Topología Diferencial 2017 Práctica Tres Teoría de Morse

- 1. Probar que la función determinante definida en la matrices $n \times n$ es función de Morse para n = 2 y no es Morse para n > 2.
- 2. Sea $H: \mathbb{R}^n \times I \to \mathbb{R}$ una función C^{∞} y sea $H_t(x) = H(x,t)$. Probar que si H_0 es Morse en algún entorno de un compacto $K \subset \mathbb{R}^n$, entonces existe un $\varepsilon > 0$ tal que H_t es Morse en algún entorno de K para todo $t < \varepsilon$. En particular, para todo variedad compacta M, las funciones de Morse $f: M \to \mathbb{R}$ son estables por perturbaciones.
- 3. Sea M subvariedad de \mathbb{R}^n . Probar que existe alguna transformación lineal $T: \mathbb{R}^n \to \mathbb{R}$ que restringida a M es función de Morse.
- 4. Sabemos que la esfera S^n tiene estructura de CW-complejo con 2 k-celdas por cada $0 \le k \le n$ (además de la estructura usual con una 0-celda y una n-celda).
 - ¿Puede encontrar una función de Morse definida en la esfera que tenga 2 puntos críticos de índice k para cada $0 \le k \le n$?
- 5. Sea $\mathbb{R}P^n$ el espacio proyectivo real de dimensión n. Probar, usando funciones de Morse, que su característica de Euler vale 1 cuando n es par y 0 cuando es impar. (Sugerencia: toda función real definida en el espacio proyectivo es equivalente a una función par definida en la esfera S^n).
- 6. Sea S una superficie compacta de género p. Probar que toda función de Morse en S tiene al menos 2p+2 puntos críticos y que existen funciones de Morse en S con exactamente esa cantidad de puntos críticos.
- 7. Sea $f:M\to\mathbb{R}$ de Morse. Un campo C^∞ X en M se dice que es de tipo-gradiente para f si cumple lo siguiente:
 - a) Para todo punto regular $p \in M$ vale que $d_n f(X_n) > 0$
 - b) Si $p \in M$ es crítico de índice k, entonces existe una carta (U, ϕ) alrededor de p tal que $\phi(p) = 0$, $f\phi^{-1}(x) = f(p) x_1^2 \ldots x_k^2 + x_{k+1}^2 + \ldots + x_n^2$ y $\phi_*X = Grad(f\phi^{-1})$ donde Grad es el gradiente usual en \mathbb{R}^n .

Probar que toda función de Morse admite un campo tipo-gradiente.

- 8. Probar usando teoría de Morse que si M es una variedad compacta de dimensión impar entonces $\chi(M) = 0$.
- 9. Sea $f: M \to \mathbb{R}$ una función de Morse con puntos críticos p_1, \ldots, p_r . Probar que existe una función de Morse $g: M \to \mathbb{R}$ con los mismos puntos críticos que f y tal que $g(p_i) \neq g(p_j)$ si $i \neq j$.
- 10. Sea W una variedad compacta con borde ∂W . Usando el teorema 1 de la teoría de Morse y el hecho de que para toda variedad compacta con borde existe una función $g:W\to\mathbb{R}_{\geq 0}$ tal que $g^{-1}(0)=\partial W$ y g no tiene puntos críticos en un entorno del borde, probar que el borde admite un "collar neighborhood", es decir existe un entorno del borde difeomorfo a $\partial W\times[0,1)$.