Problems (Weibel)

(1) Let $\mathbb{Z}_{(p)}$ be the integers localized at p, and \mathbb{Z}_p the p-adic integers. Show that the abelian categories of torsion modules in these rings are equivalent, and conclude that there is a Mayer–Vietoris sequence

 $\cdots \to K_*(\mathbb{Z}_{(p)}) \to K_*(\mathbb{Q}) \oplus K_*(\mathbb{Z}_p) \to K_*(\mathbb{Q}_p) \to K_{*-1}(\mathbb{Z}_{(p)}) \to \cdots$

(2) Let R be a Dedekind ring (1-dimensional regular noetherian), such as the ring of integers in a number field or the coordinate ring of a smooth curve, with field of fractions F and maximal ideals m. Show that there is a long exact sequence

$$\cdots K_{*+1}(F) \to \bigoplus_m K_*(R/m) \to K_*(R) \to K_*(F) \to \cdots$$

ending in $F^{\times} \to \bigoplus_m \mathbb{Z} \to K_0(R) \to \mathbb{Z} \to 0$.

(3) When R is a principal ideal domain, the transfer maps $K_*(R/m) \rightarrow K_*(R)$ are zero. If all the residue fields R/m are finite (so that $K_{2n}(R/m) = 0$ for n > 0), deduce that $K_n(R) \cong K_n(F)$ for odd n and that for even n we have the exact sequence

$$0 \to K_n(R) \to K_n(F) \to \bigoplus_m K_{n-1}(R/m) \to 0.$$

(4) Given a ring R and a (central) element s, let (A, w) be the Waldhausen category of bounded chain complexes of fin gen projective R-modules, where weak equivalences are maps w : A_{*} → A'_{*} such that H_{*}(A)[1/s] → H_{*}(A')[1/s] is an isomorphism, and let B be the Waldhausen category of bounded chain complexes of fin gen projective R[1/s]-modules, where weak equivalences are quasi-isomorphisms, and let B' be the subcategory of chain complexes B_{*} such that [B_{*}] is in the image of K₀(R) → K₀(R[1/s]. Show that for every map f : A_{*}[1/s] → B_{*} in B' with A_{*} in A there is an A'_{*}, a map A_{*} → A'_{*} in A and a quasi-isomorphism A'[1/s] → B so that f is the composition A[1/s] → A'[1/s] → B.

This means that the hypotheses of the Approximation Theorem are satisfied, and hence that $K_*(\mathcal{A}) \cong K_*(\mathcal{B})$. By cofinality, $K_*(\mathcal{B}) \cong K_*(R[1/s])$ for * > 0 and $K_0(\mathcal{B})$ is a subgroup of $K_0(R[1/s])$.

(5) Recall that K(R on s) is the K-theory of the category of bounded complexes of fin gen projective R-modules whose homology is s-torsion. Conclude that there is an exact sequence

$$\cdots K_{*+1}(R[1/s]) \to K_*(R \text{ on } s) \to K_*(R) \to K_*(R[1/s])$$

ending in $K_0(R) \to K_0(R[1/s])$. It continues to negative values of *.