Geometric regularity estimates for quasilinear evolution models

João Vitor da Silva

Universidad de Buenos Aires/CONICET (jdasilva@dm.uba.ar)

XIV Encuentro Nacional de Analistas Alberto P. Calderón

Villa General Belgrano, Córdoba, Argentina

November 24, 2018

4 3 6 4 3 6

<ロ> (日) (日) (日) (日) (日)

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models

Introduction

In this Lecture we are interested in studying quantitative features for evolution models of $p-{\rm Laplacian}$ type as follows

Introduction

In this Lecture we are interested in studying quantitative features for evolution models of p-Laplacian type as follows

$$\mathcal{Q}u := \frac{\partial u}{\partial t} - \operatorname{div}(|\nabla u|^{p-2} \nabla u) = f(x, t) \quad \text{in} \quad \Omega_T, \quad p > 2$$
(1.1)

where

 $\checkmark \quad \Omega_T := \Omega \times (0,T)$ with $\Omega \subset \mathbb{R}^N$ a bounded and regular domain;

✓ $f \in L^{q,r}(\Omega_T)$ (a Lebesgue space with mixed norms) endowed with the norm

$$\|f\|_{L^{q,r}(\Omega_T)} := \left(\int_0^T \left(\int_\Omega |f(x,t)|^q dx\right)^{\frac{r}{q}} dt\right)^{\frac{1}{r}} \bullet.$$

а

Motivation

A fundamental issue in linear and nonlinear PDEs consists in inferring which is the expected regularity to weak solutions.

Motivation

A fundamental issue in linear and nonlinear PDEs consists in inferring which is the expected regularity to weak solutions.

By way of motivation, let us visit the linear theory: Let u be a weak solution to:

$$\mathcal{H}u := \frac{\partial u}{\partial t}(x,t) - \Delta u(x,t) = f \text{ in } Q_1^- := B_1 \times (-1,0].$$
(1.2)

Motivation

A fundamental issue in linear and nonlinear PDEs consists in inferring which is the expected regularity to weak solutions.

By way of motivation, let us visit the linear theory: Let u be a weak solution to:

$$\mathcal{H}u := \frac{\partial u}{\partial t}(x,t) - \Delta u(x,t) = f \text{ in } Q_1^- := B_1 \times (-1,0].$$
(1.2)

There are two important aspects which we must take into account:

A priori estimate to Hom. problem Integrability of the Vs with "frozen" coef. source term

Motivation

A fundamental issue in linear and nonlinear PDEs consists in inferring which is the expected regularity to weak solutions.

By way of motivation, let us visit the linear theory: Let u be a weak solution to:

$$\mathcal{H}u := \frac{\partial u}{\partial t}(x,t) - \Delta u(x,t) = f \text{ in } Q_1^- := B_1 \times (-1,0].$$
(1.2)

There are two important aspects which we must take into account:

A priori estimate to Hom. problem Integrability of the Vs with "frozen" coef. source term

Indeed, $v(x,t) := \frac{u(\rho x, \rho^2 t)}{\rho^{\kappa}}$, $\kappa \in (0, 2]$ verifies in the weak sense:

$$\frac{\partial v}{\partial t}(x,t) - \Delta v(x,t) = \rho^{2-\kappa} f(\rho x,\rho^2 t) := f_\rho(x,t) \quad \Rightarrow \quad \|f_\rho\|_{L^{q,r}(\mathbb{Q}^-_1)} \leq \rho^{2-\kappa-\left(\frac{n}{q}+\frac{2}{r}\right)} \|f\|_{L^{q,r}(\mathbb{Q}^-_1)}.$$

Sharp regularity estimates

More integrability of $f \Rightarrow$ More (local) regularity of u

Theorem (da S. and Teixeira, Math. Ann. 18)

Let u be a bounded weak solution to (1.2) then

$f\in L^{q,r}(Q_1^-)$	Sharp Regularity
$1 < \frac{n}{q} + \frac{2}{r} < 2$	$C_{loc}^{\varsigma,\frac{\varsigma}{2}}(Q_1^-)$
$\frac{n}{q} + \frac{2}{r} = 1$	$C_{loc}^{0,Log-Lip}(Q_1^-)$
$0 < \frac{n}{q} + \frac{2}{r} < 1$	$C^{1+\zeta,\frac{1+\zeta}{2}}_{loc}(Q_1^-)$
$BMO \supset L^{\infty,\infty} \simeq L^{\infty}$	$C_{loc}^{1,Log-Lip}(Q_1^-)$

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models

4) Q (2

Introduction

Our result and its natural obstacles References

Explicit representation of the moduli of continuity

Theorem (da S. and Teixeira, Math. Ann. 18)

Let u be a bounded weak solution to (1.2) then

$\mathbf{f}\in L^{q,r}(\mathbf{Q}_1^-)$	Sharp Regularity
$1 < \frac{n}{q} + \frac{2}{r} < 2$	$C_{loc}^{\varsigma,\frac{\varsigma}{2}}(Q_1^-)$
$\frac{n}{q} + \frac{2}{r} = 1$	$C_{loc}^{0,Log-Lip}(Q_1^-)$
$0 < \frac{n}{q} + \frac{2}{r} < 1$	$C^{1+\zeta,\frac{1+\zeta}{2}}_{loc}(Q_1^-)$
$BMO \supset L^{\infty,\infty} \simeq L^{\infty}$	$C_{loc}^{1,Log-Lip}(Q_1^-)$

$$\boldsymbol{\varsigma} := 2 - \left(\frac{n}{q} + \frac{2}{r}\right)$$
 and $\boldsymbol{\zeta} := \min\left\{\alpha_{\operatorname{Hom}}^{-}, 1 - \left(\frac{n}{q} + \frac{2}{r}\right)\right\}$

Sharp Lipschitz Logarithmical moduli of continuity

Theorem (da S. and Teixeira, Math. Ann. 18)

Let u be a bounded weak solution to (1.2) then

$f\in L^{q,r}(Q_1^-)$	Sharp Regularity
$1 < \frac{n}{q} + \frac{2}{r} < 2$	$C_{loc}^{\varsigma,\frac{\varsigma}{2}}(Q_1^-)$
$\frac{n}{q} + \frac{2}{r} = 1$	$C_{loc}^{0,Log-Lip}(Q_1^-)$
$0 < \frac{n}{q} + \frac{2}{r} < 1$	$C^{1+\zeta,\frac{1+\zeta}{2}}_{loc}(Q_1^-)$
$BMO \supset L^{\infty,\infty} \simeq L^{\infty}$	$C_{loc}^{1,Log-Lip}(Q_1^-)$

$$\tau(s) := s \log s^{-1}$$
 and $\psi(r) := s^2 \log s^{-1}$

イロト イヨト イヨト

э

Motivation

One Million Dollar Question:

What should we expect from Nonlinear Scenery $(p \neq 2)$?

Recently, under the condition $:\frac{1}{r} + \frac{n}{pq} < 1 < \frac{2}{r} + \frac{n}{q}$ for p > 2 and by combining geometric tangential methods and intrinsic scaling techniques (cf. [5]), the sharp (geometric) $C_{loc}^{\alpha,\frac{\alpha}{\theta}}$ regularity estimate was established in Teixeira-Urbano^a, where

$$\alpha = \frac{p\left[1 - \left(\frac{1}{r} + \frac{n}{pq}\right)\right]}{p\left[1 - \left(\frac{1}{r} + \frac{n}{pq}\right)\right] + \left(\frac{2}{r} + \frac{n}{q}\right) - 1} \quad \text{and} \quad \theta := 2\alpha + (1 - \alpha)p.$$

а

E.V. Teixeira & J.M. Urbano, *A geometric tangential approach to sharp regularity for degenerate evolution equations.* **Anal. PDE** 7 (2014), no. 3, 733-744.

Motivation

One Million Dollar Question:

What should we expect from Nonlinear Scenery $(p \neq 2)$?

Essentially, Teixeira and Urbano leave as open issues the following scenarios:

$\mathbf{f}\in \mathbf{L}^{\mathbf{q},\mathbf{r}}(\mathbf{Q}_1^-)$	Sharp Regularity
$rac{1}{r}+rac{n}{pq}<1$ and $1<rac{2}{r}+rac{n}{q}$	$C_{loc}^{\alpha, \frac{\alpha}{\theta}}$
$rac{1}{r}+rac{n}{pq}<1$ and $1=rac{2}{r}+rac{n}{q}$	Open Problem
$0 < rac{1}{r} + rac{n}{pq} < 1$ and $0 < rac{2}{r} + rac{n}{q} < 1$	Open Problem
$BMO \supset L^{\infty,\infty} \simeq L^{\infty}$	Open Problem

• (1) • (

Motivation

One Million Dollar Question:

What should we expect from Nonlinear Scenery $(p \neq 2)$?

We will provide an affirmative answer in the two last sceneries:

$\mathbf{f}\in \mathrm{L}^{\mathbf{q},\mathbf{r}}(\mathbf{Q}_{1}^{-})$	Sharp Regularity
$rac{1}{r}+rac{n}{pq}<1$ and $1<rac{2}{r}+rac{n}{q}$	$C_{loc}^{lpha,rac{H}{H}}$
(CC) $0 < \frac{1}{r} + \frac{n}{pq} < 1$ and $0 < \frac{2}{r} + \frac{n}{q} < 1$	$C_{loc}^{1+min\left\{\frac{1-\left(\frac{n}{q}+\frac{2}{r}\right)}{p\left[1-\left(\frac{n}{pq}+\frac{1}{r}\right)\right]-\left[1-\left(\frac{n}{q}+\frac{2}{r}\right)\right]}, \alpha_{Hom}^{-}\right\}}$
$BMO\supset L^{\infty,\infty}\simeq L^\infty$	$C_{\text{loc}}^{1+\min\left\{\frac{1}{p-1}, \alpha_{\text{Hom}}^{-}\right\}}$

Another question:

Are there significant changes between the Teixeira-Urbano's case and the other ones?^a

^aCambia, Todo cambia...Mercedes Sosa. Todo cambia, Live in Europe, 1989.

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models

Motivation

Our Impetus

Therefore, we will focus our attention in establishing sharp (geometric) $C^{1+\alpha}$ regularity estimates for weak solution to (1.1) inside certain critical sets, by using a systematic and modern approach (cf. [1], [2], [3] and [5]).

Motivation

Our Impetus

Therefore, we will focus our attention in establishing sharp (geometric) $C^{1+\alpha}$ regularity estimates for weak solution to (1.1) inside certain critical sets, by using a systematic and modern approach (cf. [1], [2], [3] and [5]).

It is worth highlight that such an estimates play a fundamental role in proving^a:

- Blow-up results and Liouville type results;
- Weak geometric properties (in certain free boundary problems);
- Hausdorff measure estimates (in certain free boundary problems);

а

J.V. da Silva & P. Ochoa, *Fully nonlinear parabolic dead core problems*. To appear in **Pacific J. Math.** 2018.

J.V. da Silva, P. Ochoa & A. Silva, *Regularity for degenerate evolution equations with strong absorption.* J. Differential Equations 264 (2018), no. 12, 7270-7293.

Main Theorem

Theorem (Amaral, da S., Ricarte & Teymurazyan, Israel J. Math. 18)

Let $K \subset \subset Q_1^-$, u be a bounded weak solution of (1.1) in Q_1^- and suppose that (CC) are in force. Then u is $C^{1+\alpha}$ (in the parabolic sense), i.e., there exists a (universal) constant M > 0 such that

$$[u]_{C^{1+\alpha}(K)}^* \le M. \left[\|u\|_{L^{\infty}(Q_1^-)} + \|f\|_{L^{q,r}(Q_1^-)} \right],$$

where

$$[u]_{C^{1+\alpha}(K)}^{*} := \sup_{0 < \rho \le \rho_{0}} \left(\inf_{(x_{0},t_{0}) \in \mathcal{C}_{\rho}^{\alpha}(Q_{1}^{-})} \frac{\|u - \mathfrak{l}_{(x_{0},t_{0})}(u)\|_{L^{\infty}(\hat{Q}_{\rho}^{-}(x_{0},t_{0}) \cap K)}}{\rho^{1+\alpha}} \right)$$

and

$$\mathfrak{l}_{(x_0,t_0)}(u)(x) := u(x_0,t_0) + \nabla u(x_0,t_0) \cdot (x-x_0).$$

Contractor of

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Chapter 1: Approximation result

A key step in accessing the tangential path toward the regularity theory available for "frozen" coefficient, homogeneous p-caloric functions is the following result.

Lemma (*p*-caloric Approximation Lemma)

If u is a weak solution of (1.1) in Q_1^- with $\|u\|_{L^{\infty}(Q_1^-)} \leq 1$, then $\forall \varepsilon > 0$ there exists $\delta = \delta(p, n, \varepsilon) > 0$ such that whenever $\|f\|_{L^{q,r}(Q_1^-)} \leq \delta$ there exists a p-caloric function $\phi : Q_{\frac{1}{2}}^- \to \mathbb{R}$ such that

$$\max\left\{\left\|u-\phi\right\|_{L^{\infty}\left(\mathbb{Q}_{\frac{1}{2}}^{-}\right)}, \left\|\nabla(u-\phi)\right\|_{L^{\infty}\left(\mathbb{Q}_{\frac{1}{2}}^{-}\right)}\right\} < \varepsilon.$$

$$(2.1)$$

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models

Universidad de Buenos Aires

3

くロト (雪下) (ヨト (ヨト))

Chapter 1: Approximation result

Remark (Normalization and "flatness regime")

Assumptions in the Lemma 3 are not restrictive. Indeed, fixed $\delta > 0$ and s > 0, there exists positive constant $\mu = \mu(\delta, s, \|u\|_{L^{\infty}}, \|f\|_{L^{q,r}})$ such that the function

 $v(x,t) := \mu^s u(\mu^s x, \mu^\tau t),$

fall into in the conditions of Lemma 2.1, where $\tau := 2s(p-1) > 0$,

$$0 < \mu < \min\left\{1, \frac{1}{\sqrt[s]{\|u\|_{L^{\infty}(Q_{1}^{-})}}}, \sqrt[\kappa]{\|f\|_{L^{q,r}(Q_{1}^{-})}}\right\}$$

and

$$\kappa = s\left[(p-1)\left(1-\frac{1}{r}\right) + \frac{1}{r}\right] + sp\left[1-\left(\frac{n}{pq}+\frac{1}{r}\right)\right]$$

Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Lemma (Pseudo first step of induction)

Let u be a weak solution of (1.1) in Q_1^- with $||u||_{L^{\infty}(Q_1^-)} \leq 1$. There exist $\delta > 0$ and $\rho \in \left(0, \frac{1}{2}\right)$ such that if $||f||_{L^{q,r}(Q_1^-)} \leq \delta$, then

$$\sup_{\hat{Q}_{\rho}(x_{0},t_{0})} \left| u(x,t) - \mathfrak{l}_{(x_{0},t_{0})}(u)(x) \right| \leq \rho^{1+\alpha}.$$

3

Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Idea of proof.

For $Q_{\rho}^{-}(x_{0},t_{0}) = B_{\rho}(x_{0}) \times (t_{0} - \rho^{\theta},t_{0}]$ with $\theta > 0$ (intrinsic scaling factor):

$$\begin{split} \left\| u - \mathfrak{l}_{(x_0,t_0)}(u) \right\|_{L^{\infty}\left(Q_{\rho}(x_0,t_0)\right)} &\leq \left\| \phi - \mathfrak{l}_{(x_0,t_0)}(\phi) \right\|_{L^{\infty}\left(Q_{\rho}(x_0,t_0)\right)} + |(u - \phi)(x_0,t_0)| \\ &+ \left\| u - \phi \right\|_{L^{\infty}\left(Q_{\rho}(x_0,t_0)\right)} + |\nabla(u - \phi)(x_0,t_0)| \\ &\leq C \sup_{Q_{\rho}(x_0,t_0)} \left(\left| x - x_0 \right| + \sqrt{|t - t_0|} \right)^{1 + \alpha_{\mathrm{Hom}}} + 3\varepsilon \\ &\leq C \rho^{(1 + \alpha_{\mathrm{Hom}})\min\left\{1, \frac{\theta}{2}\right\}} + 3\varepsilon \\ &\leq C \rho^{(1 + \alpha_{\mathrm{Hom}})} + 3\varepsilon \text{ (expected estimate)} \end{split}$$

Universidad de Buenos Aires

• • = • • = •

Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Idea of proof.

Notice that for p > 2

$$1 < 2 + (2-p)\hat{\alpha} \le \theta(\alpha, p, \rho, \|\nabla u\|) \le 2.$$

In this point, we define the intrinsic correction factor for our (corrected) parabolic cylinders:

$$\sigma := \frac{2}{2 + (2-p)\hat{\alpha}} \in [1,2), \text{ where } \hat{\alpha} := \frac{1 - \left(\frac{n}{q} + \frac{2}{r}\right)}{p\left[1 - \left(\frac{n}{pq} + \frac{1}{r}\right)\right] - \left[1 - \left(\frac{n}{q} + \frac{2}{r}\right)\right]}.$$

Such a definition assures that $\theta \sigma \ge 2$, which allow us put the parabolic cylinder in the correct framework.

UBA

イロト イボト イヨト イヨト

Universidad de Buenos Aires

Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Idea of proof.

Coming back to our estimate (now with the corrected cylinder)

$$\hat{Q}^{-}_{\rho^{l}}(x_{0},t_{0}) := B_{\rho^{l}}(x_{0}) \times \left(t_{0} - \rho^{\theta(\sigma+l-1)},t_{0}\right] \subset Q^{-}_{\rho^{l}}(x_{0},t_{0})$$

we can conclude:

$$\begin{aligned} \left\| u - \mathfrak{l}_{(x_0,t_0)}(u) \right\|_{L^{\infty}(\dot{Q}_{\rho}(x_0,t_0))} &\leq C \rho^{(1+\alpha_{\operatorname{Hom}})\min\{1,\frac{\theta\sigma}{2}\}} + 3\varepsilon \\ &\leq C \rho^{(1+\alpha_{\operatorname{Hom}})} + 3\varepsilon \\ &\leq \rho^{1+\alpha} \end{aligned}$$

provided

$$\boldsymbol{\rho} \in \left(0, \min\left\{\frac{1}{2}, \left(\frac{1}{2C}\right)^{\frac{1}{\alpha_{Hom} - \alpha}}\right\}\right) \quad \text{and} \quad \boldsymbol{\varepsilon} \in \left(0, \frac{1}{6}\boldsymbol{\rho}^{1 + \alpha}\right).$$

Chapter 3: The gap in the standard induction process

Different from $C^{1+\zeta}$ regularity estimates proved in the linear setting, we should point out that the former lemma is not enough to proceed with an iterative scheme, because a priori we do not know the equation which would be satisfied by

$$v_k(x,t) := \frac{u(\rho^k x + x_0, \rho^{k\theta} t + t_0) - \mathfrak{l}_k(\rho^k x + x_0)}{\rho^{k(1+\alpha)}},$$

where $\{l_k\}_{k \in \mathbb{N}}$ is sequence of affine functions.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Chapter 4: Iteration: A new oscillation mechanism

Corollary (First (real) step of induction)

Suppose that the assumptions of previous Lemma are in force. Then,

$$\sup_{\hat{Q}_{\rho}^{-}(x_{0},t_{0})}|u(x,t)-u(x_{0},t_{0})| \leq \rho^{1+\alpha}+\rho|\nabla u(x_{0},t_{0})|$$

In order to obtain a precise control on the influence of magnitude of the gradient of u, we iterate solutions (using the previous Corollary) in corrected ρ -adic cylinders.

Lemma (Iterative process)

Under the assumptions of previous Corollary one has

$$\sup_{\hat{Q}_{\rho^{k}}(x_{0},t_{0})} |u(x,t) - u(x_{0},t_{0})| \le \rho^{k(1+\alpha)} + |\nabla u(x_{0},t_{0})| \sum_{j=0}^{k-1} \rho^{k+j\alpha}.$$
(2.2)

Chapter 4: Iteration: A new oscillation mechanism

Our next result provides the geometric regularity estimate inside critical zone. We define the critical zone as follows:

$$\mathcal{C}^{\alpha}_{\rho}(Q_1^-) := \left\{ (x,t) \in Q_1^-; \left| \nabla u(x,t) \right| \le \rho^{\alpha} \right\}$$

Theorem

Suppose that the assumptions of previous Lemma are in force. Then, there exists a universal constant M>1 such that

$$\sup_{\hat{2}\rho_0^-(x_0,t_0)} |u(x,t) - u(x_0,t_0)| \le M\rho_0^{1+\alpha} \left(1 + |\nabla u(x_0,t_0)|\rho_0^{-\alpha}\right), \ \forall \rho_0 \in (0,\rho).$$

Universidad de Buenos Aires

э

Proof of Main Theorem

Proof of the Theorem.

WLOG, we may assume that $K = Q_{\frac{1}{2}}^-$ and $(x_0, t_0) = (0, 0)$. Using previous Theorem (re-scaled according to Remark, if needed), we estimate

$$\sup_{\hat{Q}_{\rho_{0}}^{-}} \frac{\left| u(x,t) - \mathfrak{l}_{(0,0)} u(x) \right|}{\rho^{1+\alpha}} \leq \sup_{\substack{\hat{Q}_{\rho_{0}}^{-}}} \frac{\left| u(x,t) - u(0,0) \right|}{\rho_{0}^{1+\alpha}} + \frac{\left| \nabla u(0,0) \right| \rho_{0}}{\rho_{0}^{1+\alpha}} \\ \leq M \left(1 + \left| \nabla u(0,0) \right| \rho_{0}^{-\alpha} \right) + 1 \\ \leq 3M$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Final Chapter: The Journey Continues...

Coming back to the open issues:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Expected regularity estimates

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

References

イロト イヨト イヨト

Universidad de Buenos Aires

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models

Thank you very much for your attention : -)!

We welcome your visit for knowing our research in the UBA's Math. Department!

Follow me on ResearchGate ; -)

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models

Aires