Galois extensions of the K(n)-local sphere arXiv:0710.5097

Andrew Baker (joint work with Birgit Richter)

Buenos Aires 14th November 2008

Good categories of spectra

- We need to work in a good category of spectra with strictly associative and unital smash product *before passage to its derived category*. The category of S-modules *M*_S has this property. Both *M*_S and the derived category *D*_S are symmetric monoidal under ∧ = ∧_S with S as unit.
- Note that S is not cofibrant in M_S, so to define cellular objects we use use free objects FSⁿ as cofibrant spheres. We write X for FX, and if Y is a space, write FY for FΣ[∞]Y.
- A monoid object R in *M_S* is an *S*-algebra, and a commutative monoid object is a *commutative S*-algebra.
 Such an *S*-algebra gives rise to a ring spectrum in *D_S*.
- ► Given a commutative S-algebra R we can also define R-modules leading to a category M_R which is also symmetric monoidal with a smash product ∧_R. A monoid object A in M_R is an R-algebra, and if it is commutative it is a commutative R-algebra. The category of commutative R-algebras C_R is also a model category and has a derived category.

Galois Theory in the sense of John Rognes

Let A be commutative S-algebra and let B be a commutative A-algebra, we view this as a pair or extension B/A. Suppose that a finite group acts faithfully as a group of algebra automorphisms of B/A.

The B/A is a *G*-Galois extension if it satisfies

$$A \xrightarrow{\sim} B^{hG},$$

$$\Phi \colon B \wedge_A B \xrightarrow{\sim} F(G_+, B) \cong \prod_G B, \quad \text{(unramified condition)}$$

where Φ is the adjoint of $\operatorname{id} \wedge \operatorname{mult} : B \wedge_A (G_+ \wedge B) \longrightarrow B$. This can be extended to topological group-like monoids, and also to Bousfield localisations of \mathscr{C}_A . These equivalences can be interpreted as isomorphisms in the derived category of commutative *A*-algebras.

Examples

- ► If *T*/*R* is a *G*-Galois extension of commutative rings then there is a *G*-Galois extension *HT*/*HR*, where *H*(−) is the Eilenberg-Mac Lane spectrum functor suitably rigidified.
- ► KU/KO is a C_2 -Galois extension. (Theorem of Reg Wood) Here π_*KU/π_*KO is not a Galois extension of rings since π_*KU is not projective over π_*KO .
- ► If A is a commutative S-algebra and B_{*}/π_{*}A is a G-Galois extension of commutative rings, then there is a G-Galois B/A realising it.
- S has no Galois extensions with finite Galois groups. The proof uses the fact that every finite Galois extension of Q is ramified at some prime: for example Q(i)/Q ramifies at 2, so Z(i)/Z is not a Galois extension of rings, but Z[1/2](i)/Z[1/2] is a C₂-Galois extension.

Lubin-Tate spectra

For each prime p and $0 < n < \infty$, there are morphisms of commutative ring spectra

$$S_{(p)} \longrightarrow E(n) \longrightarrow \widehat{E(n)} \longrightarrow E_n \longrightarrow E_n^{nr},$$

where E(n) is a classical Johnson-Wilson spectrum. Here

$$\pi_* E(n) = \mathbb{Z}_{(p)}[v_1, \dots, v_{n-1}][v_n, v_n^{-1}],$$

$$\pi_* E_n = W \mathbb{F}_{p^n}[[u_1, \dots, u_{n-1}]][u, u^{-1}],$$

$$\pi_* E_n^{\mathrm{nr}} = W \overline{\mathbb{F}}_p[[u_1, \dots, u_{n-1}]][u, u^{-1}].$$

The following is a composite result proved using machinery of Goerss, Hopkins, Miller, Richter, Robinson:

Theorem

There are essentially unique morphisms of commutative S-algebras

$$S_p \longrightarrow \widehat{E(n)} \longrightarrow E_n \longrightarrow E_n^{\mathrm{nr}}.$$

Galois extensions of the K(n)-local sphere

 E_n has a kind of residue field, an extended form of Morava K-theory, namely an E_n -algebra K_n with

$$\pi_* K_n = \mathbb{F}_{p^n}[u, u^{-1}].$$

Similarly E_n^{nr} has a residue field which is an E_n^{nr} -algebra K_n^{nr} with

$$\pi_* \mathcal{K}_n^{\mathrm{nr}} = \overline{\mathbb{F}}_p[u, u^{-1}].$$

Bousfield localisation with respect to each of these is essentially localisation with respect to Morava K-theory K(n) itself and we denote this by $(-)_{K}$. Note that E_n and E_n^{nr} are known to be K(n)-local.

Theorem

There are essentially unique morphisms of commutative S-algebras

$$S_K \longrightarrow E_n \longrightarrow E_n^{\mathrm{nr}}.$$

In fact, the extension E_n/S_K is itself a suitable kind of Galois extension where the group is a version of the Morava stabiliser group $\mathbb{G}_n = \mathbb{O}_n^{\times} \rtimes C_n$ (this is a profinite group). There is a homotopy fixed point spectral sequence

$$\mathbf{E}_{2}^{s,t} = H^{s}(\mathbb{G}_{n}; \pi_{-t}E_{n}) \implies \pi_{s-t}S_{K},$$

which is a disguised form of an Adams-Novikov spectral sequence.

The extension E_n^{nr}/E_n is a lifting of the algebraic closure $\overline{\mathbb{F}}_p/\mathbb{F}_{p^n}$ which is a profinite abelian extension with group $\widehat{\mathbb{Z}}$.

Obvious question: Are there any connected Galois extensions of E_n^{nr} with finite Galois group? If the answer is *No*, this would imply that E_n^{nr}/S_K is a sort of connected algebraic closure, or equivalently a maximal unramified extension of S_K .

Main Theorem

Theorem

For an odd prime p, let B/E_n^{nr} be a finite Galois extension with non-trivial Galois group. Then B is not connected. Hence E_n^{nr} is a maximal connected Galois extension of E_n .

For p = 2 any finite Galois extension B/E_n^{nr} whose Galois group has a cyclic quotient is not connected.

So far, we are unable to prove that there are no non-trivial connected Galois extensions of E_n^{nr} at p = 2 with Galois group having only finite simple non-abelian quotients.

Outline of proof

First we need some technical results on Galois extensions. Where necessary we always assume appropriate cofibrancy conditions on S-algebras.

Lemma

Let B be a cofibrant commutative A-algebra.

(i) Let $\pi_*(B)/\pi_*(A)$ be a G-Galois extension and let C be an associative A-algebra whose coefficient ring $\pi_*(C)$ is a graded commutative $\pi_*(A)$ -algebra. Then $\pi_*(C \wedge_A B)/\pi_*(C)$ is also a G-Galois extension.

(ii) Let B/A be a G-Galois extension of commutative S-algebras, and let C be an associative A-algebra that is a retract of a finite cell A-module spectrum and for which $\pi_*(C)$ is a graded field. Then $\pi_*(C \wedge_A B)/\pi_*(C)$ is a G-Galois extension.

We will use this when $A = E_n^{nr} = E$ and $C = K_n^{nr} = K$.

Some numerology

Since $\pi_{\text{odd}}(K) = 0$, for a finite dimensional $\pi_*(K)$ -module V_* we can consider

$$\begin{split} &d_0(V_*) = \dim_{\pi_{\text{even}}(K)} V_{\text{even}} = \dim_{\overline{\mathbb{F}}_p} V_0, \\ &d_1(V_*) = \dim_{\pi_{\text{even}}(K)} V_{\text{odd}} = \dim_{\overline{\mathbb{F}}_p} V_1. \end{split}$$

Let M be a cofibrant E-module spectrum for which

$$d_0 = \dim_{\overline{\mathbb{F}}_p} \pi_0(K \wedge_E M), \quad d_1 = \dim_{\overline{\mathbb{F}}_p} \pi_1(K \wedge_E M)$$

are finite and not both zero.

Lemma

Suppose that for some finite set X of cardinality |X| = m,

$$M \wedge_E M \simeq \prod_X M.$$

Then the dimensions d_0 and d_1 satisfy one of the following conditions:

▶
$$d_1 = 0$$
 and $d_0 = m$.

• $d_1 \neq 0$, *m* is even and $d_0 = m/2 = d_1$.

In particular, if m is odd, then the first condition holds.

p odd

Now we can prove

Let G be an arbitrary finite group and p an odd prime. Then for every G-Galois extension B of E there is a weak equivalence of commutative E-algebras

$$B\simeq\prod_{G}E.$$

First we show that $\pi_*(K \wedge_E B)$ is concentrated in even degrees using separability of Galois extensions. In degree 0, we have a (finite dimesional) separable extension of $\overline{\mathbb{F}}_p$ and this splits into a product of |G| copies of $\overline{\mathbb{F}}_p$. The idempotents can be realised as *E*-algebra maps $B \longrightarrow B$ using '*I*-adic tower' arguments.

p = 2

We can now prove a more general statement.

► Let B/E be a G-Galois extension where G is a finite group with a cyclic quotient of prime order. Then B is not connected.

In particular, every *G*-Galois extension *B* of *E* with finite solvable Galois group *G* is not connected. In this sense, the commutative E_n -algebra *E* is a maximal connected solvable Galois extension of E_n .

When p = 2 this gives the second part of our Main Theorem. The proof involves analysing the cases where there is a prime order quotient of form $G/N \cong C_{\ell}$ ($\ell \neq p$) or $G/N \cong C_p$. The above numerology is required for the second case.

Some references

- A. Baker & B. Richter, Realizability of algebraic Galois extensions by strictly commutative ring spectra, Trans. Amer. Math. Soc. 359 (2007), 827–857.
- A. Baker & B. Richter, Invertible modules for commutative S-algebras with residue fields, manuscripta math 118 (2005), 99-119.
- J. Rognes, Galois extensions of structured ring spectra, Mem. Amer. Math. Soc. **192** no. 898 (2008), 1–97.