carleson's condition

$$\inf_{n} \prod_{k \neq n} \frac{|\lambda_n - \lambda_k|}{|1 - \bar{\lambda}_n \lambda_k|} \ge \delta, \quad \text{for some } \delta > 0.$$
(2)

iv) $b_k = m_k \sqrt{1 - |\lambda_k|^2}$ for some sequence $\{m_k\}$ satisfying $0 < C_1 \le |m_k| \le C_2 < \infty$.

Existence of Frames

Theorem. Let $D = \sum_{j} \lambda_{j} P_{j}$ be such that P_{j} have rank 1 for all $j \in \mathbb{N}$, and let $b \in \ell^{2}(\mathbb{N})$. Then $\{D^{l}b : l = 0, 1, ...\}$ is a frame if and only if

i) $|\lambda_k| < 1$ for all k. *ii)* $|\lambda_k| \rightarrow 1$. *iii)* $\{\lambda_k\}$ satisfies Carleson's condition

$$\inf_{n} \prod_{k \neq n} \frac{|\lambda_n - \lambda_k|}{|1 - \bar{\lambda}_n \lambda_k|} \ge \delta, \quad \text{for some } \delta > 0.$$
(2)

iv) $b_k = m_k \sqrt{1 - |\lambda_k|^2}$ for some sequence $\{m_k\}$ satisfying $0 < C_1 \le |m_k| \le C_2 < \infty$.

Condition (2) comes from Carleson's theorem on interpolating

sequences in the Hardy space $H^2(\mathbb{D})$ on the open unit disk \mathbb{D} in the complex plane. The connection was pointed us by J. Antezana.

Frames of the form $\{D^l b_i : i \in \Omega, l = 0..., l_i\}$ for the case when $|\Omega| \ge 1$ or when the projections P_j have finite rank but possibly greater than or equal to 1 can easily be found using the last theorem.