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Motivation |: dimensionality reduction

Approximation by linear subspaces of finite dimensional data in a
vector space: Principal Component Analysis.
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Approximation by shift-invariant subspaces of data in L2(R9):
Aldroubi, Cabrelli, Hardin and Molter 2007.
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Motivation |lI: symmetries in data - non abelian




Results

For non abelian symmetries on L2(R9), we will discuss:
1. characterizations of invariant spaces;
2. construction of group Parseval frames;

3. approximation by group invariant subspaces.
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group of isometries such that gA = A for all g € G.

Let T =AxG={(k,g) : k€A ge G}, with composition law
(k.8)- (K',g") = (gk' + k. gg')-
I is a crystallographic group, which acts on R? by
(k,g)x = gx + k.

The corresponding action on L?(R9) is given by the operators

T(K)f(x) = f(x — k), R(g)f(x) = f(g 'x), for fe L?RY)
which indeed satisfy T(k)R(g)T(k")R(g’) = T(gk’' + k)R(gg’).
A closed subspace V C L?(R9) is [-invariant if

T(k)R(g)V CV VYkel, ge@G.

That is A = AZ? C R? for A € GL4(R).
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[-invariance = A-invariance + G-invariance
Characterize l-invariance <= characterize G-invariance for
shift-invariant spaces.

Theorem (B. Cabrelli Hernandez Molter)
V C L2(RY) is [-invariant if and only if it is shift-invariant and its
range function J satisfies, for all g € G,

Jgw)=r(g )T (w), ae weq.

where r(g){cs}senr = {Cgts}scnr, for c € Lr(AL).

Proof.
This is based on the intertwining of the action R of G on L?(RY)
with the isometry 7, which reads

TIR(@)VI(w) = r(g)T[¥](g'w), ae we. O
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The system of translates { T(k)¢;}« i is a Parseval frame, i.e.

f= ZZ (f, T(k)oi) 2 Rd)T( Yoi ¥ f € span{T(k)pi}k,i

i=1 keN

if and only if % (w) is an orthogonal projection for a.e. w € Q.
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l-invariance can be studied at the level of generators:

a finitely generated SIS V C R? is M-invariant if and only if there
exist N x #G vectors W = {8}V | ¢ C L?(RY) such that

- L2(RY)
V =span{T(k)y% : ke N\ge G,i=1,...,N}

and ¢¥ = R(g)y?, i.e. they can be obtained by the action of G.

Lemma (B Cabrelli Hernandez Molter)

Let V C L2(RY) be a SIS with N x #G generators
V= {&}N | gec C L?(RY). Then V is T-invariant if and only if

Fu(g'w) = r(g™ ") Fu(w)A(g)

where \(g)c(j,g') = c(j,g1g’) for c € CINX#6),
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Group Parseval frames

Theorem (B Cabrelli Hernandez Molter)
For any ® = {¢;}N | C L2(RY) there exists ® = {G N, C [2(RY)
such that span{ T (k)R(g)¢i}kg,i = Span{ T(k)R(g)Pi}kg.i, and

{T(k)R(g)Pi}kg,i is a Parseval frame.

Proof.
Let W ={R(g)pi : g€ G,i=1,...,N}, and define

QW) = Fu(w)(Gu(w)*h)?.

Then Q*(w)Q(w) = Prange(#(w)), SO, denoting by {gN geq

its columns and by @¢ = 7 1[¢f], we have that
{T(k)@%}kg,i is a Parseval frame.

Moreover, 3¢ = R(g)g¢, because Q(gt) = r(g 1) Q(w)\(g). [
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Best approximation problem

Let # = {f,...,fn} C L2(RY), and let k € N be fixed. We want
to minimize

5)[‘”] = Z i — Psr(w)fiH%Z(Rd)
i=1

over all W C L2(RY) finite and such that #V < k, where

Sr(v) = span{ T(k)R(g)v, k€ Ag € G,v e W},

Note that, if { T(k)R(g)v} is a Parseval frame, then

Ps.wyf =D Y > {f, T(R(&)Y) 12(rey T(K)R(g) -

kEA gE€G eV
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fundamental domain Q c RY. But we will also need that the
action of I has a fundamental domain P, that satisfies

\PﬁgtP]:Oforg#e, and ’Q— U gtP’ =0.
geiG

1
2

R(2)P P
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e

R(m)P R(ZE)P

|
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Approximation by [-invariant spaces

Theorem (B Cabrelli Hernandez Molter)

The problem of finding the minimizer ¥ of &[V] over all ¥ with
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Approximation by [-invariant spaces

Theorem (B Cabrelli Hernandez Molter)

The problem of finding the minimizer ¥ of &[V] over all ¥ with
cardinality < k is equivalent to the problem of finding the range
function J with #WV x #G generators, that minimizes

Zl Z(;IT[R — P (o) TIR@) @) 02
1 gc

for a.e. w € P.

This equivalent problem can be solved for each w € P by
Eckhart-Young theorem (e.g. using SVD) over the data

a(i,g) = TIR(g)f|(w) € Lo(AY) ie{l,....m},geG

which allows us to obtain explicit expressions for the generators of
the approximating I-invariant space in L?(R9) ...



Muchas gracias!



