BMO, weights and the Schrödinger operator

Bruno Bongioanni

Instituto de Matemática Aplicada del Litoral
Facultad de Ingeniería y Ciencias Hídricas
CONICET - UNL
Santa Fe, Argentina

V Congreso Latinoamericano de Matemáticas
11 de julio de 2016, Barranquilla

The space $B M O$

The $B M O$ space is defined as the set of functions $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\|f\|_{B M O}=\sup _{B} \frac{1}{|B|} \int_{B}\left|f-f_{B}\right|<\infty
$$

where $f_{B}=\frac{1}{|B|} \int_{B} f$.

- $\|\cdot\|_{B M O}$ is a semi-norm in $B M O$.
- It is a norm if we consider the quotient $B M O / \mathfrak{C}$ where \mathfrak{C} is the set of constant functions. $B M O / \mathfrak{C}$ is a Banach space.

Clasical versions of $B M O$

- When the domain is a ball or a cube: $B M O(Q)$. Given a ball $Q \subset \mathbb{R}^{d}$, the supremum is taken over balls contained in Q.

$$
\sup _{B \subset Q} \frac{1}{|B|} \int_{B}\left|f-f_{B}\right|<\infty
$$

- With weights: $B M O(w)$. Given a function $w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$, we can ask f to satisfy

$$
\sup _{B} \frac{1}{w(B)} \int_{B}\left|f-f_{B}\right|<\infty
$$

Near L^{∞}

Let $f(x)=|\log | x| |$, for $x \in \mathbb{R}$.

$$
f \in B M O(\mathbb{R})
$$

$$
f \in L^{p}([-1,1]), \quad 1 \leq p<\infty
$$

and

$$
f \notin L^{\infty}([-1,1])
$$

On finite measure BMO belongs between L^{∞} and L^{p} if $1<p<\infty$:

$$
L^{\infty}([-1,1]) \subset B M O([-1,1]) \subset L^{p}([-1,1]) \subset L^{1}([-1,1])
$$

"Sharp" singularities are allowed.

Graphic of f.

Power singularities are not allowed.
If $\alpha>0$,

$$
1 /|x|^{\alpha} \notin B M O
$$

It is easy to see, in particular, that

$$
\frac{1}{\delta} \int_{0}^{\delta}\left|1 /|x|^{\alpha}-\left(1 /|x|^{\alpha}\right)_{(0, \delta)}\right| d x \rightarrow \infty
$$

The function $1 /|x|^{\alpha}$ "is not sharp enough" at the origin.

Globally, a function of $B M O$ can be increasing at infinity, but not so fast.

$$
\lim _{x \rightarrow \infty} \log |x|=\infty
$$

For a computer $\log |x|$ turns a constant very fast:

(the graphic on the intervals $[1,10],[1,50]$ and $[1,500]$)

If $\alpha>0$,

$$
|x|^{\alpha} \notin B M O(\mathbb{R})
$$

We can see this with

$$
\left.\left.\frac{1}{r} \int_{0}^{r}| | x\right|^{\alpha}-\left(|x|^{\alpha}\right)_{(0, r)} \right\rvert\, d x \rightarrow \infty
$$

This is because x^{α} "does not turns a constant fast enough".

The John-Nirenberg inequality

Threre exist constants C_{1} and C_{2} such that for every f in $B M O$, and every ball B and $t>0$, we have

$$
\left|\left\{x \in B:\left|f(x)-f_{B}\right|>t\right\}\right| \leq C_{1}|B| e^{-C_{2} t /\|f\|_{\text {BMO }}} .
$$

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, vOL. XIV. 415-426 (1961)
K. O. Friedricks anniversary issue

On Functions of Bounded Mean Oscillation*
F. JOHN and L. NIRENBERG
§ 1. We prove an inequality (Lemmas 1.1^{\prime}) which has been applied by one of the authors and by J. Moser in their papers in this issue. The inequality expresses that a function, which in every subcube C of a cube C_{0} can be approximated in the L^{1} mean by a constant a_{C} with an error independent of C, differs then also in the L^{p} mean from a_{C} in C by an error of the same order of magnitude. More precisely, the measure of the set of points in C, where the function differs from a_{C} by more than an amount σ decreases exponentially as σ increases.

In Section 2 we apply Lemma I' to derive a result of Weiss and Zygmund [3], and in Section 3 we present an extension of Lemma $\mathbf{1}^{\prime}$.

LEMMA 1. Let $u(x)$ be an integrable function defined in a finite cube C_{0} in n-dimensional space; $x=\left(x_{1}, \cdots, x_{n}\right)$. Assume that there is a constant K such that for every parallel subcube C, and some constant a_{C}, the inequality
(1)

$$
\frac{1}{m(C)} \int_{C}\left|x-a_{C}\right| d x \leqq K
$$

holds. Here $d x$ denotes element of volume and $m(C)$ is the Lebesgue measure of C. Then, if $\mu(\sigma)$ is the measure of the set of points where $\left|u-a_{C_{0}}\right|>\sigma$, we have
(2) $\quad \mu(\sigma) \leqq B e^{-b \sigma / K} m\left(C_{0}\right)$ for $\sigma>0$,
where B, b are constants deponding only on n.
Since for every continuously differentiable function $f(s)$, vanishing at the origin,

Equivalence of p-oscillations

A consequence of the J-N inequality:
The norm

$$
\|f\|_{B M O}=\sup _{B} \frac{1}{|B|} \int_{B}\left|f-f_{B}\right|
$$

is equivalent to

$$
\sup _{B}\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p}\right)^{1 / p}
$$

This is true for all $1<p<\infty$.

The dual of $B M O$

The dual space of $B M O$ is the Hardy space H^{1}.

$$
H^{1}=\left\{f \in L^{1}:\left\|\sup _{t>0} \mid f * \Phi_{t}\right\|_{L^{1}}<\infty\right\},
$$

where

$$
\Phi_{t}(x)=\frac{1}{(4 \pi t)^{d / 2}} e^{|x|^{2} / 4 t}
$$

G. H. Hardy

Frigyes Riesz

Charles Fefferman

CHARACTERIZATIONS OF BOUNDED

MEAN OSCILLATION

BY CHARLES FEFFERMAN

Communicated by M. H. Protter, December 14, 1970
BMO (bounded mean oscillation) is the Banach space of all functions $f \in L_{\text {loc }}^{1}\left(R^{n}\right)$ for which

$$
\|f\|_{\mathrm{BMO}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q}\left|f(x)-\operatorname{av}_{Q} f\right| d x\right)<\infty,
$$

where the sup ranges over all cubes $Q \subseteq R^{n}$, and $\operatorname{av}_{Q} f$ is the mean of f over Q. See [5]. For convenience, we identify f and f^{\prime} in BMO if $f-f^{\prime}$ is constant.

Theorem 1. BMO is the dual of the Hardy space $H^{1}\left(R^{n}\right)$. The inner product is given by $\langle f, g\rangle=\int_{R^{*}} f(x) g(x) d x$ for $f \in B M O$ and g belonging to the dense subspace of C^{∞} rapidly decreasing functions in H^{1}.

Here, we regard H^{1} as the space of $f \in L^{1}\left(R^{n}\right)$ whose Riesz transforms $R_{j}(f)$ are all in L^{1}. See [7].

THEOREM 2. A function belongs to BMO if and only if it can be written in the form $g_{0}+\sum_{j=1}^{n} R_{j}\left(g_{j}\right)$ with $g_{0}, g_{1}, \cdots, g_{n} \in L^{\infty}\left(R^{n}\right)$.

Note that the usual definition

$$
R_{j}(g)(x)=\lim _{x \rightarrow 0: M \rightarrow-} \int_{\kappa<|x-y|<M} K_{f}(x-y) f(y) d y
$$

with $K_{j}(y)=c y_{j} /|y|^{n+1}$ need not make sense for all $g \in L^{\infty}$. (Consider $g(x)=\operatorname{sgn}(x)$ on the line.) Therefore, we define

$$
R_{j}(g)(x)=\lim _{\epsilon \rightarrow 0} \int_{e<|x-x|}\left[K_{j}(x-y)-K_{j}^{0}(-y)\right] g(y) d y
$$

where $K_{j}^{0}(y)=K_{j}(y)$ for $|y|>1$ and $K_{f}^{0}(y)=0$ for $|y| \leqq 1$. This makes sense for all $\mathrm{g} \in L^{\infty}$, and agrees with the usual definition up to an additive constant if g has compact support. See [3, p. 105].

The main idea in proving Theorems 1 and 2 is to study the Poisson integral of a function in BMO. Recall that any function f satisfying

[^0]\[

$$
\begin{equation*}
\int_{R^{n}} \frac{|f(x)|}{|x|+1)^{n+1}} d x<\infty \tag{*}
\end{equation*}
$$

\]

has a Poisson integral $u(x, t)=$ P.I. (f) defined on $R_{+}^{+1}=R^{n} \times(0, \infty)$.
Theorem 3. A function f belongs to BMO if and only if (*) holds and $\iint_{\left|=-z_{0}\right|<b_{0} ; 0 \lll \Delta} t|\nabla u(x, t)|^{2} d x d t \leqq C \delta^{n}$ for all $x_{0} \in R^{n}$ and $\delta>0$.

Theorems 1-3 and their proofs can be used to study H^{1}. For example,

Theorem 4. Let $F=\left(u_{0}(x, t) ; u_{1}(x, t), \cdots, u_{n}(x, t)\right)$ be an $(n+1)$ tuple of harmonic functions on R_{+}^{n+1}, satisfying the Cauchy-Riemann equations of [7]. If the nontangential maximal function $u_{0}^{*}(x)$ $\equiv \sup _{\left|z^{\prime}\right|<t_{;}>0}\left|u_{0}\left(x-x^{\prime}, t\right)\right|$ belongs to L^{1}, then F is in H^{1}.

Different techniques enable us to replace L^{1} and H^{1} by L^{p} and H^{p}, $0<p<\infty$. This generalizes a one-dimensional result of D. Burkholder, R. Gundy, and M. Silverstein (see [1] and [2]).

Further applications of Theorems 1-3 appear in [4] and [6]. [4] contains detailed proofs of the results stated here.

References

1. D. Burkholder and R. Gundy, Extrapolation and interpolation of quasi-linear operators on marlingales, Acta Math, 124 (1970), 249-304,
2. D. Burkholder, R. Gundy and M. Silverstein, A maximal function characteriza tion of the class H^{p} (to appear)
3. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. MR 14, 637.
4. C. Fefferman and E. M. Stein, (in prep.)
5. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 785-799.
6. E. M. Stein, L^{p} boundedness of certain convolution operators, Bull. Amer. Math. Soc. 77 (1971), 404-405.
7. E. M. Stein and G. Weiss, Introduction to Fourier analysis on euclidean spaces, Princeton, 1971.

University of Chicago, Chicago, Illinois 60637

A substitue of L^{∞}

In Harmonic Analysis the BMO space appears in many situations playing the role of the space L^{∞}.

- Some operators fail to be bounded on L^{∞} but they are on $B M O$.

The Schrödinger operator

We consider the Schrödinger operator in \mathbb{R}^{d}, with $d \geq 3$

$$
\mathcal{L}=-\Delta+V
$$

where $V \geq 0$ is a function satisfying for $q>\frac{d}{2}$, the reverse Hölder inequality

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} V(y)^{q} d y\right)^{1 / q} \leq \frac{C}{|B|} \int_{B} V(y) d y \tag{1}
\end{equation*}
$$

for all ball $B \subset \mathbb{R}^{d}$.

The space $B M O_{\mathcal{L}}$

In [DZ-1999] it is defined the space $H_{\mathcal{L}}^{1}$ associated to \mathcal{L} and the authors find an atomic decomposition.
Later in [DGMTZ-2005] they find that the dual of $H_{\mathcal{L}}^{1}$ is a space that they call $B M O_{\mathcal{L}}$ similar to the clasical $B M O$, defined as the space of functions $f \in L_{\text {loc }}^{1}$ such that

$$
\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| \leq C \quad\left(f_{B}=\frac{1}{|B|} \int_{B} f\right)
$$

and

$$
\frac{1}{|B(x, r)|} \int_{B(x, r)}|f| \leq C, \quad r \geq \rho(x)
$$

The critical radius function

A very important quantity to develop this theory is

$$
\rho(x)=\text { ínf }\left\{r>0: \frac{1}{r^{d-2}} \int_{B(x, r)} V \leq 1\right\}, \quad x \in \mathbb{R}^{d} .
$$

This function plays a crucial rol in the description of the spaces and the estimates of the operators associated to \mathcal{L} [Shen-1995], [DGMTZ-2005], [DZ-2002], [DZ-2003].

- A critical ball: $B(x, \rho(x))$.

Properties of ρ

- Threre exist C and $k_{0} \geq 1$ such that,

$$
C^{-1} \rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{-k_{0}} \leq \rho(y) \leq C \rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{\frac{k_{0}}{k_{0}+1}}
$$

for all $x, y \in \mathbb{R}^{d}$.

- If x and y belong to $B(x, \rho(x))$, then $\rho(x) \approx \rho(y)$.
- We have a useful covering of \mathbb{R}^{d}.

Proposition

There exists a sequence of points $\left\{x_{k}\right\}_{k=1}^{\infty}$ in \mathbb{R}^{d}, such that the family of balls $B_{k}=B\left(x_{k}, \rho\left(x_{k}\right)\right), k \geq 1$, satisfy

1. $\cup_{k} B_{k}=\mathbb{R}^{d}$.
2. There exists N such that, for all $k \in \mathbb{N}$, $\operatorname{card}\left\{j: 4 B_{j} \cap 4 B_{k} \neq \emptyset\right\} \leq N$.

The function ρ says how to make calculations.

The associated fractional integral

We have study boundedness of some operators associated to \mathcal{L}. One of them is the fractional integral associated to \mathcal{L}, defined for $\alpha>0$, as

$$
\mathcal{L}^{-\alpha / 2} f(x)=\int_{0}^{\infty} e^{-t \mathcal{L}} f(x) t^{\alpha / 2} \frac{d t}{t}
$$

where $\left\{e^{-t \mathcal{L}}\right\}_{t>0}$, is the heat semigroup associated to \mathcal{L}.

Boundedness of $\mathcal{L}^{-\alpha / 2}$

Theorem (DGMTZ-2005)
If $0<\alpha<d$ the operator $\mathcal{L}^{-\alpha / 2}$ is bounded form $L^{d / \alpha}$ into $B M O_{\mathcal{L}}$.

- We use weights.

For $\eta \geq 1$ we say that the weight $w \in D_{\eta}$ if there exists a constant C such that

$$
w(t B) \leq C t^{d \eta} w(B)
$$

for all ball $B \subset \mathbb{R}^{d}$.

- Is it possible to go beyond $L^{d / \alpha}$?

Smoother spaces: the $B M O_{\beta}$

In (HSV-1997) the authors define spaces $B M O_{\beta}$ with weights w where a function f has to satisfy

$$
\int_{B}\left|f-f_{B}\right| \leq C w(B)|B|^{\beta / d}, \quad \text { con } f_{B}=\frac{1}{|B|} \int_{B} f
$$

for every ball B.
If we join both definitions of (DGMTZ-2005) and (HSV-1997), we have:
For $\beta \geq 0$ we define the space $B M O_{\mathcal{L}}^{\beta}(w)$ as the set of functions $f \in L_{\text {loc }}^{1}$ such that,

$$
\begin{equation*}
\int_{B}\left|f-f_{B}\right| \leq C w(B)|B|^{\beta / d} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B(x, R)}|f| \leq C w(B(x, R))|B(x, R)|^{\beta / d} \quad R \geq \rho(x) \tag{3}
\end{equation*}
$$

A Lipschitz version with weights

Following (HSV-1997), for $\beta>0, w \in L_{\text {loc }}^{1}$, we define the quantity

$$
W_{\beta}(x, r)=\int_{B(x, r)} \frac{w(z)}{|z-x|^{d-\beta}} d z \quad x \in \mathbb{R}^{d} \quad r>0
$$

The Lipschitz space associated to \mathcal{L} denoted by $\Lambda_{\mathcal{L}}^{\beta}(w)$ is defined as the set of functions f such that

$$
\begin{equation*}
|f(x)-f(y)| \leq C\left[W_{\beta}(x,|x-y|)+W_{\beta}(y,|x-y|)\right] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)| \leq C W_{\beta}(x, \rho(x)) \tag{5}
\end{equation*}
$$

for almost all x and y in \mathbb{R}^{d}.
The norm is the maximum of the two infimum of the constants in (4) and (5).

Observation
For almost all $x \in \mathbb{R}^{d}, W_{\beta}(x, r)$ is finite for all $r>0$, and increases with r.

Coincidence with the Lipschitz version

As in the classical case, we have a Lipschitz description of $B M O_{\mathcal{L}}^{\beta}(w)$.
Proposition
If for $\beta>0$ the weight w satisfies the doubling condition, then

$$
\Lambda_{\mathcal{L}}^{\beta}(w)=B M O_{\mathcal{L}}^{\beta}(w)
$$

with equivalent norms.

Boundedness of $\mathcal{L}^{-\alpha / 2}$ in $B M O^{\beta}(w)$

A theorem with weights
Theorem
If $0<\alpha<d$ and $w \in R H_{p^{\prime}} \cap D_{\eta}$, where $1 \leq \eta<1+\frac{\delta_{0}}{d}$ with $\delta_{0}=\min \left(1,2-\frac{d}{q}\right)$, then the operator $\mathcal{L}^{-\alpha / 2}$ is bounded form $L^{d / \alpha}(w)$ into $B M O_{\mathcal{L}}(w)$.

Beyond $L^{d / \alpha}$
Theorem
If $0<\alpha<d$ and $\frac{d}{\alpha} \leq p<\frac{d}{\left(\alpha-\delta_{0}\right)^{+}}$with $\delta_{0}=\min \left(1,2-\frac{d}{q}\right)$;
$w \in R H_{p^{\prime}} \cap D_{\eta}$, where $1 \leq \eta<1-\frac{\alpha}{d}+\frac{\delta_{0}}{d}+\frac{1}{p}$, then the operator
$\mathcal{L}^{-\alpha / 2}$ is bounded from $L^{p}(w)$ into $B M O_{\mathcal{L}}^{\alpha-d / p}(w)$.

Riesz Transforms

Classical Riesz Transforms

$$
\mathbf{R}_{i}=\frac{\partial}{\partial x_{i}}(-\Delta)^{-1 / 2}, \quad i=1,2, \ldots, d
$$

- They are bounded in $L^{p}(w)$, for $1<p<\infty$, whenever

$$
\left(\int_{B} w\right)\left(\int_{B} w^{-\frac{1}{p-1}}\right)^{p-1} \leq C|B|^{p}, \quad\left(\text { Concidión } A_{p}\right)
$$

for all ball B of \mathbb{R}^{d},

- They are NOT bounded on L^{∞}.
- If the weight $w=1$, this extreme is replaced by $B M O$: the space of functios $f \in L_{\text {loc }}^{1}$ such that

$$
\sup _{B} \frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right| d x<\infty
$$

Results in classical $B M O^{\beta}(w)$

- (Muckenhoupt-Wheeden, 1975) Boundedness of Riesz in BMO spaces with weights.
- (Morvidone, 2003) Boundedness of the Hilbert transform in $B M O^{\psi}(w)$.
Remind: $0 \leq \beta<1, f \in B M O^{\beta}(w)$ if and only if $f \in L_{\text {loc }}^{1}$ such that

$$
\sup _{B} \frac{1}{|B|^{\beta / d} w(B)} \int_{B}\left|f(x)-f_{B}\right| d x<\infty .
$$

Theorem
\mathbf{R}_{i} are bounded on $B M O^{\beta}(w)$, whenever $w \in A_{\infty}=\cup_{p=1}^{\infty} A_{p}$ and

$$
|B|^{\frac{1-\beta}{d}} \int_{B^{c}} \frac{w(y)}{\left|x_{B}-y\right|^{d+1-\beta}} \leq C \frac{w(B)}{|B|} .
$$

Riesz transforms associated to the Schrödinger operator

New Riesz transforms:

$$
\mathcal{R}_{i}=\frac{\partial}{\partial x_{i}}(-\Delta+V)^{-1 / 2}, \quad i=1,2, \ldots, d
$$

They where studied by Shen in 1995.

- \mathcal{R}_{i} are Calderón-Zygmund if $V \in R H_{q}$.
- They are bounded on L^{2}.
- They have kernels satisfying for certain constants C and δ, the condition
- $|K(x, y)| \leq \frac{C}{|x-y|^{d}}$
- $\left\lvert\, K(x+h, y)-K(x, y) \leq \frac{C h^{\delta}}{|x-y|^{d+\delta}}\right.$, whenever $|h|<|x-y| / 2$. (the same for the other variable)
- If $V \in R H_{q}$ for some $\frac{d}{2}<q<d$, then \mathcal{R}_{i} becomes bounded in L^{p}, for $1<p<\frac{1}{d}-\frac{1}{q}$.

Some results for the new Riesz Transforms

The reverse Hölder index of $V: \quad q_{0}=\sup \left\{q: V \in R H_{q}\right\}$
Theorem
Let $V \in R H_{d}$ and $w \in A_{\infty} \cap D_{\eta}$.
(a) For all $0 \leq \beta<1-d / q_{0} y 1 \leq \eta<1+\frac{1-d / q_{0}-\beta}{d}$, the operators $\mathcal{R}_{j}, 1 \leq j \leq d$, are bounded on $B M O_{\mathcal{L}}^{\beta}(w)$.
(b) For all $0 \leq \beta<1$ and $1 \leq \eta<1+\frac{1-\beta}{d}$, the operators \mathcal{R}_{j}^{*}, $1 \leq j \leq d$, are bounded on $B M O_{\mathcal{L}}^{\beta}(w)$.

Theorem
Let $V \in R H_{d / 2}$ such that $q_{0} \leq d, 0 \leq \beta<2-\frac{d}{q_{0}}$, and
$w \in D_{\eta} \cap \cup_{s>p_{0}^{\prime}}\left(A_{p_{0} / s^{\prime}} \cap R H_{s}\right)$ where $\frac{1}{p_{0}}=\frac{1}{q_{0}}-\frac{1}{d} y$
$1 \leq \eta<1+\frac{2-d / q_{0}-\beta}{d}$. The operators $\mathcal{R}_{j}^{*}, 1 \leq j \leq d$, are bounden on $B M O_{\mathcal{L}}^{\beta}(w)$.

Inequalities with weights in L^{p}

We deal with the following operators associated to \mathcal{L} :

- Maximal of the semi-group

$$
\mathcal{T}^{*} f(x)=\sup _{t>0} e^{-t \mathcal{L}} f(x)
$$

- \mathcal{L}-Ries potentials (\mathcal{L}-Fractional Integral)

$$
\mathcal{I}_{\alpha} f(x)=\mathcal{L}^{-\alpha / 2} f(x)=\int_{0}^{\infty} e^{-t \mathcal{L}} f(x) t^{\alpha / 2} \frac{d t}{t}, \quad 0<\alpha<d
$$

- \mathcal{L}-Riesz transforms

$$
\mathcal{R}=\nabla \mathcal{L}^{-1 / 2}
$$

adjoints

$$
\mathcal{R}^{*}=\mathcal{L}^{-1 / 2} \nabla
$$

- \mathcal{L}-Square Function

$$
\mathfrak{g}(f)(x)=\left(\int_{0}^{\infty}\left|\frac{d}{d t} e^{-t \mathcal{L}}(f)(x)\right|^{2} t d t\right)^{1 / 2}
$$

Weights related to ρ

We define new classes of weights in terms of critical radii, more suitable for this context.
For $p \geq 1$ we define $A_{p}^{\rho, \infty}=\cup_{\theta \geq 0} A_{p}^{\rho, \theta}$, where $A_{p}^{\rho, \theta}$ is defined as the weights w such that

$$
\left(\int_{B} w\right)^{1 / p}\left(\int_{B} w^{-\frac{1}{p-1}}\right)^{1 / p^{\prime}} \leq C|B|\left(1+\frac{r}{\rho(x)}\right)^{\theta}
$$

for every ball $B=B(x, r)$.

- $A_{\rho}^{\rho, \theta}$ increasing with θ
- For $\theta=0$ they become the classical Muckenhoupt classes A_{p}.
- $A_{p} \subsetneq A_{p}^{\rho, \infty}$. An example: $\rho \equiv 1$ and $w(x)=1+|x|^{\gamma}$. For $\gamma>d(p-1)$, the weight w belongs to $A_{p}^{\rho, \infty}$, but it is not in A_{p}.

Boundedness of the maximal of the semigroup

Theorem
If $1<p<\infty$, the operator $\mathcal{T}^{*} f(x)=\sup _{t>0} e^{-t \mathcal{L}} f(x)$ is bounded on $L^{p}(w)$ for $w \in A_{p}^{\rho, \infty}$, and of weak type $(1,1)$ for $w \in A_{1}^{\rho, \infty}$.

Boundedness of the new Riesz transforms

Theorem
Let $\mathcal{R}=\nabla(-\Delta+V)^{-1 / 2}$ and $V \in R H_{q}$.

1) If $q \geq d$, the operators \mathcal{R} and \mathcal{R}^{*} are bounded on $L^{p}(w)$, $1<p<\infty$, for $w \in A_{p}^{\rho, \infty}$, and of weak type $(1,1)$ for $w \in A_{1}^{\rho, \infty}$.
II) If $d / 2<q<d$, and s is such that $\frac{1}{s}=\frac{1}{q}-\frac{1}{d}$, the operator \mathcal{R}^{*} is bounded on $L^{p}(w)$, for $s^{\prime}<p<\infty$ and $w \in A_{p / s^{\prime}}^{\rho, \infty}$, and by duality \mathcal{R} is bounded on $L^{p}(w)$, for $1<p<s$, with w such that $w^{-\frac{1}{\rho-1}} \in A_{p^{\prime} / s^{\prime}}^{\rho, \infty}$. Moreover, \mathcal{R} is of weak type $(1,1)$ for $w^{s^{\prime}} \in A_{1}^{\rho, \infty}$.

Localized weights for localized operators

Given an operator T we define $T_{\text {loc }}$, the ρ-localization of T, as

$$
\begin{equation*}
T_{\text {loc }}(f)(x)=T\left(f \chi_{B(x, \rho(x))}\right)(x) \tag{6}
\end{equation*}
$$

In order to study the ρ-localizations version of some classical operators we define the a ρ-localized class of weights $A_{p}^{\rho \text {,loc }}$ as follows:
The weights w such that

$$
\begin{equation*}
\left(\int_{B} w\right)^{1 / p}\left(\int_{B} w^{-\frac{1}{p-1}}\right)^{1 / p^{\prime}} \leq C|B| \tag{7}
\end{equation*}
$$

for every ball $B(x, r)$ with $r \leq \rho(x)$.

Boundedness of some localized operators

Theorem
Given a critical radius function ρ we have
a) The operators $M_{l o c}, T_{\text {loc }}^{*}, R_{\text {loc }}$ and $\mathbf{g}_{\text {loc }}$ are bounded on $L^{p}(w)$, whenever $1<p<\infty$ and $w \in A_{p}^{\rho, \text { loc }}$, and of weak type $(1,1)$ when $w \in A_{1}^{\rho, \text { loc }}$.
b) If $0<\alpha<d$, the operator $\left(I_{\alpha}\right)_{\text {loc }}$ is bounded form $L^{p}(w)$ into $L^{s}\left(w^{s / p}\right)$, whenever $1<p<d / \alpha, \frac{1}{s}=\frac{1}{p}-\frac{\alpha}{d}$, and $w^{s / p} \in A_{1+\frac{s}{p^{\prime}}}^{\rho, \text { loc }}$. Moreover, it is of weak type $\left(1, \frac{d}{d-\alpha}\right)$ whenever $w^{\frac{d}{d-\alpha}} \in A_{1}^{\rho, l o c}$.

Commutators with the multiplication operator

Given an operator T and a function b,
we deal with the commutator

$$
[b, T] f(x)=T(b f)(x)-b(x) T f(x), \quad x \in \mathbb{R}^{d}
$$

We study inequalities on $L^{p}\left(\mathbb{R}^{d}\right), 1<p \leq \infty$, for the commutators

$$
\left[b, \mathcal{R}_{i}\right] \text { and }\left[b, \mathcal{R}_{i}^{*}\right]
$$

for certain functions b.

Previous results

- [R.R. Coifman, R. Rochberg, and G. Weiss], 1976.

Commutators of classical Riesz transforms are bounded on L^{p} $\Longleftrightarrow b \in B M O$.

- [Z. Guo, P. Li and L. Peng.], 2008.

If $q>d / 2,1<p<\infty$ and $b \in B M O \Longrightarrow\left[b, \mathcal{R}_{i}\right]$ and [b, \mathcal{R}_{i}^{*}] are bounded on $L^{p}\left(\mathbb{R}^{d}\right)$.
¿Is there more suitable functions b ?

The $B M O_{\theta}(\rho)$ space of symbols

Definition Let $\theta>0$. The function b belongs to $B M O_{\theta}(\rho)$, when

$$
\frac{1}{|B|} \int_{B}\left|b(y)-b_{B}\right| d y \leq C\left(1+\frac{r}{\rho(x)}\right)^{\theta},
$$

with $B=B(x, r)$, and $b_{B}=\frac{1}{|B|} \int_{B} b$. We denote

$$
B M O_{\infty}(\rho)=\cup_{\theta>0} B M O_{\theta}(\rho) .
$$

1. When $\theta=0$, then $B M O_{\theta}(\rho)=B M O$.
2. If $0<\theta<\theta^{\prime}$, then $B M O \subset B M O_{\theta}(\rho) \subset B M O_{\theta^{\prime}}(\rho)$.
3. $\mathrm{BMO}_{\theta}(\rho) \neq B M O$.

Example: Let $V(x)=|x|^{2}$, then $\rho(x) \simeq \frac{1}{1+|x|}$. The function $b(x)=\left|x_{j}\right|^{2}$, belongs to $B M O_{\infty}(\rho)$, but not in $B M O$.

A result with b in $B M O_{\infty}(\rho)$

Theorem

Let $V \in R H_{d / 2}, q_{0}=\sup \left\{q: V \in R H_{q}\right\}$ be the Reverse Hölder index of V. For $b \in B M O_{\infty}(\rho)$ and p_{0} such that $\frac{1}{p_{0}}=\left(\frac{1}{q_{0}}-\frac{1}{d}\right)^{+}$, we have

$$
\begin{aligned}
& \text { (I) If } 1<p<p_{0} \text {, then }\left\|\left[b, \mathcal{R}_{i}\right] f\right\|_{p} \leq C_{b}\|f\|_{p} . \\
& \text { (II) If } p_{0}^{\prime}<p<\infty \text {, then }\left\|\left[b, \mathcal{R}_{i}^{*}\right] f\right\|_{p} \leq C_{b}\|f\|_{p} .
\end{aligned}
$$

A problem: ¿what happens in the extreme L^{∞} ?

- [E. Harboure, C. Segovia, and J. L. Torrea], 1997.

There is no functions $b \in B M O$ (up to constants) such that $[b, H]$ is bounded from $L^{\infty}(\mathbb{R})$ into $B M O$ when H is the Hilbert trasform.

In the context of the \mathcal{L}-Riesz transforms, we have a positive answer.

The substitute of L^{∞}

We have see that

1. \mathcal{R}_{i} y \mathcal{R}_{i}^{*} are bounded on $B M O_{\mathcal{L}}$, when $q_{0}>d$.
2. and also \mathcal{R}_{i}^{*}, when $q_{0}>d / 2$.
¿What kind of symbols b produce a bounded commutator from L^{∞} into $B M O_{\mathcal{L}}$?

An other class of sybols b

Definición Let $\theta>0$, denote by $B M O_{\theta}^{\log }(\rho)$ to the class of functions b such that

$$
\frac{1}{|B(x, r)|} \int_{B(x, r)}\left|b-b_{B}\right| \leq C \frac{(1+r / \rho(x))^{\theta}}{1+\log ^{+}(\rho(x) / r)},
$$

for all $x \in \mathbb{R}^{d} y r>0$. We denote by

$$
B M O_{\infty}^{\log }(\rho)=\cup_{\theta>0} B M O_{\theta}^{\log }(\rho) .
$$

Theorem
Let $V \in R H_{d / 2}$ and $b \in B M O_{\infty}(\rho)$, then
I) $\left[b, \mathcal{R}_{i}^{*}\right]: L^{\infty} \mapsto B M O_{\mathcal{L}} \quad \Longleftrightarrow \quad b \in B M O_{\infty}^{\log }(\rho)$.
i) If $V \in R H_{d}$, the previous result is true for $\left[b, \mathcal{R}_{i}\right]$.

Further works

- Commutators with weights.
- Boundedness on L^{p} of singular integrals associated to $-\Delta+V$.
- Extrapolation with a family of maximal functions associated to ρ.
- Resuls on Hardy type spaces.
- Boundedness of singular integrals on $B M O_{\beta}(w)$.

Now we are dealing with:

- Boundedness of the maximal of a family of operators that seems like the semi-group.
- Two weighted inequalities of the form

$$
\int T f w \leq C \int f M w
$$

Thanks!!

wikiHow

[^0]: AMS 1969 subject classifications. Primary 3067, 4635.
 Key words and phrases. Bounded mean oscillation, Riesz transforms, maximal function, Poisson integral.

