Approximation by group invariant subspaces

Davide Barbieri
(Universidad Autónoma de Madrid)
Joint work with C. Cabrelli, E. Hernández and U. Molter

XIV Encuentro Nacional de Analistas A. P. Calderón
Villa General Belgrano, 22 de Noviembre de 2018

Motivation I: dimensionality reduction

Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

Motivation I: dimensionality reduction

Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

Motivation I: dimensionality reduction

Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

Motivation I: dimensionality reduction

Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

Approximation by shift-invariant subspaces of data in $L^{2}\left(\mathbb{R}^{d}\right)$: Aldroubi, Cabrelli, Hardin and Molter 2007.

Motivation II: symmetries in data - abelian

Motivation II: symmetries in data - abelian

Motivation II: symmetries in data - non abelian

Results

For non abelian symmetries on $L^{2}\left(\mathbb{R}^{d}\right)$, we will discuss:

1. characterizations of invariant spaces;
2. construction of group Parseval frames;
3. approximation by group invariant subspaces.

Definition of group invariance

Let $\Lambda \subset \mathbb{R}^{d}$ be a lattice subgroup ${ }^{1}$, and let $G \subset O(d)$ be a finite group of isometries such that $g \Lambda=\Lambda$ for all $g \in G$.
${ }^{1}$ That is $\Lambda=A \mathbb{Z}^{d} \subset \mathbb{R}^{d}$ for $A \in G L_{d}(\mathbb{R})$.

Definition of group invariance

Let $\Lambda \subset \mathbb{R}^{d}$ be a lattice subgroup ${ }^{1}$, and let $G \subset O(d)$ be a finite group of isometries such that $g \Lambda=\Lambda$ for all $g \in G$.

Let $\Gamma=\Lambda \rtimes G=\{(k, g): k \in \Lambda, g \in G\}$, with composition law

$$
(k, g) \cdot\left(k^{\prime}, g^{\prime}\right)=\left(g k^{\prime}+k, g g^{\prime}\right)
$$

Γ is a crystallographic group, which acts on \mathbb{R}^{d} by

$$
(k, g) x=g x+k
$$

Definition of group invariance

Let $\Lambda \subset \mathbb{R}^{d}$ be a lattice subgroup ${ }^{1}$, and let $G \subset O(d)$ be a finite group of isometries such that $g \Lambda=\Lambda$ for all $g \in G$.

Let $\Gamma=\Lambda \rtimes G=\{(k, g): k \in \Lambda, g \in G\}$, with composition law

$$
(k, g) \cdot\left(k^{\prime}, g^{\prime}\right)=\left(g k^{\prime}+k, g g^{\prime}\right)
$$

Γ is a crystallographic group, which acts on \mathbb{R}^{d} by

$$
(k, g) x=g x+k
$$

The corresponding action on $L^{2}\left(\mathbb{R}^{d}\right)$ is given by the operators

$$
T(k) f(x)=f(x-k), R(g) f(x)=f\left(g^{-1} x\right), \quad \text { for } f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

which indeed satisfy $T(k) R(g) T\left(k^{\prime}\right) R\left(g^{\prime}\right)=T\left(g k^{\prime}+k\right) R\left(g g^{\prime}\right)$.

$$
{ }^{1} \text { That is } \Lambda=A \mathbb{Z}^{d} \subset \mathbb{R}^{d} \text { for } A \in G L_{d}(\mathbb{R}) \text {. }
$$

Definition of group invariance

Let $\Lambda \subset \mathbb{R}^{d}$ be a lattice subgroup ${ }^{1}$, and let $G \subset O(d)$ be a finite group of isometries such that $g \Lambda=\Lambda$ for all $g \in G$.

Let $\Gamma=\Lambda \rtimes G=\{(k, g): k \in \Lambda, g \in G\}$, with composition law

$$
(k, g) \cdot\left(k^{\prime}, g^{\prime}\right)=\left(g k^{\prime}+k, g g^{\prime}\right)
$$

Γ is a crystallographic group, which acts on \mathbb{R}^{d} by

$$
(k, g) x=g x+k
$$

The corresponding action on $L^{2}\left(\mathbb{R}^{d}\right)$ is given by the operators

$$
T(k) f(x)=f(x-k), R(g) f(x)=f\left(g^{-1} x\right), \quad \text { for } f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

which indeed satisfy $T(k) R(g) T\left(k^{\prime}\right) R\left(g^{\prime}\right)=T\left(g k^{\prime}+k\right) R\left(g g^{\prime}\right)$.
A closed subspace $V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Γ-invariant if

$$
T(k) R(g) V \subset V \quad \forall k \in \Lambda, g \in G
$$

${ }^{1}$ That is $\Lambda=A \mathbb{Z}^{d} \subset \mathbb{R}^{d}$ for $A \in G L_{d}(\mathbb{R})$.

Shift-invariant spaces I

Shift-invariant spaces I

Let $\Lambda^{\perp} \subset \mathbb{R}^{d}$ be the annihilator ${ }^{2}$ lattice of Λ, and let $\Omega \subset \mathbb{R}^{d}$ be $|\Omega \cap(\Omega+s)|=0$ for $0 \neq s \in \Lambda^{\perp}$, and $\left|\mathbb{R}^{d} \backslash \bigcup_{s \in \Lambda^{\perp}} \Omega+s\right|=0$.
${ }^{2}$ If $\Lambda=A \mathbb{Z}^{d}$, then $\Lambda^{\perp}=\left(A^{t}\right)^{-1} \mathbb{Z}^{d}$.

Shift-invariant spaces I

Let $\Lambda^{\perp} \subset \mathbb{R}^{d}$ be the annihilator ${ }^{2}$ lattice of Λ, and let $\Omega \subset \mathbb{R}^{d}$ be $|\Omega \cap(\Omega+s)|=0$ for $0 \neq s \in \Lambda^{\perp}$, and $\left|\mathbb{R}^{d} \backslash \bigcup_{s \in \Lambda^{\perp}} \Omega+s\right|=0$.

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{\perp}}
$$

${ }^{2}$ If $\Lambda=A \mathbb{Z}^{d}$, then $\Lambda^{\perp}=\left(A^{t}\right)^{-1} \mathbb{Z}^{d}$.

Shift-invariant spaces I

Let $\Lambda^{\perp} \subset \mathbb{R}^{d}$ be the annihilator ${ }^{2}$ lattice of Λ, and let $\Omega \subset \mathbb{R}^{d}$ be $|\Omega \cap(\Omega+s)|=0$ for $0 \neq s \in \Lambda^{\perp}$, and $\left|\mathbb{R}^{d} \backslash \bigcup_{s \in \Lambda^{\perp}} \Omega+s\right|=0$.

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{\perp}}
$$

Since $\mathcal{T}[T(k) f](\omega)=e^{-2 \pi i k \omega} \mathcal{T}[f](\omega)$, it is equivalent to have

- $V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Λ-invariant: $f \in V \Rightarrow T(k) f \in V$ for all $k \in \Lambda$
- $\mathcal{T}[V]$ is invariant under multiplication by $e^{-2 \pi i k \omega}$ for all $k \in \Lambda$
${ }^{2}$ If $\Lambda=A \mathbb{Z}^{d}$, then $\Lambda^{\perp}=\left(A^{t}\right)^{-1} \mathbb{Z}^{d}$.

Shift-invariant spaces I

Let $\Lambda^{\perp} \subset \mathbb{R}^{d}$ be the annihilator ${ }^{2}$ lattice of Λ, and let $\Omega \subset \mathbb{R}^{d}$ be $|\Omega \cap(\Omega+s)|=0$ for $0 \neq s \in \Lambda^{\perp}$, and $\left|\mathbb{R}^{d} \backslash \bigcup_{s \in \Lambda^{\perp}} \Omega+s\right|=0$.

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{+}}
$$

Since $\mathcal{T}[T(k) f](\omega)=e^{-2 \pi i k \omega} \mathcal{T}[f](\omega)$, it is equivalent to have

- $V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Λ-invariant: $f \in V \Rightarrow T(k) f \in V$ for all $k \in \Lambda$
- $\mathcal{T}[V]$ is invariant under multiplication by $e^{-2 \pi i k \omega}$ for all $k \in \Lambda$ If V is Λ-invariant, there exists $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \phi_{i}: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Thus

$$
\mathcal{T}[V]=\overline{\operatorname{span}\left\{e^{-2 \pi i k \cdot} \mathcal{T}\left[\phi_{i}\right]: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)}
$$

${ }^{2}$ If $\Lambda=A \mathbb{Z}^{d}$, then $\Lambda^{\perp}=\left(A^{t}\right)^{-1} \mathbb{Z}^{d}$.

Shift-invariant spaces I

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{+}}
$$

Since $\mathcal{T}[T(k) f](\omega)=e^{-2 \pi i k \omega} \mathcal{T}[f](\omega)$, it is equivalent to have

- $V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Λ-invariant: $f \in V \Rightarrow T(k) f \in V$ for all $k \in \Lambda$
- $\mathcal{T}[V]$ is invariant under multiplication by $e^{-2 \pi i k \omega}$ for all $k \in \Lambda$

If V is Λ-invariant, there exists $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \phi_{i}: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{2}\left(\mathbb{R}^{d}\right) .
$$

Thus

$$
\mathcal{T}[V]=\overline{\operatorname{span}\left\{e^{-2 \pi i k \cdot} \mathcal{T}\left[\phi_{i}\right]: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)}
$$

Shift-invariant spaces I

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{\perp}}
$$

Since $\mathcal{T}[T(k) f](\omega)=e^{-2 \pi i k \omega} \mathcal{T}[f](\omega)$, it is equivalent to have

- $V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Λ-invariant: $f \in V \Rightarrow T(k) f \in V$ for all $k \in \Lambda$
- $\mathcal{T}[V]$ is invariant under multiplication by $e^{-2 \pi i k \omega}$ for all $k \in \Lambda$

If V is Λ-invariant, there exists $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \phi_{i}: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Thus

$$
\mathcal{T}[V]=\overline{\operatorname{span}\left\{e^{-2 \pi i k \cdot} \mathcal{T}\left[\phi_{i}\right]: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)}
$$

so, we have that $f \in V$ if and only if, for a.e. $\omega \in \Omega$,

$$
\mathcal{T}[f](\omega) \in \overline{\operatorname{span}\left\{\mathcal{T}\left[\phi_{i}\right](\omega): i \in \mathbb{N}\right\}^{\ell_{2}\left(\Lambda^{\perp}\right)}}
$$

Shift-invariant spaces I

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{+}} .
$$

If V is Λ-invariant, there exists $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \phi_{i}: k \in \Lambda, i \in \mathbb{N}\right\}^{L^{2}\left(\mathbb{R}^{d}\right)} .}
$$

Thus

$$
\mathcal{T}[V]=\overline{\operatorname{span}\left\{e^{-2 \pi i k \cdot} \mathcal{T}\left[\phi_{i}\right]: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)}
$$

so, we have that $f \in V$ if and only if, for a.e. $\omega \in \Omega$,

$$
\mathcal{T}[f](\omega) \in{\overline{\operatorname{span}\left\{\mathcal{T}\left[\phi_{i}\right](\omega): i \in \mathbb{N}\right\}}}^{\ell_{2}\left(\Lambda^{\perp}\right)} .
$$

Shift-invariant spaces I

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{+}} .
$$

If V is Λ-invariant, there exists $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \phi_{i}: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Thus

$$
\mathcal{T}[V]=\overline{\operatorname{span}\left\{e^{-2 \pi i k \cdot} \mathcal{T}\left[\phi_{i}\right]: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)}
$$

so, we have that $f \in V$ if and only if, for a.e. $\omega \in \Omega$,

The range function \mathcal{J} of V is the measurable map

$$
\mathcal{J}: \Omega \rightarrow\left\{\text { closed subspaces of } \ell_{2}\left(\wedge^{\perp}\right)\right\}
$$

given by

$$
\mathcal{J}(\omega)={\left.\overline{\operatorname{span}\{\mathcal{T}}\left(\phi_{i}\right)(\omega): i \in \mathbb{N}\right\}^{\ell_{2}\left(\Lambda^{\perp}\right)}}
$$

Shift-invariant spaces I

The map $\mathcal{T}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)$ is the surjective isometry

$$
\mathcal{T}[f](\omega)=\{\widehat{f}(\omega+s)\}_{s \in \Lambda^{+}}
$$

If V is Λ-invariant, there exists $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \phi_{i}: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Thus

$$
\mathcal{T}[V]=\overline{\operatorname{span}\left\{e^{-2 \pi i k \cdot} \mathcal{T}\left[\phi_{i}\right]: k \in \Lambda, i \in \mathbb{N}\right\}}{ }^{L^{2}\left(\Omega, \ell_{2}\left(\Lambda^{\perp}\right)\right)}
$$

so, we have that $f \in V$ if and only if, for a.e. $\omega \in \Omega$,

The range function \mathcal{J} of V is the measurable map

$$
\mathcal{J}: \Omega \rightarrow\left\{\text { closed subspaces of } \ell_{2}\left(\wedge^{\perp}\right)\right\}
$$

given by

$$
\mathcal{J}(\omega)={\left.\overline{\operatorname{span}\{\mathcal{T}}\left(\phi_{i}\right)(\omega): i \in \mathbb{N}\right\}^{\ell_{2}\left(\Lambda^{\perp}\right)}}
$$

Г-invariance

Γ-invariance $=\Lambda$-invariance $+G$-invariance

Г-invariance

Γ-invariance $=\Lambda$-invariance $+G$-invariance
Characterize Γ-invariance \Longleftrightarrow characterize G-invariance for shift-invariant spaces.

Г-invariance

Γ-invariance $=\Lambda$-invariance $+G$-invariance
Characterize Γ-invariance \Longleftrightarrow characterize G-invariance for shift-invariant spaces.

Theorem (B. Cabrelli Hernández Molter)

$V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Γ-invariant if and only if it is shift-invariant and its range function \mathcal{J} satisfies, for all $g \in G$,

$$
\mathcal{J}\left(g^{t} \omega\right)=r\left(g^{-1}\right) \mathcal{J}(\omega), \quad \text { a.e. } \omega \in \Omega .
$$

where $r(g)\left\{c_{s}\right\}_{s \in \Lambda^{\perp}}=\left\{c_{g^{t_{s}}}\right\}_{s \in \Lambda^{\perp}}$, for $c \in \ell_{2}\left(\Lambda^{\perp}\right)$.

Г-invariance

Γ-invariance $=\Lambda$-invariance $+G$-invariance
Characterize $Г$-invariance \Longleftrightarrow characterize G-invariance for shift-invariant spaces.

Theorem (B. Cabrelli Hernández Molter)

$V \subset L^{2}\left(\mathbb{R}^{d}\right)$ is Γ-invariant if and only if it is shift-invariant and its range function \mathcal{J} satisfies, for all $g \in G$,

$$
\mathcal{J}\left(g^{t} \omega\right)=r\left(g^{-1}\right) \mathcal{J}(\omega), \quad \text { a.e. } \omega \in \Omega
$$

where $r(g)\left\{c_{s}\right\}_{s \in \Lambda^{\perp}}=\left\{c_{g^{t} s}\right\}_{s \in \Lambda^{\perp}}$, for $c \in \ell_{2}\left(\Lambda^{\perp}\right)$.

Proof.

This is based on the intertwining of the action R of G on $L^{2}\left(\mathbb{R}^{d}\right)$ with the isometry \mathcal{T}, which reads

$$
\mathcal{T}[R(g) \psi](\omega)=r(g) \mathcal{T}[\psi]\left(g^{t} \omega\right), \quad \text { a.e. } \omega \in \Omega .
$$

Shift-invariant spaces II

Let $\Phi=\left\{\phi_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a finite family. The pre-Gramian \mathscr{T}_{Φ} is the (infinite) matrix-valued L^{2} function of Ω

$$
\mathscr{T}_{\Phi}(\omega)=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\mathcal{T}\left[\phi_{1}\right](\omega) & \ldots & \mathcal{T}\left[\phi_{N}\right](\omega) \\
\vdots & & \vdots
\end{array}\right)
$$

The Gramian of Φ is the $N \times N$ matrix-valued L^{1} function of Ω

$$
\mathscr{G}_{\Phi}(\omega)=\mathscr{T}_{\Phi}^{*}(\omega) \mathscr{T}_{\Phi}(\omega)=\left(\sum_{s \in \Lambda^{\perp}} \widehat{\phi}_{j}(\omega+s) \overline{\widehat{\phi}_{i}(\omega+s)}\right)_{i, j}
$$

Shift-invariant spaces II

Let $\Phi=\left\{\phi_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a finite family. The pre-Gramian \mathscr{T}_{Φ} is the (infinite) matrix-valued L^{2} function of Ω

$$
\mathscr{T}_{\Phi}(\omega)=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\mathcal{T}\left[\phi_{1}\right](\omega) & \ldots & \mathcal{T}\left[\phi_{N}\right](\omega) \\
\vdots & & \vdots
\end{array}\right)
$$

The Gramian of Φ is the $N \times N$ matrix-valued L^{1} function of Ω

$$
\mathscr{G}_{\Phi}(\omega)=\mathscr{T}_{\Phi}^{*}(\omega) \mathscr{T}_{\Phi}(\omega)=\left(\sum_{s \in \Lambda^{\perp}} \widehat{\phi}_{j}(\omega+s) \overline{\hat{\phi}_{i}(\omega+s)}\right)_{i, j}
$$

The system of translates $\left\{T(k) \phi_{i}\right\}_{k, i}$ is a Parseval frame, i.e.

$$
f=\sum_{i=1}^{N} \sum_{k \in \Lambda}\left\langle f, T(k) \phi_{i}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} T(k) \phi_{i} \quad \forall f \in \overline{\operatorname{span}\left\{T(k) \phi_{i}\right\}_{k, i}}
$$

if and only if $\mathscr{G}_{\Phi}(\omega)$ is an orthogonal projection for a.e. $\omega \in \Omega$.

「-invariance and the Gramian

Г-invariance can be studied at the level of generators:

「-invariance and the Gramian

Г-invariance can be studied at the level of generators:
a finitely generated SIS $V \subset \mathbb{R}^{d}$ is Γ-invariant if and only if there exist $N \times \# G$ vectors $\psi=\left\{\psi_{i}^{g}\right\}_{i=1}^{N}, g \in G \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

「-invariance and the Gramian

「-invariance can be studied at the level of generators:
a finitely generated SIS $V \subset \mathbb{R}^{d}$ is Γ-invariant if and only if there exist $N \times \# G$ vectors $\Psi=\left\{\psi_{i}^{g}\right\}_{i=1}^{N}, g \in G \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left.V=\overline{\operatorname{span}\left\{T(k) \psi_{i}^{g}\right.}: k \in \Lambda, g \in G, i=1, \ldots, N\right\}^{L^{2}\left(\mathbb{R}^{d}\right)}
$$

「-invariance and the Gramian

Г-invariance can be studied at the level of generators:
a finitely generated SIS $V \subset \mathbb{R}^{d}$ is Γ-invariant if and only if there exist $N \times \# G$ vectors $\psi=\left\{\psi_{i}^{g}\right\}_{i=1}^{N}, g \in G \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
V=\overline{\operatorname{span}\left\{T(k) \psi_{i}^{g}: k \in \Lambda, g \in G, i=1, \ldots, N\right\}^{L^{2}\left(\mathbb{R}^{d}\right)}}
$$

and $\psi_{i}^{g}=R(g) \psi_{i}^{\mathrm{e}}$, i.e. they can be obtained by the action of G.

「-invariance and the Gramian

Г-invariance can be studied at the level of generators:
a finitely generated SIS $V \subset \mathbb{R}^{d}$ is Γ-invariant if and only if there exist $N \times \# G$ vectors $\psi=\left\{\psi_{i}^{g}\right\}_{i=1}^{N}, g \in G \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left.V=\overline{\operatorname{span}\left\{T(k) \psi_{i}^{g}\right.}: k \in \Lambda, g \in G, i=1, \ldots, N\right\}^{L^{2}\left(\mathbb{R}^{d}\right)}
$$

and $\psi_{i}^{g}=R(g) \psi_{i}^{\mathrm{e}}$, i.e. they can be obtained by the action of G.
Lemma (B Cabrelli Hernández Molter)
Let $V \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a SIS with $N \times \# G$ generators
$\Psi=\left\{\psi_{i}^{g}\right\}_{i=1}^{N}, g \in G \subset L^{2}\left(\mathbb{R}^{d}\right)$. Then V is Γ-invariant if and only if

$$
\mathscr{T}_{\psi}\left(g^{t} \omega\right)=r\left(g^{-1}\right) \mathscr{T}_{\psi}(\omega) \lambda(g)
$$

where $\lambda(g) c\left(j, g^{\prime}\right)=c\left(j, g^{-1} g^{\prime}\right)$ for $c \in \mathbb{C}^{(N \times \# G)}$.

Group Parseval frames

Theorem (B Cabrelli Hernández Molter)
For any $\Phi=\left\{\varphi_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ there exists $\widetilde{\Phi}=\left\{\widetilde{\varphi}_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that $\overline{\operatorname{span}}\left\{T(k) R(g) \varphi_{i}\right\}_{k, g, i}=\overline{\operatorname{span}}\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i}$, and
$\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i}$ is a Parseval frame.

Group Parseval frames

Theorem (B Cabrelli Hernández Molter)
For any $\Phi=\left\{\varphi_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ there exists $\widetilde{\Phi}=\left\{\widetilde{\varphi}_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that $\overline{\operatorname{span}}\left\{T(k) R(g) \varphi_{i}\right\}_{k, g, i}=\overline{\operatorname{span}}\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i}$, and

$$
\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i} \text { is a Parseval frame. }
$$

Proof.
Let $\Psi=\left\{R(g) \varphi_{i}: g \in G, i=1, \ldots, N\right\}$, and define

$$
Q(\omega)=\mathscr{T}_{\psi}(\omega)\left(\mathscr{G}_{\Psi}(\omega)^{+}\right)^{\frac{1}{2}}
$$

Group Parseval frames

Theorem (B Cabrelli Hernández Molter)
For any $\Phi=\left\{\varphi_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ there exists $\widetilde{\Phi}=\left\{\widetilde{\varphi}_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that $\overline{\operatorname{span}}\left\{T(k) R(g) \varphi_{i}\right\}_{k, g, i}=\overline{\operatorname{span}}\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i}$, and

$$
\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i} \text { is a Parseval frame. }
$$

Proof.
Let $\Psi=\left\{R(g) \varphi_{i}: g \in G, i=1, \ldots, N\right\}$, and define

$$
Q(\omega)=\mathscr{T}_{\psi}(\omega)\left(\mathscr{G}_{\psi}(\omega)^{+}\right)^{\frac{1}{2}}
$$

Then $Q^{*}(\omega) Q(\omega)=\mathbb{P}_{\text {Range }\left(\mathscr{G}_{\psi}(\omega)\right)}$, so, denoting by $\left\{q_{i}^{g}\right\}_{i=1, g \in G}^{N}$ its columns and by $\widetilde{\varphi}_{i}^{g}=\mathcal{T}^{-1}\left[q_{i}^{g}\right]$, we have that
$\left\{T(k) \widetilde{\varphi}_{i}^{g}\right\}_{k, g, i}$ is a Parseval frame.

Group Parseval frames

Theorem (B Cabrelli Hernández Molter)
For any $\Phi=\left\{\varphi_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ there exists $\widetilde{\Phi}=\left\{\widetilde{\varphi}_{i}\right\}_{i=1}^{N} \subset L^{2}\left(\mathbb{R}^{d}\right)$ such that $\overline{\operatorname{span}}\left\{T(k) R(g) \varphi_{i}\right\}_{k, g, i}=\overline{\operatorname{span}}\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i}$, and

$$
\left\{T(k) R(g) \widetilde{\varphi}_{i}\right\}_{k, g, i} \text { is a Parseval frame. }
$$

Proof.
Let $\Psi=\left\{R(g) \varphi_{i}: g \in G, i=1, \ldots, N\right\}$, and define

$$
Q(\omega)=\mathscr{T}_{\psi}(\omega)\left(\mathscr{G}_{\Psi}(\omega)^{+}\right)^{\frac{1}{2}} .
$$

Then $Q^{*}(\omega) Q(\omega)=\mathbb{P}_{\text {Range }\left(\mathscr{G}_{\psi}(\omega)\right)}$, so, denoting by $\left\{q_{i}^{g}\right\}_{i=1, g \in G}^{N}$ its columns and by $\widetilde{\varphi}_{i}^{g}=\mathcal{T}^{-1}\left[q_{i}^{g}\right]$, we have that

$$
\left\{T(k) \widetilde{\varphi}_{i}^{g}\right\}_{k, g, i} \text { is a Parseval frame. }
$$

Moreover, $\widetilde{\varphi}_{i}^{g}=R(g) \widetilde{\varphi}_{i}^{\mathrm{e}}$, because $Q\left(g^{t}\right)=r\left(g^{-1}\right) Q(\omega) \lambda(g)$.

Best approximation problem

Let $\mathscr{F}=\left\{f_{1}, \ldots, f_{m}\right\} \subset L^{2}\left(\mathbb{R}^{d}\right)$, and let $\kappa \in \mathbb{N}$ be fixed. We want to minimize

$$
\mathscr{E}[\Psi]=\sum_{i=1}^{m}\left\|f_{i}-\mathbb{P}_{S_{\Gamma}(\Psi)} f_{i}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}
$$

over all $\Psi \subset L^{2}\left(\mathbb{R}^{d}\right)$ finite and such that $\# \Psi \leq \kappa$, where

$$
S_{\Gamma}(\Psi)=\overline{\operatorname{span}}\{T(k) R(g) \psi, k \in \Lambda, g \in G, \psi \in \Psi\} .
$$

Best approximation problem

Let $\mathscr{F}=\left\{f_{1}, \ldots, f_{m}\right\} \subset L^{2}\left(\mathbb{R}^{d}\right)$, and let $\kappa \in \mathbb{N}$ be fixed. We want to minimize

$$
\mathscr{E}[\Psi]=\sum_{i=1}^{m}\left\|f_{i}-\mathbb{P}_{S_{\Gamma}(\Psi)} f_{i}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}
$$

over all $\Psi \subset L^{2}\left(\mathbb{R}^{d}\right)$ finite and such that $\# \Psi \leq \kappa$, where

$$
S_{\Gamma}(\Psi)=\overline{\operatorname{span}}\{T(k) R(g) \psi, k \in \Lambda, g \in G, \psi \in \Psi\} .
$$

Note that, if $\{T(k) R(g) \psi\}$ is a Parseval frame, then

$$
\mathbb{P}_{S_{\Gamma}(\Psi)} f=\sum_{k \in \Lambda} \sum_{g \in G} \sum_{\psi \in \Psi}\langle f, T(k) R(g) \psi\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} T(k) R(g) \psi .
$$

Fundamental domain

We know that the action by translations of Λ^{\perp} on \mathbb{R}^{d} has a fundamental domain $\Omega \subset \mathbb{R}^{d}$. But we will also need that the action of Γ has a fundamental domain P, that satisfies

$$
\left|P \cap g^{t} P\right|=0 \text { for } g \neq \mathrm{e} \text {, and }\left|\Omega-\bigcup_{g \in G} g^{t} P\right|=0 \text {. }
$$

Fundamental domain

We know that the action by translations of Λ^{\perp} on \mathbb{R}^{d} has a fundamental domain $\Omega \subset \mathbb{R}^{d}$. But we will also need that the action of Γ has a fundamental domain P, that satisfies

$$
\left|P \cap g^{t} P\right|=0 \text { for } g \neq \mathrm{e}, \text { and }\left|\Omega-\bigcup_{g \in G} g^{t} P\right|=0
$$

Approximation by Γ-invariant spaces

Theorem (B Cabrelli Hernández Molter)
The problem of finding the minimizer Ψ of $\mathscr{E}[\Psi]$ over all Ψ with cardinality $\leq \kappa$ is equivalent to the problem of finding the range function \mathcal{J} with $\# \Psi \times \# G$ generators, that minimizes

$$
\sum_{i=1}^{m} \sum_{g \in G}\left\|\mathcal{T}\left[R(g) f_{i}\right](\omega)-\mathbb{P}_{\mathcal{J}(\omega)} \mathcal{T}\left[R(g) f_{i}\right](\omega)\right\|_{\ell_{2}\left(\Lambda^{\perp}\right)}^{2}
$$

for a.e. $\omega \in P$.

Approximation by Γ-invariant spaces

Theorem (B Cabrelli Hernández Molter)

The problem of finding the minimizer ψ of $\mathscr{E}[\Psi]$ over all Ψ with cardinality $\leq \kappa$ is equivalent to the problem of finding the range function \mathcal{J} with $\# \Psi \times \# G$ generators, that minimizes

$$
\sum_{i=1}^{m} \sum_{g \in G}\left\|\mathcal{T}\left[R(g) f_{i}\right](\omega)-\mathbb{P}_{\mathcal{J}(\omega)} \mathcal{T}\left[R(g) f_{i}\right](\omega)\right\|_{\ell_{2}\left(\Lambda^{\perp}\right)}^{2}
$$

for a.e. $\omega \in P$.
This equivalent problem can be solved for each $\omega \in P$ by Eckhart-Young theorem (e.g. using SVD) over the data

$$
a(i, g)=\mathcal{T}\left[R(g) f_{i}\right](\omega) \in \ell_{2}\left(\Lambda^{\perp}\right) \quad i \in\{1, \ldots, m\}, g \in G
$$

Approximation by Γ-invariant spaces

Theorem (B Cabrelli Hernández Molter)

The problem of finding the minimizer Ψ of $\mathscr{E}[\Psi]$ over all Ψ with cardinality $\leq \kappa$ is equivalent to the problem of finding the range function \mathcal{J} with $\# \Psi \times \# G$ generators, that minimizes

$$
\sum_{i=1}^{m} \sum_{g \in G}\left\|\mathcal{T}\left[R(g) f_{i}\right](\omega)-\mathbb{P}_{\mathcal{J}(\omega)} \mathcal{T}\left[R(g) f_{i}\right](\omega)\right\|_{\ell_{2}\left(\wedge^{\perp}\right)}^{2}
$$

for a.e. $\omega \in P$.
This equivalent problem can be solved for each $\omega \in P$ by Eckhart-Young theorem (e.g. using SVD) over the data

$$
a(i, g)=\mathcal{T}\left[R(g) f_{i}\right](\omega) \in \ell_{2}\left(\Lambda^{\perp}\right) \quad i \in\{1, \ldots, m\}, g \in G
$$

which allows us to obtain explicit expressions for the generators of the approximating Γ-invariant space in $L^{2}\left(\mathbb{R}^{d}\right) \ldots$

Muchas gracias!

