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Introduction

In this Lecture we are interested in studying quantitative features for evolution
models of p−Laplacian type as follows

Qu :=
∂u
∂t
− div(|∇u|p−2∇u) = f (x, t) in ΩT , p > 2 (1.1)

where

X ΩT := Ω× (0, T) with Ω ⊂ RN a bounded and regular domain;

X f ∈ Lq,r(ΩT) (a Lebesgue space with mixed norms) endowed with the norm

‖f‖Lq,r(ΩT)
:=

(ˆ T

0

(ˆ
Ω
|f (x, t)|qdx

) r
q

dt

) 1
r

a.

a

A. Benedek & R. Panzone, The space Lp, with mixed norm. Duke Math. J.
28 1961 301-324.
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Motivation

A fundamental issue in linear and nonlinear PDEs consists in inferring which is the
expected regularity to weak solutions.

By way of motivation, let us visit the linear theory: Let u be a weak solution to:

Hu :=
∂u
∂t

(x, t)− ∆u(x, t) = f in Q−1 := B1 × (−1, 0]. (1.2)

There are two important aspects which we must take into account:

A priori estimate to Hom. problem Integrability of the
Vs

with “frozen” coef. source term

Indeed, v(x, t) := u(ρx,ρ2t)
ρκ , κ ∈ (0, 2] verifies in the weak sense:

∂v
∂t

(x, t)− ∆v(x, t) = ρ2−κ f (ρx, ρ2t) := fρ(x, t) ⇒ ‖fρ‖Lq,r(Q−1 ) ≤ ρ
2−κ−

(
n
q +

2
r

)
‖f‖Lq,r(Q−1 ).
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Sharp regularity estimates

More integrability of f ⇒ More (local) regularity of u

Theorem (da S. and Teixeira, Math. Ann. 18)

Let u be a bounded weak solution to (1.2) then

f ∈ Lq,r(Q−1 ) Sharp Regularity

1 < n
q +

2
r < 2 Cς, ς

2
loc (Q

−
1 )

n
q +

2
r = 1 C0,Log-Lip

loc (Q−1 )

0 < n
q +

2
r < 1 C1+ζ, 1+ζ

2
loc (Q−1 )

BMO ⊃ L∞,∞ ' L∞ C1,Log-Lip
loc (Q−1 )
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Explicit representation of the moduli of continuity

Theorem (da S. and Teixeira, Math. Ann. 18)

Let u be a bounded weak solution to (1.2) then

f ∈ Lq,r(Q−1 ) Sharp Regularity

1 < n
q +

2
r < 2 Cς, ς

2
loc (Q

−
1 )

n
q +

2
r = 1 C0,Log-Lip

loc (Q−1 )

0 < n
q +

2
r < 1 C1+ζ, 1+ζ

2
loc (Q−1 )

BMO ⊃ L∞,∞ ' L∞ C1,Log-Lip
loc (Q−1 )

ς := 2−
(

n
q
+

2
r

)
and ζ := min

{
α−Hom, 1−

(
n
q
+

2
r

)}
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Sharp Lipschitz Logarithmical moduli of continuity

Theorem (da S. and Teixeira, Math. Ann. 18)

Let u be a bounded weak solution to (1.2) then

f ∈ Lq,r(Q−1 ) Sharp Regularity

1 < n
q +

2
r < 2 Cς, ς

2
loc (Q

−
1 )

n
q +

2
r = 1 C0,Log-Lip

loc (Q−1 )

0 < n
q +

2
r < 1 C1+ζ, 1+ζ

2
loc (Q−1 )

BMO ⊃ L∞,∞ ' L∞ C1,Log-Lip
loc (Q−1 )

τ(s) := s log s−1 and ψ(r) := s2 log s−1
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Motivation

One Million Dollar Question:
What should we expect from Nonlinear Scenery (p 6= 2)?

Recently, under the condition : 1
r +

n
pq < 1 < 2

r +
n
q for p > 2 and by combining

geometric tangential methods and intrinsic scaling techniques (cf. [5]), the sharp

(geometric) C
α, α

θ
loc regularity estimate was established in Teixeira-Urbanoa, where

α =
p
[
1−

(
1
r +

n
pq

)]
p
[
1−

(
1
r +

n
pq

)]
+
(

2
r +

n
q

)
− 1

and θ := 2α + (1− α)p.

a

E.V. Teixeira & J.M. Urbano, A geometric tangential approach to sharp regularity
for degenerate evolution equations. Anal. PDE 7 (2014), no. 3, 733-744.
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Motivation

One Million Dollar Question:
What should we expect from Nonlinear Scenery (p 6= 2)?

Essentially, Teixeira and Urbano leave as open issues the following scenarios:

f ∈ Lq,r(Q−1 ) Sharp Regularity
1
r +

n
pq < 1 and 1 < 2

r +
n
q C

α, α
θ

loc
1
r +

n
pq < 1 and 1 = 2

r +
n
q Open Problem

0 < 1
r +

n
pq < 1 and 0 < 2

r +
n
q < 1 Open Problem

BMO ⊃ L∞,∞ ' L∞ Open Problem
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Motivation

One Million Dollar Question:

What should we expect from Nonlinear Scenery (p 6= 2)?

We will provide an affirmative answer in the two last sceneries:

f ∈ Lq,r(Q−1 ) Sharp Regularity
1
r +

n
pq < 1 and 1 < 2

r +
n
q C

α, α
θ

loc

(CC) 0 < 1
r +

n
pq < 1 and 0 < 2

r +
n
q < 1 C

1+min

{
1−( n

q + 2
r )

p[1−( n
pq + 1

r )]−[1−( n
q + 2

r )]
, α−Hom

}
loc

BMO ⊃ L∞,∞ ' L∞ C
1+min

{
1

p−1 , α−Hom

}
loc

Another question:

Are there significant changes between the Teixeira-Urbano’s case and the other ones?a

aCambia, Todo cambia...Mercedes Sosa. Todo cambia, Live in Europe, 1989.
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Motivation

Our Impetus
Therefore, we will focus our attention in establishing sharp (geometric) C1+α regularity

estimates for weak solution to (1.1) inside certain critical sets, by using a systematic and
modern approach (cf. [1], [2], [3] and [5]).

It is worth highlight that such an estimates play a fundamental role in provinga:

1 Blow-up results and Liouville type results;

2 Weak geometric properties (in certain free boundary problems);

3 Hausdorff measure estimates (in certain free boundary problems);

a

J.V. da Silva & P. Ochoa, Fully nonlinear parabolic dead core problems. To
appear in Pacific J. Math. 2018.

J.V. da Silva, P. Ochoa & A. Silva, Regularity for degenerate evolution equations
with strong absorption. J. Differential Equations 264 (2018), no. 12, 7270-7293.
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Main Theorem

Theorem (Amaral, da S., Ricarte & Teymurazyan, Israel J. Math. 18)

Let K ⊂⊂ Q−1 , u be a bounded weak solution of (1.1) in Q−1 and suppose that (CC) are in

force. Then u is C1+α (in the parabolic sense), i.e., there exists a (universal) constant
M > 0 such that

[u]∗C1+α(K) ≤ M.
[
‖u‖L∞(Q−1 ) + ‖f‖Lq,r(Q−1 )

]
,

where

[u]∗C1+α(K) := sup
0<ρ≤ρ0

(
inf

(x0 ,t0)∈Cα
ρ (Q

−
1 )

‖u− l(x0 ,t0)
(u)‖L∞(Q̂−ρ (x0 ,t0)∩K)

ρ1+α

)
and

l(x0 ,t0)
(u)(x) := u(x0, t0) +∇u(x0, t0) · (x− x0).
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Chapter 1: Approximation result

A key step in accessing the tangential path toward the regularity theory available for
“frozen” coefficient, homogeneous p−caloric functions is the following result.

Lemma (p−caloric Approximation Lemma)

If u is a weak solution of (1.1) in Q−1 with ‖u‖L∞(Q−1 ) ≤ 1, then ∀ε > 0 there exists

δ = δ(p, n, ε) > 0 such that whenever ‖f‖Lq,r(Q−1 ) ≤ δ there exists a p-caloric function

φ : Q−1
2
→ R such that

max

‖u− φ‖
L∞

(
Q−1

2

), ‖∇(u− φ)‖
L∞

(
Q−1

2

)
 < ε. (2.1)

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models



Introduction
Our result and its natural obstacles

References

Chapter 1: Approximation result

Remark (Normalization and “flatness regime”)

Assumptions in the Lemma 3 are not restrictive. Indeed, fixed δ > 0 and s > 0, there exists
positive constant µ = µ(δ, s, ‖u‖L∞ , ‖f‖Lq,r ) such that the function

v(x, t) := µsu(µsx, µτt),

fall into in the conditions of Lemma 2.1, where τ := 2s(p− 1) > 0,

0 < µ < min

1,
1

s
√
‖u‖L∞(Q−1 )

, κ

√
δ

‖f‖Lq,r(Q−1 )


and

κ = s
[
(p− 1)

(
1− 1

r

)
+

1
r

]
+ sp

[
1−

(
n
pq

+
1
r

)]
.
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Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Lemma (Pseudo first step of induction)

Let u be a weak solution of (1.1) in Q−1 with ‖u‖L∞(Q−1 ) ≤ 1. There exist δ > 0 and

ρ ∈
(

0, 1
2

)
such that if ‖f‖Lq,r(Q−1 ) ≤ δ, then

sup
Q̂ρ(x0 ,t0)

∣∣∣u(x, t)− l(x0 ,t0)
(u)(x)

∣∣∣ ≤ ρ1+α.

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models
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Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Idea of proof.

For Q−ρ (x0, t0) = Bρ(x0)×
(
t0 − ρθ , t0

]
with θ > 0 (intrinsic scaling factor):

∥∥∥u− l(x0 ,t0)
(u)
∥∥∥

L∞(Qρ(x0 ,t0))
≤

∥∥∥φ− l(x0 ,t0)
(φ)
∥∥∥

L∞(Qρ(x0 ,t0))
+ |(u− φ)(x0, t0)|

+ ‖u− φ‖L∞(Qρ(x0 ,t0))
+ |∇(u− φ)(x0, t0)|

≤ C sup
Qρ(x0 ,t0)

(
|x− x0|+

√
|t− t0|

)1+αHom

+ 3ε

≤ Cρ(1+αHom)min{1, θ
2 } + 3ε

≤ Cρ(1+αHom) + 3ε (expected estimate)

João Vitor da Silva Geometric regularity estimates for quasilinear evolution models
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Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Idea of proof.

Notice that for p > 2
1 < 2 + (2− p)α̂ ≤ θ(α, p, ρ, ‖∇u‖) ≤ 2.

In this point, we define the intrinsic correction factor for our (corrected) parabolic cylinders:

σ :=
2

2 + (2− p)α̂
∈ [1, 2), where α̂ :=

1−
(

n
q + 2

r

)
p
[
1−

(
n
pq + 1

r

)]
−
[
1−

(
n
q + 2

r

)] .

Such a definition assures that θσ ≥ 2, which allow us put the parabolic cylinder in the
correct framework.
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Chapter 2: Metric (a priori estimate) Vs Geometry of parabolic cylinder

Idea of proof.

Coming back to our estimate (now with the corrected cylinder)

Q̂−
ρl (x0, t0) := Bρl (x0)×

(
t0 − ρθ(σ+l−1), t0

]
⊂ Q−

ρl (x0, t0)

we can conclude:∥∥∥u− l(x0 ,t0)
(u)
∥∥∥

L∞(Q̂ρ(x0 ,t0))
≤ Cρ(1+αHom)min{1, θσ

2 } + 3ε

≤ Cρ(1+αHom) + 3ε
≤ ρ1+α

provided

ρ ∈
(

0, min

{
1
2

,
(

1
2C

) 1
αHom−α

})
and ε ∈

(
0,

1
6

ρ1+α

)
.

.
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Chapter 3: The gap in the standard induction process

Different from C1+ζ regularity estimates proved in the linear setting, we should point
out that the former lemma is not enough to proceed with an iterative scheme, because a
priori we do not know the equation which would be satisfied by

vk(x, t) :=
u(ρkx + x0, ρkθt + t0)− lk(ρ

kx + x0)

ρk(1+α)
,

where {lk}k∈N is sequence of affine functions.
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Chapter 4: Iteration: A new oscillation mechanism

Corollary (First (real) step of induction)

Suppose that the assumptions of previous Lemma are in force. Then,

sup
Q̂−ρ (x0 ,t0)

|u(x, t)− u(x0, t0)| ≤ ρ1+α + ρ|∇u(x0, t0)|.

In order to obtain a precise control on the influence of magnitude of the gradient of u,
we iterate solutions (using the previous Corollary) in corrected ρ-adic cylinders.

Lemma (Iterative process)

Under the assumptions of previous Corollary one has

sup
Q̂−

ρk (x0 ,t0)

|u(x, t)− u(x0, t0)| ≤ ρk(1+α) + |∇u(x0, t0)|
k−1

∑
j=0

ρk+jα. (2.2)
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Chapter 4: Iteration: A new oscillation mechanism

Our next result provides the geometric regularity estimate inside critical zone.
We define the critical zone as follows:

Cα
ρ (Q

−
1 ) :=

{
(x, t) ∈ Q−1 ; |∇u(x, t)| ≤ ρα

}
.

Theorem

Suppose that the assumptions of previous Lemma are in force. Then, there exists a
universal constant M > 1 such that

sup
Q̂−ρ0 (x0 ,t0)

|u(x, t)− u(x0, t0)| ≤ Mρ0
1+α

(
1 + |∇u(x0, t0)|ρ−α

0
)

, ∀ρ0 ∈ (0, ρ).
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Proof of Main Theorem

Proof of the Theorem.

WLOG, we may assume that K = Q−1
2

and (x0, t0) = (0, 0). Using previous Theorem

(re-scaled according to Remark, if needed), we estimate

sup
Q̂−ρ0

∣∣∣u(x, t)− l(0,0)u(x)
∣∣∣

ρ1+α
≤ sup

Q̂−ρ0

|u(x, t)− u(0, 0)|
ρ1+α

0

+
|∇u(0, 0)|ρ0

ρ1+α
0

≤ M
(
1 + |∇u(0, 0)|ρ−α

0
)
+ 1

≤ 3M
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Final Chapter: The Journey Continues...

Coming back to the open issues:

f ∈ Lq,r(Q−1 ) Sharp Regularity
1
r +

n
pq = 1 and 1 < 2

r +
n
q Open Problem

1
r +

n
pq < 1 and 1 < 2

r +
n
q C

α, α
θ

loc
1
r +

n
pq < 1 and 1 = 2

r +
n
q Open Problem

(CC) 0 < 1
r +

n
pq < 1 and 0 < 2

r +
n
q < 1 C

1+min

{
1−( n

q + 2
r )

p[1−( n
pq + 1

r )]−[1−( n
q + 2

r )]
, α−Hom

}
loc

BMO ⊃ L∞,∞ ' L∞ C
1+min

{
1

p−1 , α−Hom

}
loc
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Expected regularity estimates

f ∈ Lq,r(Q−1 ) Sharp Regularity
1
r +

n
pq = 1 and 1 < 2

r +
n
q BMOloc

1
r +

n
pq < 1 and 1 < 2

r +
n
q C

α, α
θ

loc
1
r +

n
pq < 1 and 1 = 2

r +
n
q Log-Lipschitz type estimate

(CC) 0 < 1
r +

n
pq < 1 and 0 < 2

r +
n
q < 1 C

1+min

{
1−( n

q + 2
r )

p[1−( n
pq + 1

r )]−[1−( n
q + 2

r )]
, α−Hom

}
loc

BMO ⊃ L∞,∞ ' L∞ C
1+min

{
1

p−1 , α−Hom

}
loc
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Thank you very much for your attention : −)!
We welcome your visit for knowing our research in the UBA’s Math. Department!

Follow me on ResearchGate ;−)
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