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Eigenvalues of D?u

For a function u : Q ¢ R” — R we denote its Hessian as

2
D2y — ( ocu >
0Xx;0X; i\

and
M (D?u) < Xo(D?u) < ... < \(DPu) < ... \p(DPu)
the ordered eigenvalues of the Hessian D?u.

Notice that
Au = \(D?u) + ... + M\p(D?u).



Main goals

For the problem

Aj(D?u) =0, in Q,
u=F, on 909Q.

¢ Relate solutions to convex/concave envelopes of the
boundary datum F.

e Find a necessary and sulfficient condition on the domain Q in
such a way that this problem has a viscosity solution that is
continuous in Q2 for every F € C(09).

e Show a connection with probability (game theory).

e Study a parabolic version of this problem.



Convex envelopes

A function u: Q C R" — R is convex if
uAx+ (1 =XN)y) < Aiu(x)+ (1 = ANu(y).
Given F : 0Q — R the convex envelope of Fin Qs

(x) = sup u(x).
u convex, ujga<F

That is, u* is the largest convex function that is below F on 99.



Concave envelopes

u is concave if
uAx+ (1 =XN)y) > xu(x)+ (1 = Nu(y).
Given F : 0Q — R the concave envelope of F in Qis

Ui (x) =

inf u(x).
u concave, ujpe>F

That is, u, is the smallest concave function that is above F on
o0



Convex envelopes

If u € C? is convex then D?u(x) must be positive semidefinite,

(D?u(x)v,v) >0

In terms of the eigenvalues of D?u this can be written as

A (D?u(x)) = inf (D?u(x)v,v) >0

|v|=1 -

Moreover, the convex envelope of F in Q, u*, is the largest
viscosity solution to

A (D?u) =0, in Q,
u<F, on 0f2.

A. Oberman — L. Silvestre (2011).



Convex envelopes

Notice that in an interval (a, b) C R, it holds that

_ (u(b) — u(a))

b a (x —a)+ u(a).

Therefore, a convex function, u, has the following property: for
every segment (a, b) inside Q we have

u(s) < v(s) se(ab)

being v the concave envelope of the boundary values u(a),
u(b)in (a,b).



Concave / convex envelopes

Let H; be the set of functions v such that
v<F on 092,

and have the following property: for every S affine of dimension
j and every j—dimensional domain D ¢ SN it holds that

v<z in D

where z is the concave envelope of v|yp in D.



Concave / convex envelopes

Theorem The function

u(x) = sup v(x)
veH;

is the largest viscosity solution to
\(D?u) =0 in Q,
with u < F on 92.

The equation for the concave envelope of F|sq in Q is just
An = 0; while the equation for the convex envelope is A\ = 0.



Condition (H)

A comparison principle (hence uniqueness) for the equation
\j(D?u) =0
was proved in

F.R. Harvey, H.B. Jr. Lawson, (2009).



Condition (G)

Our geometric condition on the domain reads as follows: Given
y € 90 we assume that for every r > 0 there exists § > 0 such
that for every x € Bs(y) N Q and S C R" a subspace of
dimension j, there exists v € S of norm 1 such that

(G)) {X+ tver N Br(y) NOQ # 0.

We say that Q satisfies condition (G) if it satisfies both (G;) and
(GN—j+1)-



Theorem The problem

Aj(D?u) =0, inQ,
u=F, on 09.

has a continuous solution (up to the boundary) for every
continuous data F

if and only if

Q satisfies condition (G).



The Laplacian and a random walk

Let us consider a final payoff function
F:R"\Q+—R.

In a random walk with steps of size ¢ from x the position of the
particle can move to
X * eej,

each movement being chosen at random with the same
probability, 1/2n.

We assumed that Q2 is homogeneous and that every time the
movement is independent of its past history.



The Laplacian, A

Let
Ue(x) = EX(F(xn))

be the expected final payoff when we move with steps of size e.
Applying conditional expectations we get

Ue(x) = Z <21nu€(x + e€)) + %ue(x — eej)> :

j=1
That is,

n

0=>)" {ue(x + €6)) — 2Uc(X) + Ue(x — eej)}.

j=1



The Laplacian, A

Now, one shows that u. converge as ¢ — 0 to a continuous
function u uniformly in €.

Then, we get that u is a viscosity solution to the Laplace
equation

—Au=0 in Q,
u=F on 09Q.



A game

@ Two-person, zero-sum game: two players are in contest
and the total earnings of one are the losses of the other.
Player |, plays trying to minimize his expected outcome.
Player Il is trying to maximize.

@ Q c R”, bounded domain and F : R” \ Q — R a final payoff
function.

@ Starting point xo € Q. At each turn, Player | chooses a
subspace S of dimension j and then Player Il chooses
v e Swith |v| =1.

@ The new position of the game is x & ev with probability
(1/2—-1/2).

@ Game ends when xy & €, Player | earns F(xy) (Player Il
earns —F(xy))




The sequence of positions {xp, X1, --- , Xy} has some
probability, which depends on

@ The starting point xp.
@ The strategies of players, S; and Sj;.

Expected result Taking into account the probability defined by
the initial value and the strategies:

Eg s, (F(xn))

"Smart” players

@ Player | tries to choose at each step a strategy which
minimizes the result.

@ Player Il tries to choose at each step a strategy which
maximizes the result.



Extremal cases

u(x) = supianE)é, s,,(F(XN))
s Su 7

uy(x) = infsupEg, s, (F(Xn))
Si s,

The game has a value & u; = uy.

Theorem This game has a value

ue(x).



Dynamic Programming Principle

Main Property (Dynamic Programming Principle)

1 1
ut(x) = inf su —US(X +ev +u€x—ev}
() wmaﬁ%aﬁﬂ{ (-t V) + 2t (- ev)

0= inf su Us(x +ev) —2u¢(x) + U (x —ev
wm&ﬁ%&ﬁﬂ{ (x+ ev) = 2u°(x) + U (x — ev) }

ldea
If \y < ... < Ay are the eigenvalues of D?u(x), the j—st
eigenvalue verifies

min ~ max (D?u(x)v,v) = \.
dim(S)=j veS,|v|=1



Theorem |t holds that

u. — u, ase — 0,
uniformly in Q.
The limit u is the unique viscosity solution to

)\j(Dzu) =0, inQ,
u=F, on 09.



A parabolic version

Consider
u(x, t) — A\j(D?u(x, 1)) = 0, inQ x (0,+00),
u(x,t) = F(x), on 92 x (0, +00),
u(x,0) = uo(0), in Q,

This problem is the evolution version of our previous elliptic
problem
{ A(D?z(x)) =0, inQ,
z(x) = F(x), on 012,



A parabolic version

Theorem For the parabolic problem there is also an associated
game.

Theorem For Q strictly convex and uy compatible with F
(Uploa = F), existence and uniqueness for the parabolic
problem holds.

Theorem (asymptotic behaviour) There exist positive
constants C (depending on the initial condition uy) and p > 0
(depending only on ), such that

lu-, £) = ()| < CeTH.



A parabolic version

In addition, we also describe an interesting behavior of the
solution to

ur(x, t) — \j(D?u(x, 1)) =0, inQ x (0,+00),
u(x,t) =0, on 9 x [0, +00),
u(x,0) = o, in Q,

with ug any continuous function and 1 < j < N.

Theorem There exists T > 0 depending only on €2, such that
the viscous solution u satisfies u(x,t) =0, forany t > T.
Moreover, for any affine function F the same phenomenon also
holds (just apply the same argumentto i = u — z).
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