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Introduction

This is a talk about Goodwillie’s calculus of homotopy functors:
• chain rules: derivatives of FG in terms of derivatives of F

and derivatives of G
• stable case (e.g. Spec): “simple”
• unstable case (e.g. Top∗): more difficult

• application to algebraic K-theory of ring spectra
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Functors

Study functors F : C → D where:
• C and D are ‘appropriate’ categories with a notion of

(weak) homotopy equivalence: e.g.
• Top∗ (based spaces)
• Spec (spectra)
• A∞-/E∞-ring spectra
• chain complexes of R-modules

• F preserves equivalences (F is a homotopy functor)

X −̃→Y =⇒ FX −̃→FY

• F preserves filtered homotopy colimits
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Taylor Tower of a Homotopy Functor

Theorem (Goodwillie)
F : C → D: homotopy functor
X ∈ C
For each map Y → X in C there is a sequence:

F (Y )→ · · · → PX
n F (Y )→ PX

n−1F (Y )→ · · · → PX
0 F (Y ) = F (X )

such that:
• the functor PX

n F : CX → D is n-excisive
• the map F → PX

n F is universal

This is the Taylor tower of F expanded at X .



Review of Calculus of Functors Chain Rules Proof and Application

Convergence of the Taylor Tower

F (Y )→ · · · → PX
n F (Y )→ PX

n−1F (Y )→ · · · → PX
0 F (Y ) = F (X )

Definition
The Taylor tower for F expanded at X converges at Y if

F (Y ) ' holim
n

PX
n F (Y )

Typically, the tower converges when Y → X is sufficiently highly
connected (if C = Top∗ or Spec).
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Layers of the Taylor Tower

The layers of the Taylor tower of F :

DX
n F = hofib(PX

n F → PX
n−1F )

• DX
n F represents the nth term in the Taylor tower for F

expanded at X
• DX

n F is a homogeneous degree n functor
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To simplify things, we consider only Taylor towers expanded at
X = ∗ and write:

PnF := P∗nF

DnF := D∗nF
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Derivatives of a Homotopy Functor

Theorem (Goodwillie)

• F : Spec→ Spec

DnF (X ) ' (∂nF ∧ X∧n)hΣn

• F : Top∗ → Top∗

DnF (X ) ' Ω∞(∂nF ∧ (Σ∞X )∧n)hΣn

∂nF is a spectrum with Σn-action, the nth derivative of F
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The Chain Rule Problem

Questions Given C //
G D //F E :

• how does ∂∗(FG) depend on ∂∗(F ) and ∂∗(G)?
• how does {Pn(FG)} depend on {PnF} and {PnG}?

Our Answers:

• explicit formula for ∂n(FG) based on operads and modules
• approach to finding Pn(FG)
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Previous Work on the Chain Rule

Theorem (Klein-Rognes, 2002)
F , G : Top∗ → Top∗, F (∗) = G(∗) = ∗

∂1(FG) ' ∂1(F ) ∧ ∂1(G)

(They also do the case G(∗) 6= ∗, etc...)
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Chain Rule for Ordinary Calculus

Given f , g : R→ R, what is (fg)n (the nth Taylor coefficient of
fg)?

f (gx) =
∑
k≥1

fk (
∑

j≥1 gjx j/j!)k

k !

Theorem (Faà di Bruno’s Formula)

(fg)n =
∑

n1+···+nk =n

fkgn1 . . . gnk
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Chain rule if Middle Category is Stable

Theorem (C. 2007)
F , G : Spec→ Spec, F (∗) = G(∗) = ∗

∂n(FG) '
∨

n1+···+nk =n

∂kF ∧ ∂n1G ∧ . . . ∧ ∂nk G

or
∂∗(FG) ' ∂∗F ◦ ∂∗G

This is the composition product of symmetric sequences used
to define operads.
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Chain Rule if Middle Category is Unstable

Key Fact about Calculus for Topological Spaces:
• The derivatives of the identity functor I : Top∗ → Top∗ are

non-trivial:
∂nI '

∨
(n−1)!

S1−n

This means:
∂∗(FI) = ∂∗F 6= ∂∗F ◦ ∂∗I

Instead we want:

∂∗(FG) = ∂∗F ◦∂∗I ∂∗G (compare M ⊗R N)
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Chain Rule if Middle Category is Unstable

Theorem (Arone-C. 2008)

1. There is an operad structure on ∂∗I (the derivatives of the
identity functor on based spaces):

∂∗I ◦ ∂∗I → ∂∗I

2. Given F : Top∗ → Top∗, the derivatives of F have a
∂∗I-bimodule structure:

∂∗F ◦ ∂∗I → ∂∗F , ∂∗I ◦ ∂∗F → ∂∗F

3. F , G : Top∗ → Top∗, F (∗) = G(∗) = ∗:

∂∗(FG) ' ∂∗F ◦∂∗I ∂∗G
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Cosimplicial Cobar Construction

• F , G : Top∗ → Top∗
• (Σ∞, Ω∞) adjunction between Top∗ and Spec

Define a cosimplicial object:

FΩ∞Σ∞G oo→
→ FΩ∞Σ∞Ω∞Σ∞G · · ·

using the unit and counit of the adjunction

1→ Ω∞Σ∞ Σ∞Ω∞ → 1
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Key Proposition

Pn(FG)→ Tot

 Pn(FΩ∞Σ∞Ω∞Σ∞G)

Pn(FΩ∞Σ∞G)
��
↑ ↑


Proposition
This map is an equivalence for all n.

Proof.
Induction on Taylor tower of F reduces to homogeneous case.
Then use formula for DnF .
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Cobar Construction for Derivatives

We see that ∂∗(FG) is given by a cobar construction:

∂∗(FG) ' Tot

 ∂∗(FΩ∞) ◦ ∂∗(Σ∞Ω∞) ◦ ∂∗(Σ∞G)

∂∗(FΩ∞) ◦ ∂∗(Σ∞G)
��
↑ ↑


Example

• F = G = I: =⇒ operad structure on ∂∗I.
• G = I: =⇒ right ∂∗I-module structure on ∂∗F .
• F = I: =⇒ left ∂∗I-module structure on ∂∗G.
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Algebraic K-Theory of Ring Spectra

• R-alg: augmented associative R-algebras (= A∞-ring
spectra over/under R)

• K : R-alg→ Spec,
K (A) = algebraic K-theory of finite cell A-modules

• (Basterra-Mandell): the (Σ∞, Ω∞) adjunction between
R-alg and Spec(R-alg) = R-bimod is given by

• Σ∞(A) = TAQR(A)
• Ω∞(M) = R ∨M
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Taylor Tower of K-Theory

Apply Key Proposition with F = K and G = IR-alg:

Pn(K )→ Tot

 Pn(K Ω∞Σ∞Ω∞Σ∞)

Pn(K Ω∞Σ∞)
��
↑ ↑


We need:
• Taylor tower of K Ω∞ (calculated by

Lindenstrauss-McCarthy)
• Taylor tower of Σ∞Ω∞ (easy)
• how these interact (hard)
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P2(K )

• For P1(K ) recover Dundas-McCarthy result:

P1(K )(A) ' THH(R, ΣTAQR(A))

•

P2(K )(A) ' holim


W2(R, ΣTAQR(A))

W2(R, Σ2TAQR(A)∧2)

↓ ↓


where

• W2 comes from Taylor tower of K Ω∞

(Lindenstrauss-McCarthy)
• the vertical maps are induced by the coface maps in the

cosimplicial object
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