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Simplicial sets and subdivision

(Any new results are due to Rina Foygel)
A = standard simplicial category.

A[n] is represented on A by n.

It is Nn, where n is the poset {0,1,---,n}.
SdA[n] = A[n] = Nsdn, where

sdn

n’ = monos/n.
SdK = K A A
Lemma 1 SdK = SdL does not imply K = L

but does imply K, = L,, as sets, with corre-
sponding simplices having corresponding faces.



Regular simplicial complexes

A nondegenerate x € K, is regular if the
subcomplex [z] it generates is the pushout of

An]-" Aln — 1]- %% [d,z].

K is regular if all x are so.
Theorem 1 For any K, SdK is regular.

Theorem 2 If K is regular, then |K| is a
regular CW complex: (e", dem) = (D", S"—1)
for all closed n-cells e.

Theorem 3 If X is a regular CW complex,
then X is triangulable; that is X is homeo-
morphic to some |i(K)|.



Properties of simplicial sets K

Let x € K;,, be a nondegenerate simplex of K.

A: For all z, all faces of x are nondegenerate.

B: For all x, x has n + 1 distinct vertices.

C: Any n + 1 distinct vertices are the vertices

of at most one z«.

Lemma 2 K has B iff for all x and all monos

a,.m— n, «*xr = B*x implies o« = 3.

Lemma 3 If K has B, then K has A.

No other general implications among A, B, C.



Properties A, B, C and subdivision

Lemma 4 K has A iff SdK has A.

Lemma 5 K has A iff SdK has B.

Lemma 6 K has B iff SAK has C.

Characterization of simplicial complexes

Lemma 7 K has A iff Sd?K has C,

and then Sd?K also has B.
Lemma 8 K has B and C iff K € Im(4).

Theorem 4 K has A iff SA°K € Im(i).



Subdivision and horn-filling

Lemma 9 If SdK is a Kan complex, then

K is discrete.

Lemma 10 If K does not have A, then SdK

cannot be a quasicategory.

Relationship of the properties to categories

Theorem 5 If K has A, then SdK € Im(N).

Proof: Check the Segal maps criterion.



Definition 1 A category ¢ satisfies A, B, or
C if N¢ satisfies A, B, or C.

Lemma 11 ¥ has A iff for any 1. C — D and
rD — C such that rot = id, C = D and

i =r = id. (Retracts are identities.)

Lemma 12 ¥ has B iff for any ::C — D and
rD—CC,C=D and:=r = Id.

Lemma 13 ¥ has B and C iff € is a poset.



Definition 2 Define a category T :

Objects: nondegenerate simplices of N¢. e.qg.
C=Co—Cy— - — (4

D=Dg—sC{ — - — Dy

Morphisms: maps C — D are maps a.q —r
in A such that o*D = C (implying « is mono).

Quotient category sdé with the same objects:

aofy ~aofBC— D

if 0o o341 = oo > for a surjection c.p — q
such that oD = ¢*C (a:p —r, B3;:q — p).

(Bia™D =pjc"C=C, i=1,2)

(Anderson, Thomason, Fritsch-Latch, del Hoyo)



Lemma 14 For any ¢, T¢ has B.
Corollary 1 For any €, sd¢ has B.
Lemma 15 ¥ has B iff sdé is a poset.
Theorem 6 For any €, sd?%¢ is a poset.
Compare with K has A iff SA?K € Im(3).
Del Hoyo: Equivalence e:sd¢4 — €.

(Relate to equivalence e: SdK — K7)



Left adjoint 1 to N (Gabriel-Zisman).
Objects of 71 K are the vertices.

Think of 1-simplices y as maps

d1y — doy,

form the free category they generate,
and impose the relations

sox = idy for x € Ko

di1z = dpgzodoz for z e Ko.

The counit e: i No/ — o/ is an isomorphism.
71 K depends only on the 2-skeleton of K. When
K = 0A[n] forn > 2, the unit n: K — N K

is the inclusion 0A[n] — Aln].



Direct combinatorial proof:

Theorem 7 For any ¢, sd¢ = 11 SAN¥.
Corollary 2 ¢ = T11e:5d¢ — 11N€ = 7.

Corollary 3 ¥ has A iff SAN% = N sd¥v .

Remark 1 Even for posets P and Q,
sdP = sd() does not imply P = Q.

In the development above, there is a
counterexample to the converse of each
implication that is not stated to be iff.

Sheds light on Thomason model structure.



Alexandrov and finite spaces

Alexandrov space, abbreviated A-space:
ANY intersection of open sets is open.
Finite spaces are A-spaces.

Tp-space: topology distinguishes points.
Kolmogorov quotient K(A). McCord:
A — K(A) is a homotopy equivalence.

Space = Tp-A-space from now on

T4 finite spaces are discrete,

but any finite X has a closed point.



Define

Uy = N{Ul|z € U}

{U;} is unique minimal basis for the topology.

x<y=xzcUy, thatis, Uz C Uy

Transitive and reflexive; Tp == antisymmetric.

For a poset X, define Uy = {y|x < y}: basis for
a Tph-A-space topology on the set X.

f: X — Y is continuous < f preserves order.

Theorem 8 The category & of posets is
isomorphic to the category < of Th-A-spaces.



Finite spaces: f: X — X is a homeomorphism
iff f is one-to-one or onto.

Can describe n-point topologies by restricted
kind of n X n-matrix and enumerate them.

Combinatorics: count the isomorphism classes
of posets with n points; equivalently count
the homeomorphism classes of spaces with n
points. HARD! For n = 4, X = {a,b,c,d}, 33
topologies, with bases as follows:
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Homotopies and homotopy equivalence

[, X —Y: f<gif f(z) <g(x) Ve X.
Proposition 1 XY finite. f < g implies f ~ g.

Proposition 2 If y € U C X with U open (or
closed) implies U = X, then X is contractible.

If X has a unique maximum or minimal point,
X s contractible. Each U, is contractible.

Definition 3 Let X be finite.

(a) r € X is upbeat if there is a y > = such
that z > x implies z > y.

(b) x € X is downbeat if there is a y < x such
that z < x implies z < y.



Upbeat:
Z1 %2 .-+ Zs
N7

Xr
Downbeat: upside down.

X is minimal if it has no upbeat or downbeat
points. A core of X is a subspace Y that is
minimal and a deformation retract of X.

Stong:
Theorem 9 Any finite X has a core.
Theorem 10 If f ~id: X — X, then f = id.

Corollary 4 Minimal homotopy equivalent
finite spaces are homeomorphic.



REU results of Alex Fix and Stephen Patrias

Can now count homotopy types with n points.

Hasse diagram Gr(X) of a poset X: directed
graph with vertices x € X and an edge x — y
if y < ax but there is no other z with =z < z <y.

Translate minimality of X to a property of
Gr(X) and count the number of such graphs.

Find a fast enumeration algorithm.
Run it on a computer.
Get number of homotopy types with n points.

Compare with number of homeomorphism types.



n ~ =

1 1 1

2 2 2

3 3 5

4 5 16

5 9 63

6 20 318

7 56 2,045

38 216 16,999

9 1,170 183,231
10 9,099 2,567,284
11 101,191 46,749,427
12 | 1,594,293 | 1,104,891,746

Exploit known results from combinatorics.
Astonishing conclusion:

Theorem 11 (Fix and Patrias) The number
of homotopy types of finite Ty-spaces is asymp-
totically equivalent to the number of homeo-
morphism types of finite Th-spaces.



To-A-spaces and simplicial complexes

Category & of Tpy-A-spaces (= posets);
Category &£ of simplicial complexes.
McCord:

Theorem 12 There is a functor % . of — A
and a natural weak equivalence

The n-simplices of # (X) are

{xo,,a’;n|$o< <xn}’

and ¥(u) = xzg if uw is an interior point of the
simplex spanned by {xqg, - ,Tn}.



Let SdK be the barycentric subdivision of a
simplicial complex K; let by be the barycenter
of a simplex o.

Theorem 13 There is a functor X : #B — o
and a natural weak equivalence

The points of 2 (K) are the barycenters by of
simplices of K and by < br if o C .

H(Z(K)) = SdK and
O = w%(K): K| = |SdK| — Z(K).



Problem: not many maps between finite spaces!
Solution: subdivision: SdX = 2 (7 (X)).

Theorem 14 There is a natural weak equiv.

£:.5dX — X.

Classical result and an implied analogue:

Theorem 15 Let f:|K| — |L| be continuous,
where K and L are simplicial complexes, K
finite. For some large n, there is a simplicial
map ¢g: K(") — L such that f ~ |g|.

Theorem 16 Let f: |7 (X)| — |#Z(Y)| be con-
tinuous, where X and Y are Tp-A-spaces, X

finite. For some large n there is a continuous
map ¢g: X" — Y such that f ~ |.¢(g)].



Definition 4 Let X be a space. Define the
non-Hausdorff cone CX by adjoining a new
point + and letting the proper open subsets
of CX be the non-empty open subsets of X.

Define the non-Hausdorff suspension SX by
adjoining two points + and — such that SX
is the union under X of two copies of CX.

Let SX be the unreduced suspension of X.

Definition 5 Define a natural map
vy ="vx:9X — SX
by v(x,t) =x if =1 <t<1 and v(£1l) = +.

Theorem 17 ~ is a weak equivalence.

Corollary 5 S"SO is a minimal finite space with
2n + 2 points, and it is weak equivalent to S™.



The height A(X) of a poset X is the maximal
length h of a chain z1 < --- <zp In X.

h(X) = dim | (X)] + 1.

Barmak and Minian:

Proposition 3 Let X # x be a minimal finite
space. Then X has at least 2h(X) points. It
has exactly 2h(X) points if and only if it is
homeomorphic to SMX)—=1g0,

Corollary 6 If |#(X)| is homotopy equivalent
to a sphere S™, then X has at least 2n + 2
points, and if it has exactly 2n + 2 points it is
homeomorphic to S*SP.

Remark 2 If X has six elements, then h(X) is
2 or 3. There is a six point finite space that
is weak homotopy equivalent to St but is not
homotopy equivalent to SSO.



Really finite H-spaces

Let X be a finite space and an H-space with
unit e: £ — ex and x — xe are each homotopic
to the identity. Stong:

Theorem 18 If X is minimal, these maps are
homeomorphisms and e is both a maximal and
a minimal point of X, so {e} is a component.

Theorem 19 X s an H-space with unit e iffe
is a deformation retract of its component in X .
Therefore X is an H-space iff a component of
X is contractible. If X is a connected H-space,
X Is contractible.

Hardie, Vermeulen, Witbooi:
Let T =SSO, T/ = SdT.
Brute force write it down proof (8 x 8 matrix)

Example 1 There is product T'x T/ — T that
realizes the product on Sl after realization.



Finite groups and finite spaces

X, Y finite Th-spaces and G-spaces. Stong:

Theorem 20 X has an equivariant core, namely
a sub G-space that is a core and a G-deformation
retract of X.

Corollary 7 Let Xbe contractible. Then X is
G-contractible and has a point fixed by every
self~-homeomorphism.

Corollary 8 If f: X — Y is a G-map and a
homotopy equivalence, then it is a G-homotopy
equivalence.



Quillen’s conjecture

G finite, p prime.

“p(G): poset of non-trivial p-subgroups of G,
ordered by inclusion.

G acts on %»(G) by conjugation.
2p(G): Sub G-poset of p-tori.
p-torus = elementary Abelian p-group.

rp(G) is the rank of a maximal p-torus in G.

1 ()DL 7,(6)
(1 (1

Vertical maps ¢ are weak equivalences.



Proposition 4 If G is a p-group, <,(G) and
Sp(G) are contractible.

Note: genuinely contractible, not just weakly.

Proposition 5 i: #,(G) — (G) is a weak
equivalence.

Example 2 If G = X5, #(G) and ¥(G) are
not homotopy equivalent.

P € #(G) is normal iff P is a G-fixed point.

Theorem 21 If.,(G) or o,(G) is contractible,
then G has a non-trivial normal p-subgroup.
Conversely, if G has a non-trivial normal
p-subgroup, then #»(G) is contractible, hence
op(G) is weakly contractible.

Conjecture 1 (Quillen) If o/, (G) is weakly con-
tractible, then G contains a non-trivial normal
p-subgroup.



Easy: True if rp(G) < 2.

Quillen: True if G is solvable.

Aschbacker and Smith: True if p > 5 and G
has no component U,(gq) with ¢ = —1 (mod p)

and g odd.

(Component of G: normal subgroup that is
simple modulo its center).

Horrors: proof from the classification theorem.
Their 1993 article summarizes earlier results.

And as far as Jon Alperin and I know, that is
where the problem stands. Finite space version
may not help with the proof, but is intriquing.



