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Eigenvalues of D2u

For a function u : Ω ⊂ Rn 7→ R we denote its Hessian as

D2u =

(
∂2u
∂xi∂xj

)
i,j

and

λ1(D2u) ≤ λ2(D2u) ≤ .... ≤ λj(D2u) ≤ ....λn(D2u)

the ordered eigenvalues of the Hessian D2u.

Notice that
∆u = λ1(D2u) + ...+ λn(D2u).
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Main goals

For the problem{
λj(D2u) = 0, in Ω,

u = F , on ∂Ω.

• Relate solutions to convex/concave envelopes of the
boundary datum F .

• Find a necessary and sufficient condition on the domain Ω in
such a way that this problem has a viscosity solution that is
continuous in Ω for every F ∈ C(∂Ω).

• Show a connection with probability (game theory).

• Study a parabolic version of this problem.



beamer-tu-logo

Convex envelopes

A function u : Ω ⊂ Rn 7→ R is convex if

u(λx + (1− λ)y) ≤ λu(x) + (1− λ)u(y).

Given F : ∂Ω 7→ R the convex envelope of F in Ω is

u∗(x) = sup
u convex, u|∂Ω≤F

u(x).

That is, u∗ is the largest convex function that is below F on ∂Ω.
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Concave envelopes

u is concave if

u(λx + (1− λ)y) ≥ λu(x) + (1− λ)u(y).

Given F : ∂Ω 7→ R the concave envelope of F in Ω is

u∗(x) = inf
u concave, u|∂Ω≥F

u(x).

That is, u∗ is the smallest concave function that is above F on
∂Ω
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Convex envelopes

If u ∈ C2 is convex then D2u(x) must be positive semidefinite,

〈D2u(x)v , v〉 ≥ 0.

In terms of the eigenvalues of D2u this can be written as

λ1(D2u(x)) = inf
|v |=1
〈D2u(x)v , v〉 ≥ 0.

Moreover, the convex envelope of F in Ω, u∗, is the largest
viscosity solution to{

λ1(D2u) = 0, in Ω,

u ≤ F , on ∂Ω.

A. Oberman – L. Silvestre (2011).
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Convex envelopes

Notice that in an interval (a,b) ⊂ R, it holds that

u∗(x) = u∗(x) =
(u(b)− u(a))

b − a
(x − a) + u(a).

Therefore, a convex function, u, has the following property: for
every segment (a,b) inside Ω we have

u(s) ≤ v(s) s ∈ (a,b)

being v the concave envelope of the boundary values u(a),
u(b) in (a,b).
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Concave / convex envelopes

Let Hj be the set of functions v such that

v ≤ F on ∂Ω,

and have the following property: for every S affine of dimension
j and every j−dimensional domain D ⊂ S ∩ Ω it holds that

v ≤ z in D

where z is the concave envelope of v |∂D in D.
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Concave / convex envelopes

Theorem The function

u(x) = sup
v∈Hj

v(x)

is the largest viscosity solution to

λj(D2u) = 0 in Ω,

with u ≤ F on ∂Ω.

The equation for the concave envelope of F |∂Ω in Ω is just
λn = 0; while the equation for the convex envelope is λ1 = 0.



beamer-tu-logo

Condition (H)

A comparison principle (hence uniqueness) for the equation

λj(D2u) = 0

was proved in

F.R. Harvey, H.B. Jr. Lawson, (2009).
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Condition (G)

Our geometric condition on the domain reads as follows: Given
y ∈ ∂Ω we assume that for every r > 0 there exists δ > 0 such
that for every x ∈ Bδ(y) ∩ Ω and S ⊂ Rn a subspace of
dimension j , there exists v ∈ S of norm 1 such that

(Gj) {x + tv}t∈R ∩ Br (y) ∩ ∂Ω 6= ∅.

We say that Ω satisfies condition (G) if it satisfies both (Gj) and
(GN−j+1).
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Theorem The problem{
λj(D2u) = 0, in Ω,

u = F , on ∂Ω.

has a continuous solution (up to the boundary) for every
continuous data F

if and only if

Ω satisfies condition (G).
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The Laplacian and a random walk

Let us consider a final payoff function

F : Rn \ Ω 7→ R.

In a random walk with steps of size ε from x the position of the
particle can move to

x ± εej ,

each movement being chosen at random with the same
probability, 1/2n.

We assumed that Ω is homogeneous and that every time the
movement is independent of its past history.
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The Laplacian, ∆

Let
uε(x) = Ex (F (xN))

be the expected final payoff when we move with steps of size ε.
Applying conditional expectations we get

uε(x) =
n∑

j=1

(
1

2n
uε(x + εej) +

1
2n

uε(x − εej)

)
.

That is,

0 =
n∑

j=1

{
uε(x + εej)− 2uε(x) + uε(x − εej)

}
.
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The Laplacian, ∆

Now, one shows that uε converge as ε→ 0 to a continuous
function u uniformly in Ω.

Then, we get that u is a viscosity solution to the Laplace
equation {

−∆u = 0 in Ω,
u = F on ∂Ω.
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A game

Rules
Two-person, zero-sum game: two players are in contest
and the total earnings of one are the losses of the other.
Player I, plays trying to minimize his expected outcome.
Player II is trying to maximize.
Ω ⊂ Rn, bounded domain and F : Rn \ Ω→ R a final payoff
function.
Starting point x0 ∈ Ω. At each turn, Player I chooses a
subspace S of dimension j and then Player II chooses
v ∈ S with |v | = 1.
The new position of the game is x ± εv with probability
(1/2–1/2).
Game ends when xN 6∈ Ω, Player I earns F (xN) (Player II
earns −F (xN))



beamer-tu-logo

Remark

The sequence of positions {x0, x1, · · · , xN} has some
probability, which depends on

The starting point x0.
The strategies of players, SI and SII .

Expected result Taking into account the probability defined by
the initial value and the strategies:

Ex0
SI ,SII

(F (xN))

”Smart” players
Player I tries to choose at each step a strategy which
minimizes the result.
Player II tries to choose at each step a strategy which
maximizes the result.
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Extremal cases

uI(x) = sup
SI

inf
SII

Ex
SI ,SII

(F (xN))

uII(x) = inf
SII

sup
SI

Ex
SI ,SII

(F (xN))

The game has a value⇔ uI = uII .

Theorem This game has a value

uε(x).
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Dynamic Programming Principle

Main Property (Dynamic Programming Principle)

uε(x) = inf
dim(S)=j

sup
v∈S,|v |=1

{
1
2

uε(x + εv) +
1
2

uε(x − εv)

}

0 = inf
dim(S)=j

sup
v∈S,|v |=1

{
uε(x + εv)− 2uε(x) + uε(x − εv)

}
Idea
If λ1 ≤ ... ≤ λN are the eigenvalues of D2u(x), the j−st
eigenvalue verifies

min
dim(S)=j

max
v∈S,|v |=1

〈D2u(x)v , v〉 = λj .
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Theorem It holds that

uε → u, as ε→ 0,

uniformly in Ω.

The limit u is the unique viscosity solution to{
λj(D2u) = 0, in Ω,

u = F , on ∂Ω.
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A parabolic version

Consider
ut (x , t)− λj(D2u(x , t)) = 0, in Ω× (0,+∞),
u(x , t) = F (x), on ∂Ω× (0,+∞),
u(x ,0) = u0(0), in Ω,

This problem is the evolution version of our previous elliptic
problem {

λj(D2z(x)) = 0, in Ω,
z(x) = F (x), on ∂Ω,
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A parabolic version

Theorem For the parabolic problem there is also an associated
game.

Theorem For Ω strictly convex and u0 compatible with F
(u0|∂Ω = F), existence and uniqueness for the parabolic
problem holds.

Theorem (asymptotic behaviour)There exist positive
constants C (depending on the initial condition u0) and µ > 0
(depending only on Ω), such that

‖u(·, t)− z(·)‖∞ ≤ Ce−µt .
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A parabolic version

In addition, we also describe an interesting behavior of the
solution to

ut (x , t)− λj(D2u(x , t)) = 0, in Ω× (0,+∞),
u(x , t) = 0, on ∂Ω× [0,+∞),
u(x ,0) = u0, in Ω,

with u0 any continuous function and 1 < j < N.

Theorem There exists T > 0 depending only on Ω, such that
the viscous solution u satisfies u(x , t) ≡ 0, for any t > T .
Moreover, for any affine function F the same phenomenon also
holds (just apply the same argument to ũ = u − z).
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