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Motivation I: dimensionality reduction

Approximation by linear subspaces of finite dimensional data in a
vector space: Principal Component Analysis.

Approximation by shift-invariant subspaces of data in L2(Rd):
Aldroubi, Cabrelli, Hardin and Molter 2007.
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Motivation II: symmetries in data - non abelian



Results

For non abelian symmetries on L2(Rd), we will discuss:

1. characterizations of invariant spaces;

2. construction of group Parseval frames;

3. approximation by group invariant subspaces.



Definition of group invariance
Let Λ ⊂ Rd be a lattice subgroup1, and let G ⊂ O(d) be a finite
group of isometries such that gΛ = Λ for all g ∈ G .

Let Γ = Λ o G = {(k, g) : k ∈ Λ, g ∈ G}, with composition law

(k , g) · (k ′, g ′) = (gk ′ + k , gg ′).

Γ is a crystallographic group, which acts on Rd by

(k, g)x = gx + k .

The corresponding action on L2(Rd) is given by the operators

T (k)f (x) = f (x − k) , R(g)f (x) = f (g−1x) , for f ∈ L2(Rd)

which indeed satisfy T (k)R(g)T (k ′)R(g ′) = T (gk ′ + k)R(gg ′).

A closed subspace V ⊂ L2(Rd) is Γ-invariant if

T (k)R(g)V ⊂ V ∀k ∈ Λ , g ∈ G .

1That is Λ = AZd ⊂ Rd for A ∈ GLd(R).
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Shift-invariant spaces I
Let Λ⊥ ⊂ Rd be the annihilator2 lattice of Λ, and let Ω ⊂ Rd be
|Ω ∩ (Ω + s)| = 0 for 0 6= s ∈ Λ⊥, and |Rd \

⋃
s∈Λ⊥ Ω + s| = 0.

The map T : L2(Rd)→ L2(Ω, `2(Λ⊥)) is the surjective isometry

T [f ](ω) = {f̂ (ω + s)}s∈Λ⊥ .

Since T [T (k)f ](ω) = e−2πikωT [f ](ω), it is equivalent to have

I V ⊂ L2(Rd) is Λ-invariant: f ∈ V ⇒ T (k)f ∈ V for all k ∈ Λ

I T [V ] is invariant under multiplication by e−2πikω for all k ∈ Λ

If V is Λ-invariant, there exists Φ = {φi}i∈N ⊂ L2(Rd) such that

V = span{T (k)φi : k ∈ Λ, i ∈ N}L
2(Rd )

.

Thus

T [V ] = span{e−2πik· T [φi ] : k ∈ Λ, i ∈ N}
L2(Ω,`2(Λ⊥))

2If Λ = AZd , then Λ⊥ = (At)−1Zd .
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Γ-invariance

Γ-invariance = Λ-invariance + G -invariance

Characterize Γ-invariance ⇐⇒ characterize G -invariance for
shift-invariant spaces.

Theorem (B. Cabrelli Hernández Molter)

V ⊂ L2(Rd) is Γ-invariant if and only if it is shift-invariant and its
range function J satisfies, for all g ∈ G,

J (g tω) = r(g−1)J (ω) , a.e. ω ∈ Ω.

where r(g){cs}s∈Λ⊥ = {cg ts}s∈Λ⊥ , for c ∈ `2(Λ⊥).

Proof.
This is based on the intertwining of the action R of G on L2(Rd)
with the isometry T , which reads

T [R(g)ψ](ω) = r(g)T [ψ](g tω) , a.e. ω ∈ Ω.
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Shift-invariant spaces II
Let Φ = {φi}Ni=1 ⊂ L2(Rd) be a finite family. The pre-Gramian TΦ

is the (infinite) matrix-valued L2 function of Ω

TΦ(ω) =


...

...
T [φ1](ω) . . . T [φN ](ω)

...
...

 .

The Gramian of Φ is the N × N matrix-valued L1 function of Ω

GΦ(ω) = T ∗Φ (ω)TΦ(ω) =
( ∑

s∈Λ⊥

φ̂j(ω + s)φ̂i (ω + s)
)
i ,j
.

The system of translates {T (k)φi}k,i is a Parseval frame, i.e.

f =
N∑
i=1

∑
k∈Λ

〈f ,T (k)φi 〉L2(Rd )T (k)φi ∀ f ∈ span{T (k)φi}k,i

if and only if GΦ(ω) is an orthogonal projection for a.e. ω ∈ Ω.
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Γ-invariance and the Gramian

Γ-invariance can be studied at the level of generators:

a finitely generated SIS V ⊂ Rd is Γ-invariant if and only if there
exist N ×#G vectors Ψ = {ψg

i }Ni=1, g∈G ⊂ L2(Rd) such that

V = span{T (k)ψg
i : k ∈ Λ, g ∈ G , i = 1, . . . ,N}

L2(Rd )

and ψg
i = R(g)ψe

i , i.e. they can be obtained by the action of G .

Lemma (B Cabrelli Hernández Molter)

Let V ⊂ L2(Rd) be a SIS with N ×#G generators
Ψ = {ψg

i }Ni=1, g∈G ⊂ L2(Rd). Then V is Γ-invariant if and only if

TΨ(g tω) = r(g−1)TΨ(ω)λ(g)

where λ(g)c(j , g ′) = c(j , g−1g ′) for c ∈ C(N×#G).
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TΨ(g tω) = r(g−1)TΨ(ω)λ(g)

where λ(g)c(j , g ′) = c(j , g−1g ′) for c ∈ C(N×#G).



Group Parseval frames

Theorem (B Cabrelli Hernández Molter)

For any Φ = {ϕi}Ni=1 ⊂ L2(Rd) there exists Φ̃ = {ϕ̃i}Ni=1 ⊂ L2(Rd)
such that span{T (k)R(g)ϕi}k,g ,i = span{T (k)R(g)ϕ̃i}k,g ,i , and

{T (k)R(g)ϕ̃i}k,g ,i is a Parseval frame.

Proof.
Let Ψ = {R(g)ϕi : g ∈ G , i = 1, . . . ,N}, and define

Q(ω) = TΨ(ω)(GΨ(ω)+)
1
2 .

Then Q∗(ω)Q(ω) = PRange(GΨ(ω)), so, denoting by {qgi }Ni=1, g∈G

its columns and by ϕ̃g
i = T −1[qgi ], we have that

{T (k)ϕ̃g
i }k,g ,i is a Parseval frame.

Moreover, ϕ̃g
i = R(g)ϕ̃e

i , because Q(g t) = r(g−1)Q(ω)λ(g).



Group Parseval frames

Theorem (B Cabrelli Hernández Molter)

For any Φ = {ϕi}Ni=1 ⊂ L2(Rd) there exists Φ̃ = {ϕ̃i}Ni=1 ⊂ L2(Rd)
such that span{T (k)R(g)ϕi}k,g ,i = span{T (k)R(g)ϕ̃i}k,g ,i , and

{T (k)R(g)ϕ̃i}k,g ,i is a Parseval frame.

Proof.
Let Ψ = {R(g)ϕi : g ∈ G , i = 1, . . . ,N}, and define

Q(ω) = TΨ(ω)(GΨ(ω)+)
1
2 .

Then Q∗(ω)Q(ω) = PRange(GΨ(ω)), so, denoting by {qgi }Ni=1, g∈G

its columns and by ϕ̃g
i = T −1[qgi ], we have that

{T (k)ϕ̃g
i }k,g ,i is a Parseval frame.

Moreover, ϕ̃g
i = R(g)ϕ̃e

i , because Q(g t) = r(g−1)Q(ω)λ(g).



Group Parseval frames

Theorem (B Cabrelli Hernández Molter)

For any Φ = {ϕi}Ni=1 ⊂ L2(Rd) there exists Φ̃ = {ϕ̃i}Ni=1 ⊂ L2(Rd)
such that span{T (k)R(g)ϕi}k,g ,i = span{T (k)R(g)ϕ̃i}k,g ,i , and

{T (k)R(g)ϕ̃i}k,g ,i is a Parseval frame.

Proof.
Let Ψ = {R(g)ϕi : g ∈ G , i = 1, . . . ,N}, and define

Q(ω) = TΨ(ω)(GΨ(ω)+)
1
2 .

Then Q∗(ω)Q(ω) = PRange(GΨ(ω)), so, denoting by {qgi }Ni=1, g∈G

its columns and by ϕ̃g
i = T −1[qgi ], we have that

{T (k)ϕ̃g
i }k,g ,i is a Parseval frame.

Moreover, ϕ̃g
i = R(g)ϕ̃e

i , because Q(g t) = r(g−1)Q(ω)λ(g).



Group Parseval frames

Theorem (B Cabrelli Hernández Molter)

For any Φ = {ϕi}Ni=1 ⊂ L2(Rd) there exists Φ̃ = {ϕ̃i}Ni=1 ⊂ L2(Rd)
such that span{T (k)R(g)ϕi}k,g ,i = span{T (k)R(g)ϕ̃i}k,g ,i , and

{T (k)R(g)ϕ̃i}k,g ,i is a Parseval frame.

Proof.
Let Ψ = {R(g)ϕi : g ∈ G , i = 1, . . . ,N}, and define

Q(ω) = TΨ(ω)(GΨ(ω)+)
1
2 .

Then Q∗(ω)Q(ω) = PRange(GΨ(ω)), so, denoting by {qgi }Ni=1, g∈G

its columns and by ϕ̃g
i = T −1[qgi ], we have that

{T (k)ϕ̃g
i }k,g ,i is a Parseval frame.

Moreover, ϕ̃g
i = R(g)ϕ̃e

i , because Q(g t) = r(g−1)Q(ω)λ(g).



Best approximation problem

Let F = {f1, . . . , fm} ⊂ L2(Rd), and let κ ∈ N be fixed. We want
to minimize

E [Ψ] =
m∑
i=1

‖fi − PSΓ(Ψ)fi‖2
L2(Rd )

over all Ψ ⊂ L2(Rd) finite and such that #Ψ ≤ κ, where

SΓ(Ψ) = span
{
T (k)R(g)ψ, k ∈ Λ, g ∈ G , ψ ∈ Ψ

}
.

Note that, if {T (k)R(g)ψ} is a Parseval frame, then

PSΓ(Ψ)f =
∑
k∈Λ

∑
g∈G

∑
ψ∈Ψ

〈f ,T (k)R(g)ψ〉L2(Rd )T (k)R(g)ψ.
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Fundamental domain
We know that the action by translations of Λ⊥ on Rd has a
fundamental domain Ω ⊂ Rd . But we will also need that the
action of Γ has a fundamental domain P, that satisfies

|P ∩ g tP| = 0 for g 6= e , and
∣∣∣Ω− ⋃

g∈G
g tP

∣∣∣ = 0.
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Approximation by Γ-invariant spaces

Theorem (B Cabrelli Hernández Molter)

The problem of finding the minimizer Ψ of E [Ψ] over all Ψ with
cardinality ≤ κ is equivalent to the problem of finding the range
function J with #Ψ×#G generators, that minimizes

m∑
i=1

∑
g∈G
‖T [R(g)fi ](ω)− PJ (ω)T [R(g)fi ](ω)‖2

`2(Λ⊥)

for a.e. ω ∈ P.

This equivalent problem can be solved for each ω ∈ P by
Eckhart-Young theorem (e.g. using SVD) over the data

a(i , g) = T [R(g)fi ](ω) ∈ `2(Λ⊥) i ∈ {1, . . . ,m}, g ∈ G

which allows us to obtain explicit expressions for the generators of
the approximating Γ-invariant space in L2(Rd) . . .
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Muchas gracias!


