Topología

Segundo cuatrimestre - 2016 Práctica 7

Homotopía y el grupo fundamental

Homotopía

- 1. Pruebe que si $h, h': X \to Y$ son homotópicas (rel $A \subseteq X$) y $k, k': Y \to Z$ son homotópicas (rel $B \supseteq h(A)$), entonces $kh, k'h': X \to Z$ son homotópicas (rel A).
- 2. Sea X es un espacio topológico. Pruebe que las aplicaciones i_0 , $i_1: X \to X \times I$ definidas por $i_j(x) = (x,j)$ $(j \in \{0,1\})$ son equivalencias homotópicas con la misma inversa $p: (x,t) \in X \times I \mapsto x \in X$. Más aún, $i_0 \simeq i_1$.
- 3. Sean $f, g: X \to Y$ funciones continuas tal que $f \simeq g$. Pruebe que si f es una equivalencia homotópica, entonces g también lo es.
- 4. Dé un ejemplo de una función f que tenga inversa homotópica a izquierda (a derecha) pero no a derecha (a izquierda).
- 5. Pruebe que:
 - a) Si f posee una inversa homotópica a izquierda y una inversa homotópica a derecha, entonces f es una equivalencia homotópica.
 - b) f es una equivalencia homotópica si y sólo si existen functiones g, $h: Y \to X$ tales que $f \circ g$ y $h \circ f$ son equivalencias homotópicas.
- 6. Sean X un espacio, $A\subseteq X$ un subespacio y $a_0\in A$. Supongamos que existe una función continua $H:X\times I\to X$ tal que:
 - \blacksquare H(x,0)=x para todo $x\in X$,
 - $\blacksquare H(A \times I) \subseteq A \mathsf{y}$
 - \blacksquare $H(a,1)=a_0$ para todo $a\in A$.

Entonces la aplicación cociente $q:X\to X/A$ es una equivalencia homotópica.

- 7. Construya una retracción por deformación explícita del toro menos un punto a un grafo que consta de dos círculos que se intersecan en un punto. Más concretamente, dichos círculos son la longitud y la latitud del toro.
- 8. Pruebe que:
 - a) Si $C\subseteq\mathbb{R}^n$ es un subespacio convexo, entonces es contráctil. Más aún, C tiene a cualquiera de sus puntos como retracto por deformación fuerte. Concluya que I y \mathbb{R} son contráctiles.

- b) Si X es contráctil, entonces es arcoconexo.
- c) Todo retracto de un espacio contráctil es contráctil.

9. Pruebe que:

- a) Todo subespacio compacto convexo de \mathbb{R}^n es retracto por deformación fuerte de \mathbb{R}^n .
- b) Si A es un retracto de X, entonces para todo Y espacio topológico, $A\times Y$ es retracto de $X\times Y$.
- c) Si X es un espacio conexo y $A\subseteq X$ es un subespacio discreto con más de un punto, entonces A no es un $retracto\ d\'ebil$ de X, es decir, $\nexists\ r:X\to A$ continua tal que $r\circ i\simeq \mathrm{id}_A$.
- 10. Sean X,Y espacios topológicos. Sea [X,Y] el conjunto de clases homotópicas de funciones continuas de X en Y. Pruebe que:
 - a) Si Y es contráctil, entonces [X,Y] tiene un sólo elemento.
 - b) Si X es contráctil e Y arcoconexo, entonces [X,Y] tiene un sólo elemento.
 - c) Hay una biyección natural $[*,Y] \rightarrow \pi_0(Y)$.
 - d) Más generalmente, si Y es contráctil, entonces hay una biyección natural $[Y,X] \to \pi_0(X)$.
 - e) Si X' es otro espacio y $X \simeq X'$, entonces hay una biyección entre $\pi_0(X)$ y $\pi_0(X')$.
- 11. Sea $f:X \to Y$ una función continua y sea Z un espacio topológico. Definimos aplicaciones

$$f^* : [g] \in [Y, Z] \mapsto [g \circ f] \in [X, Z],$$

 $f_* : [g] \in [Z, X] \mapsto [f \circ g] \in [Z, Y].$

- a) Las funciones f^* y f_* están bien definidas.
- b) Si $f': X \to Y$ es otra función continua y $f \simeq f'$, entonces $f^* = f'^*$ y $f_* = f'_*$.
- c) Si f es una equivalencia homotópica, entonces f^* y f_* son biyecciones.
- 12. Pruebe que si el espacio X se retrae por deformación fuerte a $x \in X$, entonces para cada entorno $U \ni x$ existe un entorno $V \subseteq U$ de x de manera que la inclusión $V \hookrightarrow U$ es null-homotópica.
- 13. Sea X el *peine*, esto es, el subespacio de \mathbb{R}^2 dado por

$$X = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 1, x = 0 \lor x^{-1} \in \mathbb{N}\} \cup \{(x,0) : 0 \le x \le 1\}.$$

Sea $x_0 = (0,1) \in X$.

- a) El espacio X es contráctil.
- b) No existe una homotopía *relativa* a x_0 entre la identidad $\mathrm{id}_X:X\to X$ y la función constante $c:x\in X\mapsto x_0\in X$.

Esto nos dice que toda contracción de X a x_0 mueve al punto x_0 .

- c) Por otro lado, el espacio Y que resulta de pegar dos copias de X identificando los puntos x_0 en un solo punto no es contráctil.
- d) La inclusión $i:X\to [0,1]\times [0,1]$ es una equivalencia homotópica pero no un retracto.
- 14. a) Sea $X \subseteq \mathbb{R}^2$ el subespacio

$$X = [0,1] \times \{0\} \cup \bigcup_{r \in \mathbb{Q}} \{r\} \times [0,1-r].$$

Pruebe que X se retrae por deformación fuerte a cualquier punto en $[0,1] \times \{0\}$ pero no se retrae a ningún otro punto.

b) Sea $Y\subseteq\mathbb{R}^2$ el subespacio que se obtiene uniendo infinitas copias de X como en la figura. Pruebe que Y es contráctil pero no se retrae por deformación fuerte a ningún punto.

- c) Sea $Z\subseteq Y$ la poligonal marcada en la figura. Pruebe que existe una homotopía $H:\operatorname{id}_Y\simeq H_1$ tal que $H_t(Z)\subseteq Z$ para todo $t\in I$ y $H_1(Y)\subseteq Z$ (y en particular $Z\hookrightarrow Y$ es una equivalencia homotópica) pero que Z no es un retracto por deformación fuerte de Y.
- 15. Sea X un espacio topólogico conexo que se puede describir como una unión finita de esferas de dimensión 2 de manera que dos cualesquiera de ellas se intersecan en a lo sumo un punto. Pruebe que X es homotópicamente equivalente a un wedge de S^1 's y S^2 's.
- 16. Si X es un espacio, el cono de X es el espacio $CX = X \times I/\sim$ donde \sim es la relación de equivalencia $(x,1) \sim (y,1)$ para todo par de puntos $x,\ y \in X$. Si $x \in X$ y $t \in I$, escribimos $[x,t] \in CX$ a la clase de equivalencia de (x,t) en $X \times I$.
 - a) La función $i: x \in X \mapsto [x, 0] \in CX$ es continua, inyectiva y cerrada.
 - b) El espacio CX es contráctil.
 - c) X es contráctil si y sólo si $i: X \to CX$ es un retracto.
 - d) $f: X \to Y$ es homotópica a una función constante si y sólo si f se puede extender a una función continua $\bar{f}: CX \to Y$.
- 17. Sea $f:X\to Y$ una función continua. Recordemos que el cilindro M(f) de f es el espacio de adjunción que se obtiene de f y la inclusión cerrada $X\hookrightarrow X\times I$.
 - a) Pruebe que la inclusión $Y \hookrightarrow M(f)$ es un retracto por deformación fuerte.

b) Pruebe que dos espacios X e Y son homotópicamente equivalentes si y sólo si son retractos por deformación fuerte de un tercer espacio Z. Sugerencia: Considere el cilindro de una equivalencia homotópica $f: X \to Y$.

El grupo y el grupoide fundamental

18. Sea X es un espacio topológico y, $x_0 \in X$. Sea

$$\Omega(X, x_0) = \{ \alpha \in C(I, X) : \alpha(0) = \alpha(1) = x_0 \}$$

con la topología de subespacio de la topología compacto-abierta. Pruebe que hay una biyección

$$\pi_0(\Omega(X, x_0)) = \pi_1(X, x_0).$$

19. Sea X un espacio topológico, $x_0 \in X$ y sea $s \in S^1$ un punto cualquiera. Sea

$$[(S^1, s), (X, x_0)] = \{[f]|f: S^1 \to X \text{ continua tal que } f(s) = x_0\}$$

donde [f] = [g] si $f \simeq g \text{ rel } \{s\}$. Pruebe que $\pi_1(X, x_0) = [(S^1, s), (X, x_0)]$.

- 20. Sean $x_0, x_1 \in X$ dos puntos en un espacio arcoconexo X. Probar que $\pi_1(X, x_0)$ es abeliano si y sólo si para todo par de caminos $x_0 \xrightarrow{\omega, \omega'} x_1$ se tiene $\widehat{\omega} = \widehat{\omega'}$.
- 21. Pruebe que la aplicación $\pi_1 : \mathbf{Top} \to \mathbf{Grpd}$ es funtorial.
- 22. Pruebe que hay un isomorfismo de grupoides $\pi_1(X_1) \coprod \pi_1(X_2) \cong \pi_1(X_1 \coprod X_2)$.
- 23. Pruebe que hay un isomorfismo de grupoides $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$. Concluya que $\pi_1(X \times Y, (x, y))$ es isomorfo a $\pi_1(X, x) \times \pi_1(Y, y)$.
- 24. Sea X un espacio, sea $A \subseteq X$ un subespacio y sea $i: A \to X$ la inclusión.
 - a) Si $r:X\to A$ es una retracción, entonces cualquiera sea $a_0\in A$ el morfismo $r_*:\pi_1(X,a_0)\to\pi_1(A,a_0)$ es un epimorfismo y el morfismo $i_*:\pi_1(A,a_0)\to\pi_1(X,a_0)$ es un monomorfismo.
 - b) Si A es un retracto por deformación, entonces $\pi_1(A)$ y $\pi_1(X)$ son grupoides equivalentes y, en particular, para todo $a_0 \in A$ se tiene que $\pi_1(X,a_0) \cong \pi_1(A,a_0)$.
- 25. Sea (G, \cdot, e) un grupo topológico. Si $\alpha, \beta \in \Omega(G, e)$, sea

$$\alpha \odot \beta : t \in I \mapsto \alpha(t) \cdot \beta(t) \in G.$$

Esto define una operación \odot en el conjunto $\Omega(G,e)$ que hace de él un grupo.

- a) La operación \odot induce una operación, que también notamos \odot , sobre $\pi_1(G,e)$ y con ésta $\pi_1(G,e)$ es un grupo.
- b) Esta estructura de grupo coincide con la estructura usual de $\pi_1(G,e)$.
- c) $\pi_1(G,e)$ es un grupo abeliano.