POINCARÉ, SOBOLEV AND RUBIO DE FRANCIA

In this talk I will present some recents results on weighted Poincaré and Poincaré-Sobolev type inequalities with an explicit analysis on the dependence on the A_p constants of the involved weights. We obtain inequalities of the form

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{q}w\right)^{\frac{1}{q}} \leq C_{w}\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{p}w\right)^{\frac{1}{p}},$$

with different quantitative estimates for both the exponent q and the constant C_w . We will derive those estimates together with a large variety of related results as a consequence of a general selfimproving property shared by functions satisfying the inequality

$$\oint_Q |f - f_Q| d\mu \le a(Q),$$

for all cubes $Q \subset \mathbb{R}^n$ and where *a* is some functional that obeys a specific discrete geometrical summability condition. For the endpoint case of A_1 weights we reach the classical critical Sobolev exponent $p^* = \frac{pn}{n-p}$ which is the largest possible and provide different type of quantitative estimates for C_w .

We will also discuss an interesting application of a variation of the famous extrapolation technique of Rubio de Francia to a problem related to the Keith-Zhong theorem on the open ended condition for Poincaré inequalities.

This is a joint work with Carlos Pérez Moreno from BCAM, Bilbao, Spain.