Geometría Diferencial - Primer Cuatrimestre de 2018

Práctica 5

Formas diferenciales

- 1. Se define el rango de un tensor como la mínima cantidad de tensores elementales que hay que sumar para obtenerlo.
 - *a*) Probar que el rango de una transformación lineal $V \to W$, vista como elemento de $V^* \otimes W$, coincide con el rango usual (la dimensión de su imagen).
 - b) Probar que si n < 4, entonces todos los tensores de $\Lambda^r(\mathbb{R}^n)$ son elementales. ¿Qué pasa si n = 4? (Sugerencia: Un elemento de $\Lambda^2(\mathbb{R}^n)$ puede pensarse como transformación lineal entre dos espacios de dimensión n)
- 2. Sea g una función bilineal en un \mathbb{R} -espacio vectorial V con producto interno. Sea $B = \{v_1, \ldots, v_n\}$ una base ortonormal de V. Probar que $\sum_i g(v_i, v_i)$ no depende de la base elegida. Concluir que $\sum_i v_i \otimes v_i$ es un tensor bien definido (que no depende de B).
- 3. Sean $\eta \in \Omega^1(M)$ y $f,g \in C^{\infty}(M)$, mostrar que
 - a) $f\eta \in \Omega^1(M)$,
 - b) d(fg) = fdg + gdf.
- 4. Sean $M = \mathbb{R}^n$, $X \in \mathfrak{X}(M)$, y $\langle X, \rangle$ definido de la siguiente manera: si $v \in T_pM$, $\langle X, v \rangle := \langle X_p, v \rangle$. Mostrar que $\langle X, \rangle$ es una 1-forma. Mostrar que toda 1-forma es de esta manera. Por ejemplo, $df = \langle \nabla f, \rangle$.
- 5. Sea X una variedad, ω una 1-forma. Sean (U, φ) , (V, ψ) dos cartas alrededor de un punto $x \in X$. Si $\omega(x) = \sum_i \alpha_i d\varphi_i = \sum_j \beta_j d\psi_j$, encontrar la relación entre los α_i y los β_j .
- 6. Sea V un espacio vectorial de dimensión finita sobre un cuerpo \mathbb{K} de característica 0, φ y ψ en V^* . Mostrar que la aplicación $(v,w)\mapsto \phi(v)\psi(w)$ es una aplicación bilineal definida en $V\times V$ a valores en \mathbb{K} . Mostrar que bajo la identificación $\mathrm{Bil}(V\times V,\mathbb{K})\cong (V\otimes V)^*\cong V^*\otimes V^*$, esta forma bilineal se corresponde con $\varphi\otimes\psi$.
- 7. Dada una variedad M, definir apropiadamente el fibrado exterior k-ésimo $\Lambda^{k*}(M)$ y probar que una k-forma C^{∞} equivale a una sección a ese fibrado.
- 8. Probar que una k-forma ω es C^{∞} si y sólo si para toda familia $X_1, \ldots, X_k, X_i \in \mathfrak{X}(M)$, la función $\omega(X_1, \ldots, X_k)$ definida por $\omega(X_1, \ldots, X_k)(p) = \omega_p(X_1(p), \ldots, X_k(p))$ es diferenciable.
- 9. Una función $f: M \to N$ diferenciable induce $f^*: \Omega(N) \to \Omega(M)$ definida por $f^*(g) = g \circ f$ en Ω^0 y $(f^*w)_p(v_1, \ldots, v_k) = w_{f(p)}(d_pf(v_1), \ldots, d_pf(v_k))$ en Ω^k .
 - a) Probar la buena definición de f^* , es decir, que f^*w es suave si w lo es.
 - b) Probar que f^* es morfismo de \mathbb{R} -álgebras, es decir, que es \mathbb{R} -lineal y $f^*(w \wedge v) = f^*(w) \wedge f^*(v)$.
- 10. Sea ω una k-forma en M, con $k \ge 1$, ¿es cierto que $\omega \wedge \omega = 0$? ¿Qué pasa si dim M = 3?
- 11. Sea X una variedad diferenciable, (U, φ) una carta y $\omega \in \Omega^k(X)$. Calcular $d\omega|_U$ en las coordenadas de (U, φ) para los casos $0 \le k \le 2$.

12. Sea $\omega \in \Omega^k(X)$. Probar que

$$d\omega(X_1,\ldots,X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} X_i \omega(X_1,\ldots,\hat{X}_i,\ldots,X_{k+1}) + \sum_{i< j} (-1)^{i+j} \omega([X_i,X_j],X_1,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_{k+1}).$$

- 13. Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial diferenciable.
 - *a*) Demostrar que $\omega_F^1(x)(v) := \langle F(x), v \rangle$ define una 1-forma en \mathbb{R}^3 . Encontrar las coordenadas de ω_F^1 en la base $\{dx, dy, dz\}$. Recíprocamente, si ω es una 1-forma en \mathbb{R}^3 , probar que ω determina un único campo G en \mathbb{R}^3 tal que $\omega_G^1 = \omega$.
 - b) Demostrar ahora que $\omega_F^2(x)(u,v) := \langle F(x), u \times v \rangle$ define una 2-forma en \mathbb{R}^3 . Calcular sus coordenadas en la base $\{dx \wedge dy, dz \wedge dx, dy \wedge dz\}$. Recíprocamente, probar que toda 2-forma ω define un único campo G en \mathbb{R}^3 tal que $\omega_G^2 = \omega$.
 - c) Sea $f \in C^{\infty}(\mathbb{R}^3) = \Omega^0(\mathbb{R}^3)$. Encontrar la relación entre
 - 1) df y ∇f ,
 - 2) $\nabla \times F$ y $d\omega_F^1$,
 - 3) $\nabla \cdot F$ y $d\omega_F^2$ (aquí identificamos $\Omega^3(\mathbb{R}^3) \simeq C^\infty(\mathbb{R}^3)$ usando la base $dx \wedge dy \wedge dz$). Concluir, usando la relación $d \circ d = 0$, las fórmulas clásicas $\nabla \times \nabla \equiv 0$ y $\nabla \cdot \nabla \times \equiv 0$.

Orientación

- 14. Sea M una variedad diferenciable. Probar que TM y T^* son variedades orientables.
- 15. Probar que si M tiene un atlas de la forma $\mathcal{A} = \{(U, \varphi); (V, \psi)\}$ donde $U \cap V$ es conexo, entonces M es orientable.
- 16. Ver que toda *M* paralelizable es orientable. Concluir que todo grupo de Lie es orientable.
- 17. Sea M y N variedades diferenciables. Probar que son equivalentes
 - a) M y N son orientables,
 - *b*) $M \times N$ es orientable.
- 18. Probar que la esfera S^n y \mathbb{R}^n son orientables. Probar que el n-toro T^n y el cilindro son orientables. Probar que la banda de Möbius y la botella de Klein no son orientables.
- 19. Sean M y N variedades orientadas de la misma dimensión y $f: M \to N$ una función diferenciable. Diremos que f preserva la orientación en $p \in M$ si $d_p f: T_p M \to T_{f(p)} N$ es un isomorfismo de espacios vectoriales orientados.
 - *a*) Probar que si (U, ϕ) , (V, ψ) son cartas orientadas de M y N respectivamente, f preserva la orientación en p si y sólo si $\det(D(\psi \circ f \circ \phi^{-1}))(\phi(p)) > 0$.
 - b) Probar que si ω_M y ω_N son n-formas que definen la orientación en M y N respectivamente y $f^*(\omega_N)_p = \phi(p)(\omega_M)_p$ entonces f preserva la orientación en p si y sólo si $\phi(p) > 0$.
- 20. Sea M una variedad orientable conexa y $f: M \to M$ un difeomorfismo. Si \mathcal{A} es un atlas orientado compatible con la orientación, probar que para dos cartas $(U_i, \varphi_i) \in \mathcal{A}$ (i = 1, 2) el signo de $J(\varphi_2 \circ f \circ \varphi_1^{-1})$ es constante (donde está definida la composición). Interpretar.
- 21. Sea M una variedad diferenciable conexa y orientada y G un grupo discreto actuando en M de forma propiamente discontinua por difeomorfismos. Probar que M/G es orientable si y sólo si para cada $g \in G$ el difeomorfismo $p \mapsto g \cdot p$ preserva la orientación en todos los puntos. Probar que $\mathbb{P}^n(\mathbb{R})$ es orientable si y sólo si n es impar.