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PREFACE

By. R. Hermann v

With this volune I begin a project I have thought
about for tventy years, the adaptation in nodern terms of
some of thq uajor works of 19 th century differential
geometry and Lie group theory. It 1s certainly most appro-‘
priate to begin with Lie, ‘whose ideas do-inate this period .
and who was one of the most brilliant and iuaginative mathe~
maticians of all tine. In translating Lie in this wny I

have more 15 lind than historical piety. Anomg all the 19- th
. el
century masters, Lie s work is 1n detail certainly the leaat
| ik v

known today{ Mnny of his 1dals and probla-s have hardly
been touch.& since his death )

“ ?
Of ¢dnrse, what are now called "Lie groups" (roughlyw
§Q¢ . w‘, “/“'(VN
what Lia c.lled "finite continuous groups") have been ‘ "
[ gt

extensively studied since World War II. The key influences

in thia reviyul wore Chevalley s book "The Theory of Lie -
RS oA
Groups", pnd the "Seninaire Sophus Lie" notes ‘from Paris ,
I B

in the 1950'3 (nostly uritten by P Cartier) These works\

finally nado a substantial portion of the ideas of Lie and
E. Cartan accessible to a reader we11 trained in the uethod~

ology of modern matheuatics This accessibility is only

iii
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relative--to this day, very few peaple know very well the’
geometric and algebraic side of Lie group theory. The
research specialization which Lie so forcefully deplores

in the Forward translated below has now gone so far that
many people now work in esoteric (and often tedious) sub-
specialties or offshoots of Lie group theory who clearly ‘
are not familiar in detail with the silple and broad
geometric view of the theory utilized and developed by L1e.‘
Here, as in s¢ much of the rest of mathematics, the relent-
less urge to do "new" research has subnerged the beautiful
old ideas. However, at least there are now some excellent
introductory treatises to certaln portions of L1e group and

algebra theory--e.g., those by Sagle and Walde, Samelson,
1k

F. Warner and, on the physics s1de, Gilmore and Miller.
The main foature of L1e s work is the relation 4

hetween groups and differential equations It will be cleer

from the material translated in this and succeeding volunea
that Lie thought of h1msolf as the successor to Abel end R
Galois, doing for differential equations what they had done
for algebraic equations. (What is now routlnely called the
"Galois theory of differential equations" is just a ninute
part of what Lie had in mind.) This flavor hns been almost
completely lost, and one of my major goals 1s to revive it
and push its development with the powerful tools of modern

mathematics.

PREFACE ¢ . v

‘Appatently,dlﬁe!s work went»throuzn three cycles; .
First, he. develaped material in rough. intuitive: and gecme-
tric forn.,whioh‘qu published in Norwegian journals. Then,
a more pollshed‘lpdtayetemat1c version was written f0151‘
Mathematische Anne;leng;the leading journal of the def.)

(It is an interesting gantrast to today's habits that the -
journal published whet we. would call.Reviow Articles, and
which editors wou;d'ﬁpnidisdain.)._Pinally, he wrote--inl
collaboration with jqnior colleeéoep-fExtre-ely long and
detailed books, Uh!ﬂrtumately,4}heibopks'ere,difficult

for the modern reader, and have probably played a major. H\;
role in Lie's reputation for. incolprehensibility I have.'z_
found the papers fsnn the intermediate - eycle to be the nost \
accessible, Aand accordingly, alll huxld my comments around

their tranSlatxon, with the inpprtant collaborat1on of,
Dr. Michael Ackerman. The key document in th1s volume);;“i )
the translation of "Thqorie der transformat1onsgruppen I" *
Math. Ann. VI, 1880 Collected Works, Vol. .6, P. 1

The muin result of this paper is the classificat1on x
(under 16cal changes of Yariables) of the finite dimens1onal
Lie algebras which can act on two d1ponslqnal man;folds.“ \
These results seem to be fotgotten\today, and(this paoer -
would be woxth,reviving‘evon;if that were the only.thiné
it contained. However, there are also,glimpses of more:A

general problems, and it is a pleasure for me {in my

~
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comments) to indicate the directions in which Lie's ideas
can be generalized and utilized. The next papers in this
series will deal, in a similar way, with Lie's papers on
differential invariants, differential equations admitting
known transformation groups, and infinite Lie groups.

Here is the format to be followed in all this work.
I will write some preliminary chapters, outlining the
mathematical background that I believe it is useful for the
reader to have available to understand the paper in the most?
general and efficient way, (However, I will usually assume
that the reader is familiar with the elements of differen-
tiable manifold theory.) Then, Michael Ackerman's transla-
tion of Lie's text will be presented, interspersed with my
comments (printed in italic). Finally, I present in the
closing chapters my own version of some of the ‘material,
its ramificatijons, extensions, and applications?

I want to emphasize applications because that isf
very much in the spirit of lLie's work. The reader will see !
for himself how widely Lie thought of mathematic¢s--and the
applications were clearly part of his world, There are two
areas where Lie's ideas are in direct touch with current wo
Elementary Particle Physics and Mathematical Systems Theary.
Since the physics applications have been extensively dis-

cussed in my own books (they are referred to by abbreviatior

PREFACE : vii |

listed in the Bibliegraphy), I will concentrate here on
Systems Theory, which, in fact, forms the ideal setting
for Lie's iqeas.

The best explanation Lie himself gave of his work is
to be found in the Forwards to his books. Accordingly, I
present the most interesting parts of them as introductions
to these volumes, beginning here with the Forward to "Geometrie
der Beriihrungstransformationen.

Finally, I want to thank‘Dr. Michael Ackerman for
his collaboration and help. I also thank Arthur Krener
and Alan Mayer for their help and suggestions. Karim Young
has done_a fine job typing the manuscript. A word of thanks

also to Mike Spivak, Al Gowan and Nick Loscocco.



~ LIE'S FORNARD TO
"BERUHRUNGS TRANSFORMATIONEN"

“As an introduction to the present work it seels’fe"
me to be fitting to preface it with some general iemariée

" In the course of time the position of analysis withVM
respect to geometry and to the various branches of applied
mathematics has passed through many extensive changes. .
During the past century the mutual stimulation of the seper;
ate disciplines was greatly advenéed and in this, first
one and then the other d1sc1pi1ne was domlnant. This is iﬂ”
the nature of thlngs and in itself is not to be regretted
But in our century, matheuatics has split up into many Qéé;i
extensive areas, and this division has often leé the repres»
entatives of ‘oneé area to m1sjudge ‘the importance of others,

i

so that to the dett1uent of the1r own dlsc1pline, fruitfui

ideas from the outside have been ignored
Permit me to elucidate these remarks by recailing :
briefly somé of the phaSes of the development of mathemat1cs
For the ancient Gteeks, geonetry was the almost T
e&cluiivéfy dominant discipliné of mathematics. As yet there
was no abstract analysis, and even astronony end mechanics
were subordinate to geometry. ‘After noteworthy héginniﬁgs

by Diophantus and the Indians, there first developed in the

ix
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Renaissance an algebra, whose lack among the Greeks is
straongly peiceptible.

Then, through the introduction o£~the concept of
coordinates and through the creation of analytic geometry
by Descartes, an epoch-making bond between geometry and
analysis was forged, which was soon to lead to the truly
fundamental concept of mathematics, the function concept. ]
The concepts of integral and derivative, whose germ already |
occurs in Archimedes' geometric investigations, developed |
gradually and indeed, be it no;ed, through the treatment of
geometric, kinematic and mechanical problems in the works
of Kepler, Cavalieri, Descartes, Wallis and especially
Fermat. Similar considerations led Newton and Leibniz to
discérn the inner essence and, in particular, the reciprocaly
relation of these two concepts and thereby to found the
infinitesimal calculus. The theory of differential equa-
tions and the calculus of variations had the same geometri—'
cal source.

Not less characteristic, though less noted, is the

fact that the concept of a transformation, which is becomingy

more and more prominent ip modern mathematics and claims
recognition alongside the function concept as an independen
fundamental concept, originated with the ancient geometers, |

thaugh, of course, in a very special form--still, its sourcey

FORWARD xi

was geometric intuition. Also the closel} related concept
of differential invariant was first encoufitered in geometry,
namely, in the theory of curvature. o

Thes; brief remarks already show that in earlier. . .
centuries geometry and mechanics exercised the most powerful
influence on the development of analysis. That, conversely;
analysis had the most powerful reciprocal effect on geometry
and mechanics is familiar and need not be further discussed.
here,

This reciprocal action was' advanced and really made .
possible by the fact. that the separate disciplines were .. -
relatively inextensive, so that-at the end of the preceding
century Euler, Lagrange, Laplace. and around the turn of the: |
century Gauss and then Cauchy could comprehend all branches -

of mathematics.

° L

The .,

extent of the separate di?ciplines grew to an extraordinary.

In our century this has gradually changed: .

degree; indeed, new ipndependent sciences were formed, . like.
mathematical physics at the hands of Laplace, Amp2re, Fourvier,
Fresnel, Green, Cauchy, Poisson and Lejeune-Dirichlet.
Geometry, which_had been led into new roads in the.
preceding century by Euler and Monge, also received: a mighty
impetus, first from the establishment of projective geometry

as an independent discipline by. Carnot, Brianchon and:.. . .

-
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especially Poncelet and its further development by Mdbius, 3
Pliicker, Chasles and Steiner and, secondly, from the enrichf
ment of infinitesimal geometry by new, path-breaking ideas 5
through Gauss' theory of curvature and Minding's related :
results. Both directions contributed to the development of
‘Cayley's invariant theaory.

S§till mightier was the rise of analysis in the
twenties and thirties of this century. Already’ the inves- |
tigations of Lagrange and even more of Gauss and Cauchy
provided many new and important results = they were dis-
tinguished by a perfect form and in particular a classical
rigor, which in the preceding century had been lacking to
sQ m#ny mathematicians. But above all, it was Abel who,
by his comprehensive problems, his great, deep discoveries
and his logical acuity, inaugurated the new epoch. And
Abel's lucid exposition of his new theories contributed in
an essential way to the possibility of mathematicians'
grasping Cauchy's theory of the imaginary and especially
Galois' investigations, as deep as they are difficult, ‘

It is true that Abel and his successor Galois hardly |
dealt with geometry in their brief lives. It is all the |
more remarkable that it was Abel's ideas which enriched
geometry with broad new points of view, just as Galois'

ideas have already begun to exercise @ gsimilar influence.

FORWARD xiid

The pioneering discoveries only indicated here have
given analysis, geometry and mathematical physics so great
a content and such an éxtent that indeed it has become
impossible for an individual to comprehend all of uathéiliics.
for even Jacobi and Riemsnn hardly succeeded in doing th1;
completely. .

Riemann, who was 1nf1ﬁenced'by Gauss and Jacobi, even
though he is soomer to be considered the successor of Cauchy
and Abel, knew how to spply the tools of geometry to analysis
in a magnificent way. Bven though his astounding mathematj-
cal instinct sometimes provided him inuédiately witﬁ'rclults
which his time did not allow him to establish definitively
by purely logical considerations, still these sp;bﬁdidiu )
results are the best testimony to the fruitfullness Sf ﬁi;
methods. | .

I should like to consider Weierstrass, Riemann's
contemporary, to be also a successor of ABel.'ﬁot odif
because of the direction of his investigationi. Lﬁt‘hore io
because of his purely analytical method, in which he exericd
himself to avoid geometric intuition as & tool. As out:
Standing as Weierstrass' accomplishments arevfor the founda-
tions and for the highest domains of analysis, it sfili
Seems to me that his one-sided emphasis in analysis has not

had an entirely favorable influence on some of Kis students.

2 |
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xiv FORWARD

i believe that in this I stand on the side of Klein, wha
has understood so well how to take fruitful stimuli for
analysis from geometric intuition. :
' In any case, it is regrettablo that the great devi
ment of analysis in Germany in the last decades has not
accompanied by corresponding progress in geometry. Pronm
ent German geometer# 1ike M8bius, Pliicker, von Standt a
Grassmann were not appreciated at their true worth.

As indicated above, the splitting up of mathemati
has often exercised an unfavorable effect on the repreS;
tatives of the separate disciplines. Indeed, while som~f
geometers go so far as to consider it meritorious to re‘
the tools of anaiysis coupieiely (more properly said, tq
great an extent as possible) in treating geometrical pro:
on the other hand one finds here and there among the ana{
the view that analysis not only can be developed indepenr
ly of geometry, but that ;t gggg,vsince in their Opinion:
proofs of analytic propositions by goometric consideratii
are not unconditionally reliable, ’

In my scientific endeavors I hlve always proceede
from the view that on the contrary it is desitable that ]
analysis and geometry should now, as earlier they did,
mutually Support and enrich each other with new ideas.
view was the theme of my Antrittsvorlesung at the Univerq

of Leipzig in 1886.

FORWARD xv

For more than twenty-five years I have been trying
to gain acceptance for this view of mine by means of my own"
work. It may have been especially characteristic of my
work that, after the model of Monge, I apply geometric
concepts to analysis, especially those introduced by Poncelet
and Pliicker, while gn thé other hand I have extended the
jdeas of Lagrange, Abel and Galois on the treatment of
algebraic equations to gedmetry, and in particular to the

theory of differential equations. ...

(The reet of thie Forward refers to the details of
the volume fop which it was written, and does not concern

the subject matter of thie Volyme,)
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Chapter A

A MODBRN DIFFERENTIAL-GEOMETRIC
NOTATION FOR LIE'S WORK '

1. DIFFERENTIABLE MANIFOLDS AND VECTOR FIELDS

The basic setting will be the modern theory of differ-
ential geometry on manifolds. As introduct1ons, I recommend
0'Neill [1], Spivak [1], Bishop and Goldberg [1], Loomis
and Sternberg [1], Warner [1}, or Misnet, Thorne and Wheeler
[11. I shall follow most closely the notations of my own
books, particularly DGCV, GPS and the >Interdisciplinnry
Mathematics series. | . )

By a manifold I will mean a ¢~ differentiable, finite
dimensional manifold. (It is to be understood ‘that they
are, as-topological spaces,.garaéomggc » i.e., are the
countable union of compact subsets.) Maps; functions, trans-
formations, etc. (all more-or-less synonymous) will be C",
unless mentioned otherwise.

Such manifolds will usually ﬁe'denoted by letters

like X, Y, Z. Points of X will be denoted by

X
F(X) denotes the set of C", real-valued functions on X.
It is a commutative associative algebra (under pointwise
addition and multiplication). A vector field on X is a
der1vat1on~ f + A(f) of F(X). They form an F(X) -module,
denoted by V(X)

I



Remark. 1 have chosen the labelling of these objects,
€.8., "X" for a typical manifold, "A" for s vector field,Y
to agree with the notations used in Lie's papers. j

are different from the typical-notntions‘usod in my own

books.

A tangent vector to a point x € X is s directiona}

derivative, i.e., an R-linear map

v: F(X) + R

such that:

v(flfz) - V(fl)fz (x) + fl(x)v(fl)

for £,,f, € F(X)

X, denotes the vector space of tangent vectors to X

X

The tangent bundle te X is the space of pairs

(x,v) ,

with x g X, b e:Xx.

T (X)
The projection map
T(X) ~ X
is the map
(x,v) + x

NOTATION

denoted by

T(X) can be made into s manifold, so that the pquoctibn-
nsp takes T(X) 1nto & vector bundle over . X. _
A vector field Aie V(x) defines a cross-section map

x + Mx) € ix -

of T(X). Teo define it, set:
A(x)(£) = A(£f)(x)
for f.e F(X), xeX .

In this way, V(X) becomes identified with TI(T(X)), the

space of cross-sections of the vector bundle T(X).

2. COORDINATE SYSTEMS

A diffeomorphism

¢: X+ Y
is a C” map between two manifolds, such that the inverse .
nap , .

¢l:vsx 5

PV

also exists and is C .
rR? _and Cn, n-dimensional resl and conplexgggglig;,gyéi

Wy

spaces, are considered as manifolds in the usual way.

If Y is an open subset of a manifold X, it 1nhoritdf

a manifold structure. o
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Let X continue to denote a manifold. A set

(fl....,fn)

of elements of F(X) is a dinate system for X if

the map

x -+ (fl(x),...,fn(x))
is a diffeomorphism between X and an open subset of R,
Of course, the very definition of "manifold" implies that
X can.be covered by open subsets with such coordinate . »
systems, but X itself does not necessarily have a glgggl;
coordinate system. However, to keep in contact with class-E
ical ideas, we usually work with coordinate systems, but
in a way that is independent of the chosen coordinate syst-;
This guarantees that concepts have a "global" meaning.

For notational convenience, we shall denote a coordinf

ate system of functions on X by

ot (2.1)

(It is important to keep in mind that xl,...,xn are real-
valued functions on X.)

Adopt the summation convention, and the following

range of indices:
1<i,j<n .

Thus, a coordinate system may be denoted by

Ky
wi

c:‘:

We cn nn doﬂ.no nctn !1014:

9;;, . v

such thlt:.

(2.2)

?..!.Iag* ,
for each f ¢  J¢ § POARIE

These vector fields define s basis for the F(X)-module V(X).
1f ,(xi) As anqthptacoordihuto system for x. the
vector field basis 3/3y’ they. determine is related.to’

a/oxt  vie the transfornstion lav:
2.2 3 LT e (2.3)
3x x™ 3y v

(Notice that 2,3 conforss to the “chain ruls” of é@iéulus.)

A given, fixed, coordinate system ' (x}) serves to '’
identify X with R®, i.e., a point.x & X is identified
with the point A |

(x1x),...,x"(x)) € B .

Thus, gemletric objects md opoutions on X ‘may be referrod,
back, via this identificttion. to RP Por exalple, in Lie's

work, the mappings

¢: X+ X
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play a prominent role. In terms of Rn, such a mapping

-

is determined by functions of the form:
o) = x'Y...x™
with
x'l - ¢1(x),...,x'n - ¢"(x) .
Alternately, the component functions ¢1,...,¢" defining |
the map may be defined via the relation:

orxt) = ot

where ¢%*: F(X) » F(X) is the dual pull-back map on

functions determined by ¢.

3. FLOWS, INFINITESIMAL GENERATORS, AND ORBITS

Let X be a manifold, with a coordinate system (x')

Let t _be a real variable, varying, say, over
- < t < o

A flow on X 1is a map
t -+ ¢t

of R into the set of diffeomorphismﬁ of X, satisfying

the follovwing conditions:

NOTATION ‘ B

00 = identity map
The map
(,x) + 3, (x)
of RxX + X
is ¢” ;
Given such a flow, define a map

t -+ At

of R+ V(X) via the following formula:

AE) = o h* 26

(3.1)
for £ e F(X)

The one-parameter family
t + At

of vector fields is called the infinitesimal generator of

the flow t » ¢t.

Remark. From a modern point of view, Lie's work may largely
be considered as the study of this correspondence between

flows and their infinitesimal generators.

This relation between flows and generators has its
physical origin in hydrodynamics. If

X = r" ,

:
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and the flow ¢t is that determined by a ‘fluid flbw, the

vector field

t > At

is called the Eulerian velocit} field. See DGCV and GPS.

Let be a flow on X. A curve

Definition, (¢)

in X is an orbit of the flow if there is a point «x

t + x(t) 4
e X |

0
such that:

generator t - At of the flow. Suppose that:
i 2 :
A, = A —r (3.3)
t t gl ?

. where, for each t, Ai e F(X).

Theorem 3.1. If t + x(t) is

) = i) (3.4)
then:
dxi

= Alx(e) (3.5)

dt

Proof. From 3,4,

xte) = xbe ) = epetyxg) -

NOTATION

Hence,

et g

A

L]

» using 3,1,
oh A, (x4 (xy)
tfg 0

, using 3.3, o;(Ai)(Xo)

4 G
= A8, (x))
= , using 3.2,
Ax()
which proves 3.5,

Remark. Formyla 3,5 is a key to understanding Lie's ideas
in modern terms. For, the steps used to derive it 8T€

reversible (modulo “"global" complications). There is a

one-one correspondence between systems of ordinary‘dlffere“'

tial equations of the form 3.5, and flows.

However, this was not precisely Lie's viewpoint.- He
thought more intuitively in terms of infinitesimal trans-
formations. In the next few sections I will txy to deSc?ibe
this céncept in‘a way that will aid the modern Treader in

understanding Lie's work.
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INFINITESIMAL TRANSFORMATIONS

Let X be a manifold. Define a equivalence relation

e set of flows in X, as follows:

ition. Two flows (¢t), (at) in X are said to be
itesimally equivalent if the following condition is

fied:

For each point Xg € X, the orbit curves
t > ¢, (x,)
t > o, (x,)
which begin at Xy have the same first order

contact at t = 0, i.e., have the same tangent

vector.

em 4.1, Let (At)’ (Bt) be the infinitesimal generatorg

e flows (¢t), (at). Then, the flows are infinitesimalli

alent if and only if:

Ay = B, (4.1)

The proof of 4.1 follow readily from formula 3.5.

ition. An infinitesimal transformation on X 1is an

alence class of flows, for the equivalence relation

d above.

NOTATION : 11

Remark. By Theorem 4.1, the set of infinitesimal trans-
formations may be identified with the set of vector fields
on X. (Map the flow (¢t) onto the vector field AO’
where (A.) is the infinitesimal generator of (¢t)).
However, there is a difference in the geometric thought
that goes into the two concepts of "infinitesimal trans-

formation" and "vector field", and this difference is a

key feature in Lie's work.

We can readily describe these ideas in pictures in
case X 1is 2-dimensional, e.g., X is a subset of Rz.

A flow and its orbits can be drawn as follows

The infinitesimal transformation is then the vector field
described by the arrows. Think of a point Xg going

"approximately' into the point

Xg * A(xo) At

in time At, where A(xo) is the value of the vector field-

infinitesimal generator at x = x t = 0.

0!
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is another way of thinking of these intuitive
the case where X 1is a general manifold.

n  f F(X), set:

£, = 62(f)
g 3.1,
of

T = ¢t(A (D)) ,

t
= A(f) ,
LA

g Ao.

\g Taylor's formula:

ft = £+ A(f)t +.-- (4.2)

+++ denote higher order terms in it.)
formula can be thought of as sending f approxi-

- small t) into

f+ (§f)t ,
§(£f) = A(f)
ondence

f + of

NOTATI ON . 13

js then thought of as the "infinitesimal transformation".
In particular, it may be applied to the coordinate functions

Xt e exdye

Now, if

i.e., if (Ai) are the components (contravariant, in terms
of classical tewNSof analysis) of the vector field A in the
given coordinate system, then the infinitesimal transforma-
tion takes the form:

xP s oxt e At el
Warning. Keep in mind that this transformation on functions
is dual to the transformation on points. This is the source
of a certain amount of notational confusion. In the next
section we will pursue this further in the case that X is

a vector space.

5. FLOWS AND INFINITESIMAL TRANSFORMATION ON VECTOR
SPACES
Vector spaces are manifolds where points can be
added. This additional structure is the source of both

simplifications and confusions, Since many of the formulas
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in Lie's work may be most readily interpreted under the for fixed X € X, this defines a linear isomorphism map

assumption that X is a vector space, 1 will now review Yy * v(x,y)

and reinterpret in this context the formulas presented in of X + X
x -

previous sections for the case where X was only assumed
As x varies, it defines an isomorphism

to be a manifold, with no additive structure.
X x X -+ T(X)

Warning. Many of the formulas to be derived in this sectior

g

Hence:
should only be interpreted "symbolically", or "locally",

since in real life flows will not be defined globally on

vector spaces. However, usually everything can be reinter- |

For a vector space X, the tangent bundle

T(X) may be identified with the product
X x X,

preted satisfactorily in terms of manifold theory, or some f
alternate formulism (for example, algebraic geometry,
Remark. We can also write formula 5.1 as follows:

formal power series, sheaves of ahalytic functions, etc.)
v(x,dx) (£) = df(x,dx) C s 2

Let X be a real vector space. xd denotes its dual
d i

This interprets '"dx" as an ‘
R : element . is i :
sapce, i.e., the space of linear maps: X > R. Then, X glement of X. This is essentially

what is ca¥1ed the total differential in advanced calculus

is a linear subspace of F(X).

Given f e F(X), y ¢ X, x ¢ X, define an R-linear ¢ With this identification of T(X) with X x X, th
i » e

. space of cross-seqiion maps

v(x,y): F(X) + R Ar X » T(X)

via the following formula: i.e., the space of vector fields on the ma;ifold X, becom
. ’ es

‘ identified wij .

3 ith the space of ma

VOO (B) = B £(xety) | pag (s.1)4 P ps
4 A: X+ X .,

for f e F(X) F in
or : »
€Xample, in ordmpary, 3-dimensional vector analysis
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in Lie's work may be most readily interpreted under the for fixed x € X, this defines a linear isomorphism map
Yy * v(x,y)

assumption that X 1is a vector space, 1 will now review

and reinterpret in this context the formulas presented in of X + X
x °

previous sections for the case where X was only assumed
As x varies, it defines an isomorphism

to be a manifold, with no additive structure.

X xX=+T(X) .

Warning. Many of the formulas to be derived in this section

g

Hence:
should only be interpreted "symbolically", or "locally",

since in real life flows will not be defined globally on

vector spaces. However, usually everything can be reinter- |

For a vector space X, the tangent bundle

T(X) may be identified with the product
X x X,

preted satisfactorily in terms of manifold theory, or some 1

alternate formulism (for example, algebraic geometry,
Remark. We can also write formula 5.1 as follows:

formal power series, sheaves of ahalytic functions, etc.)
v(x,dx) (£) = df(x,dx) S 2)

Let X be a real vector space. Xd denotes its dual
a

This interprets "dx" as an '
elem T .
sapce, i.e., the space of linear maps: X - R. Then, X" | element of X. This is essentially

what is called the total di : .
iff

is a linear subspace of F(X). . erential in advanced calculus.

Given £ e F(X), y e X, x e X, define an R-linear 4 With this identification of T(X) with X x X, th

i > e

. space of cross-seqtion maps

v(x,y): F(X) ~R A: X + T(X)

via the following formula: 1.e., the space of vector fields on the ms;ifold X, beco
: , mes

‘ identified with the
the space of
eRSTORENE EICC] P (5.1)4 7 nepe
1 A: X+ X .,

for £ e F(X) F
or s 5
example, in ordmpary, 3-dimensional vector analysis
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X = RS
and a "vector field" (e.g., electric or magnetic field,

velocity fields, etc.) is indeed a map

3, g3

R
With the identification of a vector field A as a
map X > X, the action of A on functions f € F(X) can

be written as follows:

AD)(X) = Fg £x+tA)) | g (5.3)

This formula--which is a key one linking the modern
differential-geometric viewpoint and the formalism used by

Lie--can also be written as follows:

f(x+tA(x)) = £(x) + tA(£)(x) +--- (5.4)
(The terms -+- involve tz.)
Now let
t->¢t

be a flow on X. Let

t*At

be its infinitesimal generator defined by formula 3.1. Then, |

for xe¢ X, fe F(X) ,

NOTATION o ' : 17

A ) = 0D G;M0)
- & esenedon,.,
3 -1
- & co,0t o),

14

Hence, we have (identifying -each vector field with a map

X > X):

A = e toon|,., (5.5)

Here is a fluid mechanics interpretation of this
formula. Suppose
X = R R
and that the orbits
t > ¢, (x)
of the flow represent stream-lines of a fluid flow. Then:

At(x), given by 5.5, is the velocity vector

of the particle which is at x at time t.

{At} then represents the Eulerian velocity

vector field.

Another intuitive insight into formula 5.5 is obtained

by writing the right hand side of 5.5 as approximately
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NOTATION

- -1
bpene 07100 - # (001 (x))

At

Thus, we have:

beane0O ~ 0,00 + A (4,(x)) Bt (s

In particular, set t = 0, and
A = Ao .
Consider the flow
x + x + A(X)t .

It may be considered as the infinitesimal transformation

of the flow {¢t}.

Here is another way Lie sometimes denotes this.

Write 5.6 as:

¢t+At(¢;1(x)) ~ x4 A(X) Bt . (s.ﬁ

This suggests that the "infinitesimal transformation"

associated with the flow be denoted as:

-1
Preat bt

or

-1
$reat ¢

(5.?

Chapter B

SOME ALGEBRAIC AND GEOMETRIC STRUCTURES
INHERENT IN LIE'S WORK

In this chapter I briefly review general concepts of
present-day mathematics which are useful in understanding
Lie's work.

In general, Lie deals with a variety of binary alge-
braic operations, defining various algebraic structures,
See Th,vx- I,
In addition,

such as group, semigroup, Lie algebra, etc.

for a brief introduction to thése concepts.

certain ideas of category theory also occur implicitly in

Lie's work.

1. BINARY AND PARTIALLY DEFINED BINARY OPERATIONS

Let X be a set. A binary operation on X is a

mapping
X xX+X .
We usually denote the image of

(xl,xz) e X x X

under this mapping by

xlxz .

19
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(This is called the multiplicative notation for the binary

operation.)

A partially defined binary operation on a set X is

defined as a subset
YcXxX ,

together with a mapping
Y+ X

The image of

X%

is called the distinguished subset of X x X.

r

L
et X and X' be two sets with binary operation.

map
$: X + X!

' & homomorphism if
$(xyx,) = $(x;)8(x,)
for X)X, e X .

I .
f X, X' have partially defined binary operations ,

ch disti i
nguished subsets Y, Y', g map

STRUCTURES 21

¢: X » X!

is a homomorphism if:
p(Y) < Y’

¢(X1X2) = ¢(X1)¢(x2)

for (xl,xz) eY .

i/
Many examples of such binary operations shoul

familiar to the reader, and I will not go into detail. The

main examples of "partially defined" operations are

categories, which we consider later.

2. SEMIGROUPS, MONOIDS AND GROUPS

Let X be a set. A binary operation on X defines

X as a semigroup if the following rule is satisfied:
xl(xzxs) = (xlxz)x3 (2.1)

for XysX5,X3 X

It is called the associative law.

A monoid is a semigroup X, with an element 1 such

that:

1x = x1 = X

for all xe X
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1 is called the unit element. In words:

A monoid is a semigroup with a unit,

Let X be a monoid. @iven x ¢ X, an element
-1 . .
X € X is called an inverse to «x. if:
xx1 « 1 x 1y

for all xe¢ X .

A group is a monoid where every element has an inved

3. CATEGORIES AND FUNCTIONS

0f course, one can put in a "partially defined"
condition on the algebraic structures defined in Section

(For exshple, a partially defined group is called a

group.) A category is a partially defined monoid, where af

special emphasis is put on how the distinguished subset
YCcX xX
is defined.

Suppose given two sets, A, 2. The elements of A

are called objects, and the elements of ¢ are called

morphisms. Set:

X = Ax¢xaA . (3,£”

STRUCTURES o ' ' 23

given x € X, of the form

X = (A1,¢aA2) ’
with Al. Aé € é, [ > %, the element Al is called the
domain of x, and the element Az is called the codomain.
domain codomain
set:
Y = '{(xl.xz) e X x x:'codomain x, = domain x;3}

(3.2)

Definition. A semi-category structure on X is a partially

defined semigroup structure on X, with Y defined by 3.2

as the distinguished subset of x x X. For (xl,xz) e Y,

domain (xlxz) = domain X,
codomain (xlxz) = codomain X,

Remark. Do not be confused by the use of the terms domain,
-morphism; etc. Elements of categories are not mappings.

As we shall see in a moment, mappings form one type of

category, and the terminology has been chosen to reflect

this special case. Thus, categories are algebraic abstrac-
tions, just as groups, fields, etc. are abstractions from
familiar algebraic examples. Of course, a category is a

good deal more general! I will not use or prove any theorems
about categories. They will occasionally be useful as forming a

Convenient language.
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¥

Here is the notation used for the product in such g b

semi-category structure. Given
X - (A1,¢1’A2)’ Xy (\A3’¢2:A1)

with (x;,%)) € ¥,  then
1%z = (A3e8145,4)

Definition. A semi-category is a category if, to each

object A ¢ A, there is a unit element
(A,lA,A)
such that:
(A,lA,A)x = X
if domain x = A .
x(A,lA,A) = X

if domain x = A .

.Definition. A category is a set-mapping category, if,

for x e (A1,¢,A2), A, and Az are sets, ¢ is actually j

a mapping from A1 to Az, the multiplication is defined

as mapping composition, and the unit element is the identitg

map.

Remark. Because the categories of mappings are the main

example, one often denotes

STRUCTURES E ' ’ 25

(Ay+8,A,)

by

¢ .
Al - Az or ¢: Al > Az N

even for more general categories.

Definition. Let X = A x $ x A, X' = A x &' x A'  be

two categories.

Let )
a: A+ A"
B: 8+ 9
be mappings of objects and morphisms.
If
X = (A1’¢)Az) ’
define:
(a,B): X + X
as follows:
(a,B8) (A1’¢1A2) - (M195¢ruz) .
(a,8) is called a functor if
(G.B) (xlxz) = (095) (Xl)(d:ﬁ) (xz) »

i.e., if (a,8) 1is a “"homomorphism" of the partially

defined algebraic structure associated with the category.
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Remark. A "functor" stands to "category" as "homeomorphism"

stands to 'group".

The original examples of "functors" came from topology.

The topologists' notion of "commutative diagram" is often
very useful as a notation for a functor. It would go

something like this:
A4

Sl

L]
AT A

Lie's examples will give us a typical kind of ﬁategoryi

" of open subsets of M. The mappings defined between such
open subsets, the "morphism" of the categories, are certain
homeomorphisms of these open subsets. (Typically, the
homeomorphisms will be defined by Lie algebras of vector
fields on the manifold M.) ﬂ

Another example of a category that appears naturally

in Lie's work is the category whose "objects" are transformad

tion groups, and whose "morphisms" are what are called

"intertwining maps" or "prolongations". (The latter term

is used by Lie and Cartan.) We now consider this situation.ﬂ
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4, TRANSFORMATION SEMIGROUPS AND GROUPS

Let G be a semigroup, and let M be a set. A

transformation group action of G on M is defined as a

map
GxM-+M ,
’
denoted by
(g,p) ~8p
such that:

g,(g,p) = (g;8,)p
for 81+8; € G, p é M .

Given two transformation semigroups (G,M), (G',M"),

an intertwining map is a pair of maps (¢,7),
¢: G > G'
™™ M-+ M

such that:

¢ is a homomorphism of the semigroup structure
on G
m is a

map between M and M'M dﬂl’

n(gp) = ¢(g)n(p)
forr ge G, peM .
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In other words, the following diagram of maps is commutati

GxM — M

ol v |

G'*XM — M
If G is a group, with unit element 1, and if
1p = p for all pe M ,

i.e., if the unijt element of G- acts as the identity mapf

*

on M, then (G,M) is called a transformation group. I{
the basic algebraic structure investigated by Lie. (0f col
he always dealt with the case where G was a ""continuous '}

group, M a manifold.)

Definition. Anp intertwining map ¢: G - G', ®w: M+ M
~alled an isomorphism if:
a) ¢ is a homomorphism between groups G,G',

b) w is one-one and onto.

emark. The notion of "isomorphism" roughly coincides wiii
he use of the term "Shnlich" or "similar" by Lie. (Ofteny
> also thought of isomorphisms in a local sense.) A gooi
*al of the paper is concerned with classifying certain
pes of trans formation group actions up to isomorphism!

Consider the intertwining maps as morphisms, the tr{

Tmation groups ag objects. This defines a category.
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. 5. LIE ALGEBRAS AND THEIR ACTION AS INFINITESIMAL
TRANSFORMATIONS .
Let K be a field. A Lie algebra (with K as field
of scalars) is a vector space (over X), with an algebraic

multiplication which satisfies the Jacobi identity. Denote

one by G.. Then, elements A,B ¢ G can be added,
»
AB>A+B '
and multiplied by scal#rs in. K:
k,A > kA ;
and multiplied together:
A,B + [A,B]

The Jacobi identity is:

[A, [B,C]] = [[A’B]’C] + [B’[A9C]] (5.1)

Here is a typical example of a Lie algebra. Let V

be a vector space, with K field of scalars. Let
“L(V)

denote the space of X linear maps
A: VvV

Make L(V) into a vector space, by adding linear maps in
the obvious way. The Lie algebra structure on L(V) is

defined by defining the Lie muitiplication as theAéommutator:
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In other words, the following diagram of maps is commutati:

GxM — M

of v A

G'*M — M

If G is a group, with unit element 1, and if

lp = p for all pe M ,
i.e., if the unit element of G- acts as the identity mapp:
is called a transformation group. It

(of c-f

on M, then (G,M)

the basic algebraic structure investigated by Lie.

J
he always dealt with the case where G was a "continuous";

group, M a manifold.)
Definition. An intertwining map ¢: G +~ G', =n: M + M'
called an isomorphism if:
a) ¢ is a homomorphism between groups G,G',
b) 7 is one-one and onto.
Remark. The notion of "isomorphism" roughly coincides wit

the use of the term "#hnlich" or "similar" by Lie. (Often

he also thought of isomorphisms in a local sense.) A 3°°'§
deal of the paper is concerned with classifying certain '
types of transformation group actions up to isomorphisml

Consider the intertwining maps as morphisms, the trf

formation groups as objects. This defines a category.
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.S. LIE ALGEBRAS AND THEIR ACTION AS INFINITESIMAL

TRANSFORMATIONS

Let K be a field. A Lie algebra (with K as field
of scalars) is a vector space (over K), with an algebraic

multiplication which satisfies the Jacobi identity. Denote

one by G.  Then, elements A,B ¢ G can be added,
»
AB>A+B |
and multiplied by scalars in: K:
k,A > kA ;
and multiplied together:
A,B + [A,B] .

The Jacobi identity is:

[A,[B,C]] = -[[A,B],C] + [B,[A,C]] (5.1)

Here is a typical example of a Lie algebra. Let V

be a vector space, with K field of scalars., Let
L)
denote the space of K linear maps
A: V>V

Make L(V) into a vector space, by adding linear maps in.

the obvious way. The Lie algebra structure on L(V) is

defined by defining the Lie multiplication as the-éommutator:
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[A,B] = AB - BA (5.2) §
for A,B e L(V)

In differential geometry, Lie albegras are obtained
from vector fields. Let M be a manifold, with F(M) the
c”, real-valued functions on M. F(M) becomes--under
pointwise addition and multiplication--a commutative
associative algebra over the real numbers.

Set:
V(M) = space of derivations of F(M) .

Thus, A € V(M) 1is an R-linear mapping
f > A(f) .

of functions such that:
A(flfz) = A(fl)f2 + flA(fZ)
for fl’fz e F(M) .

(One proves that such an A 1is, in local coordinates, a

first order linear, homogeneous differential operator.)

Make V(M) into a Lie algebra using 5.2, i.e., the

Lie algebra bracket of (A,B) + [A,B] (called the Jacobi

bragket, in this case) is the commutator of the differentialj

operators.

Definition. Let G be an abstractly given Lie algebra,

with the real numbers as field of scalars.
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An (infinitesimal) action of G on the manifold M

is defined as an R-bilineﬁr map

.G X EQD » RO
denoted by

(A, £) + A(f)
suéh that:

[A,B](f) = A(B(f)) - B(A(£))

for A,B ¢ G, fe FM) .

Another way of putting it is to say that an action

of G on M is determined by 'a Lié algebra homomorphism:

G+ V(M) |
Definition. Let (G,M), (G',M') be two Lie algebras of

vector fields. An intertwining map

(G,M) » (G',M")
is defined as a pair of maps
m: M-+ M
¢: 6+ g
such that:

a) ¢ is a Lie algebraic homomorphism
b) wr( (A)(£)) = A(n*(£'))
for A ¢ G, f'eFM') .
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Remarks. Such an intertwining map is also called a

prolongation, in Lie's work.
The Lie algebraic actions on manifolds, with the

intertwining maps as "morphisms", form a category. A basic
idea in Lie's work is that there is a functor from certain |
categories of transformation groups to categories of Lie

algebras acting on manifolds.

6. LIE GROUPS AND LIE TRANSFORMATION GROUPS

what I will now define as a "Lie group" is one of the main

concepts of modern mathematics!

Definition. A Lie group structure is defined on a set G

by the following data:

a) G carries a manifold structure
b) G carries a group structure, usually denoted
multiplicatively,

(21,87) * 8;8,
These structures satisfy the following condition which linksi
them:
¢) The mapping (gl,gz) + glgé1 of GxG~+G is a
(C”) differentiable map.
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To make the sot‘ofJLie groups into a category, it is

necessary to define a notion of "honomorphisn".

Definition:. A homomorphism between Lie groups G,G' is
a map

¢: G+ G
such that:

¢ is a (C') différentiable map in the sense
of manifold theory.

¢ 1is a homomorphism in the sense of algebra.

Now, it is trivial to observe that the '"Lie groups"
and "homomorphisms" defined in-this way form a category.
Notice how nicely this leads to a view of Lie group theory

as a combination of "algebraic" and "differentiable" ideas!

Remark. Chevalley's book [1] is the first modern treatment

of Lie group theory. He restricts the manifold structure

to be real-analytic (denoted by c®). We might denote this
as the C“ Lie group category. Since a ¢’ manifold deter-
mines a C  manifold there is a functor

W

C" Lie group - ¢® Lie group .

One can prove that this functor is one-one and onto.

Another possibility is to allow the manifolds only

to be manifolds in the sense of topology (also called Co
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or continuous manifolds). There is then a functor

0

c® Lie group + C Lie group .

It is relatively easy (but non-trivial) té show that this }
map is one-one, i.e., each Co Lie group arises from at Af
Hilbert's Fifth Problem says, in

one C~ Lie group.

modern language, that it is onto, i.e., each C0 Lie grou

can be made into a C” mapping, by appropriate restrictiol

on the coordinate neighborhoods, so that the group operatol

are given by Cc” functions. This is highly non-trivial

and was only proved by a massive effort. See the book by'?
Montgomery and Zippin [1], which is the definitive refer- ﬁ
ence for much of the purely topological side of group'theé;
One may think of this as an "abstract" Lie group. ‘
Many exémples can be considered immediately, such as grou}ﬁ
of matrices, the Galilean and Lorentz groups of physics, ‘
the groups of various geometries (affine, projective,
conformal, and so forth). These groups all appear "natura}
as transformation groups on various spaces. Lie himself i

always thought of them in this way. Here is the approprii

satisfying the following conditionmns:

a) G is a (Cm) Lie group.
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b) M is a (C") manifold,
c¢) There is a (C-) map

GxM-+M

which defines G as a transformation group

on M in the algebraic sense. (See Section 4

’ and Volume I.)
Remark. Again, this concept is constructed by starting

with the purely algebraic notion and adding "differentiability"

conditions.

Now, add the appropriate notion of “homomorphism", to

make the objects into a category.

Definition. Let

A homomorphism

(G,M), (G',M') be two transformation groups.

#: (G,M) + (G',M")

is defined as a pair (a,B) of maps
a: G » G
B: M+ M'
such that:
a) a is a homomorphism in the Lie group sense.

b) B is a differentiable mapping in the manifold

sense.
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¢) The following diagram of mappings is commutstiveﬁ

GxM — M

axf l lB

G'xM' — M!

Remark. Such a ¢ 1is also called an intertwining map or
prolongation.
Of course, a homomorphism such that:
a and B are diffeomorphisms,

is called an isomorphism. One might say that the goal of

much of Lie's work is to classify Lie transformation groupa:
up to isomorphisms. Unfortunately, the problem in this ,
global form is too hard, and has never been attacked in thig
generality. (Instead, it is usually split up into more
tractable subproblems, e.g., classify transitive‘trsnsformi
tion groups, compact transformation groups, etc.) However,
a local version is more tractable, and is basically the :
problem that Lie did attempt to solve. (In fact, he carriei
it to completion for the case where the manifolds M are d;
dimension 1, 2 or 3.) Accordingly, we now briefly discuss i

this notion.
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7. LOCAL LIE GROUPS AND TRANSFORMATION GROUPS

The idea of a "local Lie group" is intricate to state
precisely, but it is intuitively simple~--it should be an
object that "locally" (in the neighborhood of the identity
element) looks like a "global" Lie group (as defined in
Section 6), but with the property that the group operation
is not necessarily defined when one is far from the identity
element. Then, it is, algebraically, a sort of partially

defined semigroup structure, as defined in Section 1.

Suppose that LG is a manifold, with O an open
subset of LG.
We suppose further thai there is a (differentiable)

mapping

0x0-+LG6 |,
denoted multiplicatively by
(glngz) hd glgz

such that:

for all g ¢ 0, and for some element 1 of LG.
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g1 (8,83) (8182083
for g;,85:85 €0

henever these products are defined, i.e.,

ngS e 0 glpgz Y

ere is a (differentiable) mapping 0 + O denoted by
-1
g+ ’
ch that:

- -1
gg =1 = g'g .

(LG,0) is a local Lie group, wit 1

We then say that

the distinguished neighborhood of the identity. Two sul

tructures, (LG,0),(LG,0'), are equivalent if the mul;ip.q

tion operation and inverse agree on the open set
ono'

sually, we are only interested in local Lie groups up to‘
3

juivalence. ‘ Q
The local analogue of a "transformation group'" can
sveloped. Here is one way to do it. Let LG be a 1ocai§

ie group, and let M be a manifold. Let U be an open j
ibset of
(LG) x M

1ich contains the subset
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1 xM.
A local lLie grogg'nctlbnrof (LG).'gg M is determined by
a mapping

u+M ,

denoted multiplicatively as

’

(g’p) hd SP »

which satisfies all the usual algebraic laws for transforma-

tion group actions whenever the action is defined.

I do not want to discuss here the finer details of
these structures. (This should probably be done in the
general context of category théory;) In practice, what one
usually does is to reduce everything to Lie algebras. Thus,
a local Lie group has a Lie algebra "functorally" attached
to it (for example, defined as the tangent space to the
identity element), and a local Lie group action defines this
Lie algebra as a Lie algebra of vector fields on M. At
this point, the real work starts.

The ideas of algebraic geometry offer another way of
approaching these concepts. In the typi;al example, the
group action is only defined "locally" because the multipli-
cative action develops "singularities™. Thus, in certain

situations it might be useful to define actions as "maps"

G xM->M
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with certain types of "singularities". Here again, the
appropriate general language for a general foundational
discussion is category theory, particularly as it is used

in modern algebraic geometry.-

8. LINEAR FRACTIONAL TRANSFORMATIONS AS LOCAL
TRANSFORMATION GROUPS

A typical example of a "local" transformation group

action is the "group" of linear fractional transformations j

on the real numbers, R. Let us consider this eiample in

detail in order to distinguish the various concepts we havﬂ

briefly discussed in Section 7.
Denote the manifold of the real numbers by R, and
a point'of R by
x .

A linear fractional transformation on R is a "mapping"

R + R of the following form:

x +» 8x +b

cx+d (8'12;

with a, b, ¢, ¢ real constants.
Now, this is not a mapping in the set theory sense
(at least with domain and range R) because for certain

values of x the right hand side of 8.1 is infinite.

STRUCTURES . . 41

Let G be the group of 2 x 2 real matrices of

determinant one. (It is usually denoted as SL(2,R))

Denote g ¢ G as

- (2

with a,b,c,d ¢ R. Write 8.1 as:

ax + b (8.2)

Let O be any neighborhood of the identity in G
whose closure is compact, and such that

1co

(G,0), with the usual product of matrices, fofms a local
group. (It is, of course, a "localization" of a global Lie
group.

Let:
U = {(g,x): geG, xeR such that gx # o}

U is indeed an open subset of G x R which contains the

subset
(1,R)
Define the map

U=+ X
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via formula 8.2.

It defines the required local transforma-;
tion group.
An alternate approach is to consider G and X as

algebraic manifolds, and the-map 8.2 as defining a rationa}
map
GxR>»>R ,

satisfying the appropriate algebraic rules.

9., - LIE'S IDEA OF THE GROUP-TRANSFORMATION GROUP NOTION

Of course, this article itself is one of the key pap;
in which Lie explains his ideas. However, several prelimiﬁ
comments might be useful to the m9dern reader.

First, Lie did not put the "abstract" notion of a
group in the foreground. For him, a "group" means a trans”

formation group. (He did develop the idea of "isomorphis

in its modern sense, so presumably he appreciated that it
is useful to consider groups as "abstract' objects.)

Here is the context in which he often worked. Let

X = (xl,...,xn)

. n
denote a point of R,

m

R", with coordinates

a = (al,...,am)

which defines R™
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Lie often assumes that a "transformation group" is

given as a set of mappings

x' = f(x;a) |, (9.1)
parameterized by points a ¢ RT, such that:
o for a,b Rm, there is a c ¢ R"™ with:
’ f(f(x,b),a) = f(x,c) (9.2)

for all x e R"

He is not usually precise about the domain and range
of the mappings 9.1. Let us say, for the moment, that they
are the entire R". Let us also say that the parameters a
vary over R™. ‘

Thus, 9.2 says that the composition of two maps
R® + R" of the form 9.1 is again of the form 9.1, i.e.,
that we are given a set of maps which forms a semigroup.
This semigroup is not the most general, since it is "para-
meterized" by a. However, Lie, at this stage, doesn't

usually discuss in detail the corre;pondence
(a,b) + ¢
implicitly defined by 9.2, It is, of course, reasonable to
assume that this is a bona fide differentiable mapping
R" x ™ + g™

as a Lie semigroup. The formula 9.1
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then may be supposed to define a transformation action of
the semigroup on R",

It is now appropriate, in the context of modern
mathematics, to replace R" and R" by manifolds M and
G. Then, the modern reader who sees Lie's definition might;
be tempted to define the basic object of Lie's work as the ?

study of the pair
G,M ,
with the following structures:

a) G is a manifold and a semigroup, such that the
map G x G + G defined by the group-multiplica-
tion is differentiable.

b) M is a manifold.

c) A differentiable transformation semigroup action‘;

G x M=+ M.

Unfortunately, Lie found that his methods (which wgr?ﬁ
"analytic'", rather than geometric and topologicsl, and ‘
usually invoked application of the theory of differential
equations) gave very few non-trivial results without the

group property of G. As the reader will see in the text, '}

it. In fact, it is impossible to do this, i.e., there are
examples of Lie transformation semigroups which are not grva

C. Loewner has been the mathematician in modern times who
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has most extensively studied transformation semigroups in
the way envisaged by Liep Their general theory seems to be
very hardf but important!

Accordingly, Lie reluctantly assumed that G con-
tained inverses, which leads io a "Lie group" in the modern
definition. Now, return to formula 9.1. It is clear in the
céﬁtext of Lie's work that he did not want or need (to deduce
his main result) to assume that the functions on the right
hand side of 9.1 were defined everywhere. Basically, he was
interested in the "infinitesimal" form of the transformation
9.1. Thus, one appropriate modern context in which to
consider Lie's work is the théory of local groups and their
local actions. Another possible context is the case where
the transformations are only defined on open subsets of a
manifold M. Thus, we might deal with a category of maps,
whose domain and range are open subsets of M, such that
the maps themselves are diffeomorphisms between their domain
and range. (Such objects are also called pseudogroups.)

If this framework were to be pursued, it would also be
necessary to formulate a notion of "parhmeterization" of
these mappings by means of finite dimensional manifolds.
Again, the theory of categories would be the appropriate
tool for studying these objects., However, in practice, Lie

usually reduced problems to their "infinitesimal" version,
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usually involving the theory of Lie algebras of vector field :

in manifolds.

10. COMPLETELY INTEGRABLE VECTOR FIELD SYSTEMS AND
FOLIATIONS
The theory of Lie groups is closely related to a part
of the theory of differential equations called (recently)

the theory of foliations. In fact, the first modern book

on the theory of Lie groups--by Chevalley [1]--also contains

theorems of foliation theory. Chevalley's treatment (of the §

"non-singular" case) was later extended (see Hermamn [ , ],

Sussman [1]) to the "singular'" case. In this section I will Q

briefly review the, needed material.

Let M be a manifold. Recall that V(M) and F(M)
denote the (differentiable) vector fields and real-valued
functions on M. V(M) is an F(M)-module.

If V is a subset of V(M), x e M, set:
V(x) = {A(x): A eV} .

V(x) 1is then a subset of Mx’ the tangent space to M at

It is a linear subspace if V is an R-linear subspace of V(}
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Definition. A vector field system on M is defined by an

F(M) -submodule V of V(M). It is said to be non-singular

if the following condition is satisfied:

dim (V(x)) is constant, as x ranges

over M ., (10.1)

It #s completely integrable if:

[v,v] Y . (10.2)

([ 5 1 denotes the Jacobi bracket operation on vector fields.)

Recall that a submanifold of a manifold M is a pair
(¢,N) , |
where N is a manifold,
¢: N+ M
is a (differentiable) map such that the differential map
$a: T(N) » T(M)
is one-one. For x ¢ N, this enables us to identify:
x with ¢(x)

Nx with the linear subspace ¢*(Nx) c M

¢ (x)

Usually, we suppress explicit mention of ¢, and write

Xe NCM

Nx c Mx
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A

Definition. Let V c V(M) be a vector field system.

submanifold

NC M

Nx a V(x)

for all x ¢ N
Definition. An orbit curve of the vector field system V
is a map

o: [a,b] =+ M
of an interval a <t < b of real numbers such that:

a) o 1is continuous
b) o is piecewise c”
cj For a <t <b, o'(t) (the tangent vector

to ¢ at t) is an element of
Vat)

Definition. Let V be a vector field system on a manifold
M. A submanifold NC M is said to be a maximal orbit of

V if it satisfies the following conditions:

N is an orbit, i.e., it satisfies 10.3

N is a connected manifold
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If t+a(t); a<t<b, is an orbit curve of

V such that c(aj € N, ihen

o(t) e N for a<t<b ,

i.e., N contains all orbits starting from each

point of N.

So far, we have only quoted definitions. (Howeve;,

in this subject it is import&nt to understand the basic
concepts in a general way. These definitions are designed
to lead the reader in this direction.) Here are some baéic
results. (See the references by Chevalley, Hermann, Sussman

quoted above, and DGCV.)

Theorem 10.1. Suppose V is a completely integrable vector

field system on M satisfying the following condition:

For each orbit curve t + o(t), a <t<b,
the dimension of V(o(t)) is constant as

t varies (10.4)

Then, through each point of M there passes a unique

maximal orbit.

Theorem 10.2. Suppose V is a completely integrable vector
field system, and that either of the following two conditions
are satisfied:’

a) The manifold M, and V, are real analytic.
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b) V is locally finitely generated, as an

F(M) -module.
Then, condition 10.4 is satisfied, and through each point

of M there is a maximal orbit.

Remark. Sussman has investigated [1] what happens if these
conditions are not satisfied. He shows that the set of
points that can be joined to a given point of M by an
orbit curve is indeed a submanifold of M. It is an orbit
submanifold of another vector field system on M, which

may be larger than V.

Condition 10.4 is, of course, automatically satisfied

if V is non-singular. This is the case covered by Chevallﬁ

[1]. (He calls a non-singular vector field system a
distribution, and a completely integrable non-singular

vector field system an involutive distribution.)

Definition. A foliation of a manifold M is defined as an

equivalence relation on M, such that each equivalence clasg

is a submanifold of M. If x is a point of M, the
equivalence class to which x belongs is called the leaf

of the foliation passing through the point x.

Thus, a vector field system satisfying the hypotheses
of Theorem 10.1 defines a foliation, whose leaves are the

maximal orbits.
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11. SUBMERSIONS AND FOLIATIONS

Definition. A (differential) mapping .
T M+ N

between manifolds is said to be a submersion if the follow-

ing condition is satisfied:
The differential of
Te: T(M) > T(N) 11.1)

is onto.

Remark. Recall that a map
¢: N+ M

is a submanifold mapping if
¢ T(N) > T(M)

. ol
1s one-one. Hence, a "submersion" is in a sense dual to a

submanifold mapping.

The implicit function theorem enables one to describe
the local structure of submersion maps. In fact, they are
locally equivalent to Cartesian projection maps of Euclidean
spaces. (See DGCV, Chapter 5.) Here is one useful way of
thinking of this. =

Choose indices as follows:
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1 a,b n = dim N

1<i,j<m = dimM .

A
A

Let (ya) be a coordinate system of functions on N

Condition 11.1 then means that:
The functions n*(ya) are functionally
independent, i.e., n*(dya) are linearly
independent in the F(M)-module sense.
The Implicit Function Theorem then asserts that ther
locally, a coordinate system
€3
for M such that:
x? = ariy® .

Réturn to the global setting: If =r is a map
satisfying 11.1, say that a vector field A on M
vertical if:

Ta(A(x)) = 0
for all x e M

Let V be the set of all such vertical vector field
Here are some properties of V which follow readily
11.1:

V 1is an F(M)-submodule of Vv(M), i.e., V d

a vector field system on M.

e is,

is

S.

from

efines
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V is non-singular, i.e., dim (V(x)) 1is constant

as x ranges over M.

[V,¥1 cV, i.e., V is completely integrable.

The connected component of the fiber of ,
ey

passing thfough X, is the leaf of the foliation

defined by V.

Definition. The map 7 is said to be the quotient map

associated with the foliation V.

Remark. A foliation does not necessarily have a global
quotient map. See Palais [1] and Sussman [1] for what can
be said about its existence. However, the Frobenius theorem

(see DGCV) asserts that such quotient maps exist locally.




Chapter C

FILTRATIONS AND PROLONGATIONS OF
s VECTOR FIELDS

1. INTRODUCTION

One of the key features of Lie's work, from the modern
point of view, is the emphasis on the study of what we would
now call the "structure" (both algebraic and geometric) of
Lie algebras (both finite and infinite dimensional) of
vector fields on manifolds. Indeed, one of my main reasons
for preparing this version of Lie's work is that many of his
ideas and results have never been adequately assimilated
into modern mathematics. . _

In this chapter I will develop certain elementary
(but not necessarily well-known) properties of such Lie
algebras. In particular, I will emphasize (following my
own paper "Cartan connections and the equivalence problem
for geometric structures") the role of certain abstract

types of Lie algebras called filtered Lie algebras. We

shall see that these algebraic objects are well-suited to
expressing many of Lie's results in terms of modern mathe-

matics.

S5
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2. LIE ALGEBRAS OF VECTOR FIELDS AND THEIR FILTRATIONS Here are some basic properties:

- o 1 Z LY
Let X be a manifold, and let G be a Lie algebra g 6266 ' (2.2)
R . k -
of vector fields on X. A vector field A ¢ G is said to [gj,g lc §j+k 1 (2.3)
vanish at a point x e X 1if: gl is a Lie subalgebra of G . (2.4)

A(E)(x) = 0 6!, for j>2, is a Lie ideal of G . (2.5)

-~

for all f ¢ F(X .
) We can now abstract from these properties a general:

It is said to vanish to the second order if:

Definition. Let G be an abstract Lie algebra. A (descend-

1

B,A] vanishes at x
[B,A] ing) filtration of G is defined by a sequence go,g R

for all B e V(X) . @ of linear subspaces of G which satisfies conditions 2.2-2.3.

Set: Warning. This is not the only sort of natural filtration
) = G Lie algebras can have. The linear differential ;perafions
91(x) = {A ¢ G: A vanishes at x} on a manifold are filtered by their order. This is an

ascending filtration, i.e., an element of filtration j

G"(x) = {A € G: A vanishes to second order at x};

(X~}

is contained in the set of filtrations k, for j<k. Such

and so forth
’ a filtration is important in quantum mechanics,

i.e., inductively on n:
Remark. The descending filtration of Lie algebras of vector

Gn(x) = {A ¢ G: [B,A] vanishes to (n-1)-st order at x

for all B e V(X)} .

fields can be described more concretely in terms of coordin-
ates. Let
i

Usually, we consider x fixed. Suppress explicit x7) , l1<i,j<n ,

mention of "x" in the notation, and denote the subspace of
0

be a coordinate system for X. Suppose coordinates are

1 .2
6 by G,67,6°,... chosen so that the given point "x" has coordinates 0. A
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vector field A can be written as:

i 2
A = Ao .
axl

One sees readily that:
A vanishes to the r-th order at x if and only if
the components Al vanish to the r-th order, i.s.,

if they are of the following\form:

Al = a:! .(x)xl...xr
Jprecdy
3. TRANSITIVE LIE ALGEBRA ACTIONS

Let G be a Lie algebra of vector fields on a mani-

fold X. which is a tang

vector, i.e., an element of Xx.

Each A ¢ Q has a value at x,

The value is denoted by:

A(x)

As definition,

A(X)(£) = A(D)(X)

for all f & F(X)
Set:

G(x) = {A(x): A e G}
g(x) is then a linear subspace of Xx.
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Definition. 6 is said to act trlnsitivély on X if:

€(x) = x " (3.1)

x

for all xe X .
If 3.1 is satisfied, the evaluation map

A » A(x)

is an R-linear map
6~ xx ’

whose kernel is gl(x); This results in the following:
g/gl(x) is vector-space isomorphic to X, -

Set: '
L = 6

L is a Lie subaigebra of G.

We can give an abstract definition:

Definition. Let G be a Lie algebra, L a subalgebra.

The linear subspaces go,gl,--- defined as follows,

¢ = ¢
¢ - L
2 1
6" = {AeG: [AG] © G} (3.2)
" = {Aeg: [AGl cE™l)
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called the filtration of G
defined by the subalgebra L.

define a filtration of G,

We see that:

If G acts transitively on X, and if
L= gl(x), then the filtration of G
determined by the action on X is identi-
cal with the filtration of G defined,
via formulas 3.2, purely algebraically

by the subalgebra L.

Much of E. Cartan's work on what he called "infinite
dimensional Lie groups" can be viewed as a structure theory
of such filtered Lie algebras of vector fields which act

transitively.

classify the intransitive cases also, but this is much less’

Cartan also states that his methods work to

worked out. In fact, the most interesting part of this
paper by Lie is the classification of intransitive Lie
algebras of vector fields on 2-dimensional manifolds. Not

much is known about higher-dimensional generalizations.

4, IMPRIMITIVE LIE ALGEBRAS OF VECTOR FIELDS AND
PROLONGATIONS

Let X be a manifold. Let
V c Vv(X)
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be a completely integrable, non-singula} vector field
system on X. This means that the following conditions
are satisfied:

8) 'V is an F(X)-submodule of V(X)

§) dim V(x)

c) [V,V]c v,

1s constant, as x ranges over X

Such a system determines, by the Frobenius-Chevalley
global integrability theorem (see DGCV, Chapter 8), a
’

decomposition of X into submanifolds, called leaves.

Each leaf Y is a maximal connected integral submanifold
of V, and satisfies:
Yy = V(y) for all y ¢ Y

Each point of X belongs to precisely one leaf of V.

The "leaved" structure is called a foliation. Usually
——osetlon ’

I will not be so precise, and say that the foliation is V.

Deflnition. Let G be a Lie algebra of vector fields on

a manifold X, and let V c V(X) be a foliation on X.

G is said to leave the foliation invariant if the follow-

ing condition is satisfied.

[G,Vic v . 4.1

Definition. A given Lie algebra G of vector fields on

X is said to act imgrimitivelz if each point x e X is
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contained in an open subset U, which carries a foliatio
V which is left invariant by G.

G is said to act primitively if it "does not act
imprimitively". In other words, "G acts primitively"

means that it leaves invariant no foliation, even locally

A good deal of Cartan's work on what are called
"infinite dimensional Lie groups" (in Vol. II, Part 2 of
his Collected Works) involves the classification of

primitive transitive Lie algebras. It is also a key

concept in Lie's work, although he does not use the term
explicitly. (It is used in his treatise "Transformations-
gruppen”.) Instead, he speaks of a 'group which does not
leave any differential equation invariant."

We can examine the geometric meaning of condition 4.1. 4
Definition. Let V be a foliation on X. A mapping 4
7 X > Y

between manifolds is a decomposition submersion for the

foliation V if the following conditions are satisfied:
a) m is a submersion mapping in the sense of _ J
differential topology, i.e., &

(X)) =Y

"*(xx) = Yw(x) for all xe¢ X . ;
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b) For x e X,
vix) = wilco |
T, (0) (4.2)
For "f & F(Y), condition 4.2 means that:
A(m*(£f)) = o0 , (4.3)

i.e., w*(f) 1is constant along the leaves of V, or is a

conserved function of V. (The old terminology is "integral

function of V," but I am trying to eliminate the many
confusing uses of the term "integral" in the classical
literature.)

Theorem. G satisfies 4.1 if and only if

For each conserved function £, B(f)

is again conserved, for all B ¢ G. (4-4)

In particular, G acts as a Lie algebra of vector

fields, denoted by
Te(6)

on the base space Y of the decomposition submersion.

Proof. For AecV, B¢ G, fe F(Y),
A(B(n*(£)) = [A,B](n*(£)) + BA(n*(f))

= 0 >
since [A,B] £ V.
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This proves that B(7*(f)) is again a conserved func

of V.

We can define
7o (B)
as a vector field on Y via the rule:
T*(m, (B)(£)) = B(x*(£f))

for all £ e F(Y)

Remark. The assignment
B + W.(B),
G+ 1a(®)

It is an example ofk

is also a Lie algebra homomorphism.

' P gation, i.e., an "abstref
what Lie and Cartan call a prolon , R '

Lie algebra homomorphism which is realized via a geometril
mapping.
Much of the work Lie does in classifying Lie algebw

of vector fields involves putting together arguments

involving filtrations and prolongations.

O0f course, if ¢ acts intransitively on X, the
orbits of G determine a foliation which is left invari}
by G. For simplicity, let us assume that G acts’ "noné

singularly" in the following sense:
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Definition. G acts on X in a non-singular way if:

dim G(x) is constant

for all x e X

We can then define a foliation V by requiring that:

V(x) = G(x)
for all x ¢ X

b4

i.e., that V is the smallest F(X) -submodule of V(X)

determined by G. The Lie algebra condition for G implies
that

[v,vicv ,

i.e., V is completely integrable. Hence, a foliation of
X 1is determined. The leaves of the foliation are called

the orbits of G.
If 7 X +Y is a decomposition submersion for this
foliation, then
Tyt (9) = 0 ’

i.e., g acts trivially on Y, Geometrically, this means
that G is tangent to the leaves, so that each B ¢ G

generates a group preserving each leaf.




Chapter D

SOME GENERAL CONCEPTS OF LIE ALGEBRA THEORY
THAT ARE USEFUL IN THE INTERPRETATION
OF LIE'S WORK

Many of Lie's proofs can be simplified using ideas
of modern Lie algebra theory. In this chapter, I present
in outline those Cconcepts that I have found to be most
useful and that I will use in the text.

The basic reference for Lie algebra theory is now
Samelson's book [1]. The treatises by Jacobson [1], Sagle
and Walde [1], Wallach [1], F. Warner [1], Serre [1], and
Hochschild [1] contain much useful material. The material
of greater importance for the‘applications to physics is
developed (some only sketchily) in LGP, VB, Vol. II, and
LMP, Vol. II.

1. BASIC DEFINITIONS

All Lie algebras will be vector spaces, with the real
or complex numbers as field of scalars, and finite dimen-
sional, unless mentioned otherwise. A certain amount
carries over to more general situations.

A Lie algebra, typically denoted by G, 1is defined
by giving two algebraic structures on the set G:

~
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a) A vector space structure then H is called a (Lie) ideal of G.

b) A bilinear map A homomorphism between two Lie algebras G,G' is a

linear map
G x G~ g N 3
denoted by (A,B) - [A,B], called the bracket,

satisfying the following two conditions: such that:

[A,B] = -[B,A} (1.1 $([A,B]) = [4(A),9(B)]

£ A,B
[A,[B,C]) = [[A,B],C] + [B,[A,C]] .z or €6

for A,B,C e G . Thus, with the "Lie algebras' as objects, and the
L A | ~

i "homomorphisms' as morphisms, there is defined a category,
1.1 is called the skew-symmetry of the bracket. 1.2 is morphisms,

e called the Lie algebra category.
called the Jacobi identity. (Lie often describes it by the 3§ 4 gory

If H is an ideal of é. a new Lie algebra structure
term "the familiar relations".) v 4 f~ ; . G

can be defined on the quotient vector space
If H,K are two linear subspaces of a Lie algebra G, q pac

G/H .
[H,X] G/H
The quotient map
denotes the space of all linear combinations of elements

G + G/H

~ ~ o~

of the form [A,B], with

AeH B e K is then a Lie algebra homomorphism.
H] .

: Here is the simplest way to form a Lie algebra. Let
Let G be a Lie algebra. A linear subspace HC G

is a (Lie) subalgebra if
[HH cH , (1.3) §

V be a vector space. Define L{V) as the spacé of linear
maps
a: V>V

i i i i ket structure. If fdrther
R ’ ’ Make L(V) into a Lie algebra by defining the bracket as

[G,H] € H , (1'4)é‘ the commutator:
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[A,B] = AB - BA

If G is a Lie algebra, V is a vector Space, a

linear representation of G in V is a homomorphism

p: G+ L(V) .

Another way of putting this is to say that a linear repres-

entation is a bjilinear map

GxV->v ,
(A, v) > p(A)(V) ,
such that:
P([AB])(V) = p(A)(p(B)(V)) - P(B) (P (A) (V)

for A,B ¢ 9, veV .
A linear representation
p: G > L(V)

is said to be reducible if there is a linear subspace
V'C V (different from the "trivial" cases V' = (0) or V)i

such that
P(G)(V') c Vv

If there is no such subspace, it is said to be irreducible. f

A reducible Trepresentation
pi G+ L(V) |, ‘

such that e(G) (V") c v,
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defines two other Tepresentations, defined as follows.
' G > L(VY)

with:
PPV = pA(V) ,

i.e., p'(A) is P(A) restricted to V'.

P G > L(V/V')
with p"(A) = quotient map of p(A) ,

i.e., p"(A) is defined by the following commutative

diagram:

v D'(A), v
| |
v el
| |
vve 22A) L o,

p' 1is called the subrepresentation, p" 1is called the

quotient representation.

A representation p of G L(V) is the direct sum

of representations
p': G+ L(V")

p": G+ L(VM)
if:
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vV = Vig Vv ,
i.e., V is the direct sum of the vector spaces V',V",
and:
p(A)(v' & V") . p' (A (v') @ p"(A) (V")
for A e G; vt e V'; vt gV

Two representations

are equivalent if there is a vector space automorphism
¢: V> V!

such that:

p'(A)(v') $(p(AY(V')) ,

i.e., ¢ intertwines the action of G.

A representation is said to be completely reducible
if it is equivalent to a direct sum of irreducible ones.
Every Lie algebra defines--by its own structure--one

linear representation called the adjoint representation,

Ad: G + L(G)

Ad(A)(B) = [A,B]
for A,B ¢ §
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’(quico that it is the Jacobi identity which gusrantees
that Ad roallx is a Lie algebra representation.)

2. INNER AUTOMORPHISMS AND DERIVATIONS

Let G be a Lie algebra. (In order to have every-
thing said in this chapter hold rigorously, it will be
necessary to assume that G 1is a finite dimensional real
‘or complex Lie algebra. However, the spirit of the ideas
carries over to certain infinite dimensional situations--
and as we shall see, Lie's own work often requires infinite

dimensional Lie algebras.)

Definition. An automorphism of G is a one-one linear map

a: 6+ ¢
such that
a([A,B)) = [a(A),a(B)] (z.1)

for A,Be ¢

-~

The set of automorphisms form a group, called Aut (G).

Consider a curve
t -+ at-
in Aut G, such that:

4 = identity



LIE ALGEBR

t defines a linear flow on G. (See Chapter A and Volum

IT of IM.) The infinitesimal generator of the flow is

he curve
t >y,

n L(G) defined by the following formula:

Yo * g? (at)a;I (2.2}

efinition. A derivation of G is a linear map y: G »

uch that

Y([ABI) = [¥(A),B] + [A,y(B)] (2.3)

for all A,B ¢ g

heorem 2.1. A flow t + o, in GL(§) lies in Aut G

t
f and only if its infinitesimal generator curve t -+ Ye

atisfies:

Ye is a derivation of G for each t.

Proof. Express the fact that each a, is an

utomorphism:
@, ([A,B]) = [a,(A), Gt(B)] . (2.4)

fferentiate each side of 2.4: ‘
T CQUAD = [, o) + [s,8), § o, )]

(2.5)
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Since this holds for each A,B ¢ G,

-1

& @ (1ABD = §§ G lagla, oplsl

= using 2.5,
[Y(A),B] + [A,y, (B)] ,

which proves one-half of Theorem 2.1.
To prove the other, converse half is left as an
exercise, i.e., to prove that if t -+ ay is a one parameter

family of convertible linear maps: G + G swuch that each

IQ-

o =

-1.
t T (agde,

[-¥

is a derivation, then each a, 1is an automo rphism.

t
Now, the derivations of G form a Lie algebra, with

the bracket the commutator. This Lie algebl'é is denoted by
Der (G)

Recall the adjoint representation

Ad: g > L(g)

The elements of Ad (g) are derivations; they are called

inner derivations. In other words, an innerxr derivation is

amap v: G+ G of the form

B > y(B) = [A,B]

for some A e G .
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It defines a linear flow on G. (See Chapter A and Volume

I1TI of IM.) The infinitesimal generator of the flow is

the curve
t -+ Ye

in L(g) defined by the following formula:

Ye © %‘f (ag)ag’ (2.2)

Definition. A derivation of G is a linear map y: G > G

such that

Y([A,B]) = [v(A),B] + [A,y(B)] (2.3) %

for all A,B ¢ g

Theorem 2.1. A flow t + o, in GL(G) 1lies in Aut G

t
if and only if its infinitesimal generator curve t -+ Ye

satisfies:

Ye is a derivation of G for each t.

Proof. Express the fact that each a, is an

automorphism:

a, ([A,B]) = [a,(A), o, (B)] . (2.4) §

Differentiate each side of 2.4:

(2.5)
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Since this holds for each A,B ¢ G,

%_t_ (Gt)a;l([A’B]) = %.i. (at) [a;lA, a;lé]
= using 2.5,

which proves one-half of Theorem 2.1.
To prove the other, converse half is left as an

exercise, i.e., to prove that if t + o, is a one parameter

t
family of convertible linear maps: G + G such that each

d -1.
%y It (egdo,

is a derivation, then each «a is an automorphism.

t
Now, the derivations of G form a Lie algebra, with

the bracket the commutator. This Lie algebré is denoted by
Der (G)

Recall the adjoint representation

Ad: G » L(G) .

The elements of Ad (G) are derivations; they are called

inner derivations. In other words, an inner derivation is

a map vy: 9 > 9 of the form

B+ vy(B) = [A,B]

for some A e G
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Each derivation y e DER (G) determines an auto-

morphism, denoted by
exp (Y) ’

and defined by the formula:.

2
exp (vY)(B) = B + y(B) + Iz{gl PO

In particular, if this formula is applied to an inner

derivation vy = Ad A, it takes the following form:

exp (Ad A)(B) = B+ [A,B] + 3 [A,[A,B]] + ..

Definition. The inner automorphisms of G consist of thi

smallest subgroup of Aut (G) containing all automorphi 3

of form 2.7, where A runs through all elements of g.

This group is denoted by

IN AUT (G)

Remark. One can prove--using Lie group theory--that

IN AUT (G) 1is a connected lLie group, and that its Lie

B

algebra is the subalgebra of DER (G) consisting of th&

inner automorphisms., It is also important to notice ths
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set of y of form 2.6 does not necessaiilz form a group,
(although it may do so.)

The action of IN AUT (G) on G as a transformation
group is very important for Lie's work. In particular, the
following notion plays a key role:

Definition. Two Lie subalgebras
HH' € 6

are said to be conjugate or transformable into each other

via_inner automorphism if there is a a ¢ IN AUT (G) such

that:
H' = a(H) ' (2.8)

3. SOLVABLE AND SEMISIMPLE LIE ALGEBRAS
THE LEVI-MALCEV AND LIE-MOROSOV THEOREMS

Let G be a Lie algebra. Set

91 = [g’gl ’

91 is an ideal of G. (This follows from the Jacobi

identity.) It is called the first derived subalgebra.

The quotient
6/6

is abelian.
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Now, set: .
92 - (gl)l [[9»9])[9;9]]
It is also an ideal of G, called the second derived

subalgebra.

Continue in this way to define a sequence

G 26 3G, 2"
of ideals.

Definition. G is a solvable Lie algebra if:

G, = 0 for n sufficiently large.

Remark. Lie calls such an algebra an integrable one. It
was found to be the abstract algebraic situation which
mirrored (in what we would now call a "functorial® sense)

what the 19th century mathematicians called "integrability

of differential equations by quadratures."

Definjtion. A Lie algebra G 1is said to be semi-simple

if it has no non-zero solvable ideals.

General (finite dimensional) Lie algebras are built
up from solvable and semisimple ones. Here is how.

The sum of two solvable ideas is again a solvable
ideal. Hence the sum of all solvable ideals is a ;olvable

ideal of G called the radical B. It may also be
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characterized as the unique maximal solvable ideal.

g/g is semisimple. The Levi Theorem asserts that
there is a semisimple subalgebra S of G such that the
quotient mﬁp

S 6+ 6/R

-~

of S - G/R is an isomorphism. (Alternatively,
G = vector space direct sum of R and S.)

The Malcev Theorem asserts that, for any semisimple sub-
algebra S8' + G, there is an inner automorphism a: G + G

such that
G(§') cs .

(Both the Levi and Malcev Theorems are now proved using

Lie algebra cohomology theory. See VB, Vol. II, Chapter 3.)

Theorem (Lie). Let V be a vector space, and
G CL(V)

a solvable Lie subalgebra of L(V). Suppose that V is a
vector space whose scalar field is algebraically closed

(e.g., the complex numbers). Then, there is a basis for V
with respect to which the elements of G are represented by

matrices in triangular form. Alternatively, one may say

that L(V) has a maximal solvable subalgebra MS (namely,

the Lie algebra of matrices in triangular form with respect
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to a given basis of V) such that any other solvable Lie
subalgebra of L(V) is transformable by an inner automor-

phism of L(V) to a subalgebra of MS.

To add to the usefulness of Lie's theorem, here are .3

some elementary properties of solvable Lie algebras.

Theorem. If G is a solvable Lie algebra, any subalgebras

or quotient algebra of G is also solvable.

In particular, if op: G+ L(V) is a linear rep.
of a solvable G, then the Lie Theorem applies to p(G).
The following generalization of Lie's Theorenm is

also very useful.

Theorem (Morosov). Let H be a semisimple Lie algehra

over the complex numbers. Then, any two maximal solvable
subalgebras of H are transformable into each other by an

inner automorphism of H.
Finally, here is another basic result:

Theorem (Cartan). Let G be a semisimple Lie algebra,

¥: G+ G a derivation. Then, vy is inner. 1In symbols,

IN DER (G) = DER 6 .
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B

4. NILPOTENT LIE ALGEBRAS AND THE ENGEL THEOREM

Let V be a vector space, and
a: V-+V
a linear transformation. o is said to be nilpotent if:

) for n sufficiently large (3.1)
A ;ubset of L(V) is said to be nilpotent if every element
of the subset is nilpotent.
Definition. Let G be alLie algebra,

p: § =+ L(V)
a iinear representation. p is said t& be nilpotent if

p(g) is a nilpotent subset of L(v).

Definition. Let G be a Lie algebra. G is said to be

nilpotent if the adjoint representation is nilpotent.

Theorem 4.1. 1If G 1is nilpotent then it is solvable.
If G is solvable then 91 = [g,g], the first derived

algebra, is nilpotent.

Theorem 4.2 (Engel). If p: G » L(V}) is a linear repres-
entation such that each linear map A € p(G) is nilpotent,

then G is nilpotent as a Lie algebra.
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5. THE KILLING FORM AND THE CARTAN CRITERION

Let G be a finite dimensional Lise algebra, (with
a field K, of zero characteristic, as field of scalars

For A,B ¢ G, consider

(Ad A) (Ad B)

It is a linear map: G + G, hence has a trace, as-doe;
any linear map. (Recall that the trace is the sum of tho?i
diagonal elements in a matrix representation of the linea

map.) Set:
B(A,B) = trace ((Ad A) (Ad B)) (5.1

It is readily provable that B so defined is a symmetric,

bilinear form

Gxg-»](,

~

called the Killing form. It is a key tool in the algebrai
study of Lie algebras.

Theorem (Cartan). G is semisimple if and only if the

illing form is non-degenerate, i.e., iff:
B(A,g) = implies A =0 .

If B8 is identicallz zero, then G is solvable.

If G is nilpotent, then 8§ is identically zero.
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A Lie algebrs is said to be simple if it contains no
ideals at all, except for (0) and the algebra itself. The.
following result is proved using these properties of the

Killing form,

Theorem. G is semisimple if and only if it is the direct

sum of its simple ideals.

6. LIE ALGEBRA COHOMOLOGY AND THE J. H, C. WHITEHEAD
THEOREMS

Let G be a Lie algebra (not necessarily finite
dimensional) and let
p: G+ L(V)

be a linear representation. It will be convenient to

suppress explicit mention of p, and write
AW) = p(A)(W) : (6.1)
for A ¢ G, veV
For non-negative integer n, we define threg vector
spaces, denoted by
c"(G,0), 2"(G,p), B"(G,p)
such that

Bc z"c ¢
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of 2" are called the n-cocycles; and the elements of :

are called the n-coboundaries.
The representation o defines representations of G

on each C", z", B"

, denoted in a way similar to 6.1, with
suppression of explicit use of p.

There will also be linear maps defined:
d: ¢* » ™1

called the coboundary map, such that:

n

Z = kernel 4
Bn+1 - d(Cn)
d(d) = 0

Once these objects are defined, we will define
Hn(g,p) as follows:

H'(6,0) = z"/B"

H" is called the n-th cohomology group of G, with

coefficients in op.

Now, to define these objects, for each n. In fact,
we shall only do so for

\\ -
e il 0,1,2

One can proceed to higher values of n by induction on n,

as described in my paper ''Analytic construction of group

LIE ALGEBRAS

‘h/ i

representations" and in VB, Vol. II, Chapter 3,

Hence,

First,

Next,

d: C

n=20,1:

cdav, Be ()

1

0 1

+ C

d(v) (A} = A(W)

for veV, AeG

0

20 = kerne1 a c¢°

= set of veV

i.e., 2z¥ consists of the invariants of G.

n=1,2:

¢ =L@ AGY) =

1

1 2

€ = L(G,V) space of linear maps 6:

is defined as follows:

such that G(v) =0

GxG+>V

d: C »¢C is defined as follows:

d(8) (A,B) = A(0(B)) - B(6(A)) - 0([A,B])
for A,B ¢ G, 8¢C o

z1 = kernel (d) < C1
B! = acc%)
' (,0) = zl/8 .

1

8s

skew-symetric, bilinear maps:

1
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representations" and in VB, Vol. II, Chapter 3.

of 2™ are called the n-cocycles; and the elements of B" First, n = 0,1:

are called the n-coboundaries. cl . v, g’ - (0)
The representation p- defines representations of G 1

n n n : Cc = L(g,V) space of linear maps 6: G » V
on each C, Z°, B', denoted in a way similar to 6.1, with ‘ 0 1 .
suppression of explicit use of p. d: "+ ¢C is defined as follows:

d(v) (A} = A(v)
for veV, Ae 9

There will also be linear maps defined:

d: c® - ™1,
AN kernel d c C0
called the coboundary map, such that: ’

n = set of v € V such that G(v) =0 ,

Z = kernel d 0 . .
i.e., 2 consists of the invariants of G.
Bn+1 - d(Cn) . ELAAL ‘
Hence,
d(d = 0 W = 20

Once these objects are defined, we will define Next, n = 1,2:

Hn(g,p) as follows:

1

c? = L(G A G,V) = skew-symetric, bilinear maps:
n n,.n - T
H(G,0) = Z/B GxG+vV .

1

H" is called the n-th cohomology group of G, with d: ¢! » ¢? is defined as follows:

coefficients in op.

d(6)(A,B) = AB(B)) - B(O(A) - B([A,B])

Now, to define these objects, for each n. In fact, 1
for A,B ¢ g, 6e C .

we shall only do so for

Zl = kernel (d) C C1 .
\\ -
A = 0,1,2

1 ach

u'(6,0) = z1/81 .

B
One can proceed to higher values of n by induction on n,

as described in my paper "Analytic construction of group
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Finally, for n = 2:

c3@.V) = L(GAGAGY)
= trilinear, skew-symetric maps:
GxGxG+V .

a: ¢%(6,v) » C3(G,V) is defined as follows:

d(e)(Al’AZ’AS) d Al(e(AZ’A3)) h Az (e(AlaA
+ A3(9(A1'A2)) = e([Al’A2]’
+ 8 (Al ’ [AZ ’AS]) -8 (Az! [All

2

Z kernel d

N

2

B% - acch

H2(6,0) = 2%/87

Theorem 6.1 (J.H.C. Whitehead).

and semisimple, and if also V is finite dimensional, then

H'(G,0) = (0) = H2(G,p)

Theorem 6.2. Let op: G > L(V) be a linear representation,
and let
vicv

be a linear subspace such that

PEY (V') € V!

LIE ALGEBRAS . ' 87

Let V" = V/V', ¢" = quotient representation of G in V".

If V is finite dimensional, and if

Hl (gip") = 0 ,
then p is equivalent to the direct sum of p" and another
representation.

Putting together both results, proves the following:

Theorem 6.3 (H. Weyl). If g is finite dimensional and

semisimple, and if p: G + L(V) 1is a representation in a
finite dimensional vector space V, then p is completely
reducible, i.e., is a direct sum of irreducible represen-

tation.

7. DEFORMATIONS OF LIE ALGEBRA HOMOMORPHISMS

Now we turn to material that is not really part of
the standard Lie algebra repetoire, but is very important
and useful in all sorts of applications.

Let 9 and E be Lie algebras. For simplicity, we

deal with the case where G and L are finite dimensional.

However, the ideas carry over, to a certain extent, to the
infinite dimensional cases. Many of Lie's results can be

interpreted as Lie algebra and Lie group deformation theory

in an infinite dimensional setting.
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Let
Hom (G,L)
denote the space of Lie algebra homomorphism mappings
¢ 61
Let
L = group of inner automorphisms of L.
L acts as a transformation group on Hom (9»5)’
(243 (A) = 2(4(A))

for A e §, ¢ ¢ Hom (Q'E) .

A major algebraic problem is:

Find the orbits of L on Hom (G,L).

For, two homomorphisms lie on the same orbit of L if aﬁf

only if they are transformable into each other by an inne

automorphism. (One also says, are conjugate by an inner
automorphism.)

Now,

Hom (G,L)

is a subset of L(G,L), which is a manifold. In fact, it

the condition that a linear map from the vector space G

to the vector space L is a homomorphism is defined by

LIE ALGEBRAS . 89

algebraic conditions on the matrix coordinates of linear

maps .,

For a brief introduction to the ideas of algebraic
geometry, gee Volume VIII of IM. Notice we are working
with the real or complex numbers as scalar field. Recall

that by an algebraic variety I mean any subset which is

defined by polynomial equations, whereas in the literature
of algebraic geometry they often reserve this term for one
which has the "irreducibility" property.

We can define the tangent space to Hom (Q’E) at a
point ¢ as usual, as the collection of tangent vectors to

L(g,L) at ¢ such that:
The curve
t+¢ + to

satisfies the equation defining Hom (§,L)

up to the first order.

(Here, 6 ¢ L(G,L), i.e., ©® 1is a linear map G - L. As
the space of linear maps is a vector space, it is identified
with its tangent space.) The condition for this is then

that:

0 = G (e+t8) ([A,B]) - [(4+t0) (A), (4+ta) (B)] | g

(7.1)
for A,Be G
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Working out condition 7.1, we can put it into the following

equivalent form:

0 = o([A,B]) - [6(A),¢(B)] - [¢(A),0(B)]

or:

0, (A)(8(B)) - p(B)(O(A)) - O([A,B]) = O | (7.2)!

where:

P, (MO = [6(A),C] .5 4

for A e g, Cel .

Notice that:

defines a linear representation

P
G+ L .

8 defines a l1l-cochain of g; with

coefficients determined by representation,

i.e., an element of Cl(g,p¢).
Condition 7.2 means that:

8 ¢ Zl(g,p¢), i.e., its coboundary is zero.

Hence, we have proved:

Theorem 7.1. The tangentrspace to Hom (G,L) at a point

¢ € Hom (G,L) is

2 6.0,) '

,D¢
the space of 1-cocycles defined by the representation Py
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We may think of this result as giving geometric
interpretation to the space of l-cocycles. What is the
geometric interpretation of its quotient space, the cohomol-

1
ogy group H'(G,p,)?
To provide such a geometric interpretation, consider a
curve
t >4,
in Hom (G,L), with:
. b9 = ¢

Such a curve defines a one-parameter deformation of ¢,

with the set of Lie algebra homomorphisms.

Consider two such one-parameter deformations,

t > g = ¢

t>éis ¢ ¢!

They are said to be equivalent (up to inner automorphism)

if there is a curve t + 2(t) € L (Z group of inner auto-

morphisms of L) such that:

o = Rt (7.4)

for all t

Let us work out the conditions that 7.4 hold. Set,

1
C (§,o¢ )

¢, € L(G,L)
t . t

ot
B

1
0p € LGL) = C(Gory)

2
[]
g.ln-
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6, and 6! are, we know, l-cocycles with respect to th

representations pbi,p¢£.

Set:

ce) = 5 et (7.8

tor of the curve t + &(t) in L. We know this may be

identified with a curve in L, since:
L = group of inner automorphisms of L,

We can differentiate 7.4 to obtain a basic relation:

op = P aw e+ amdey (7.6

This can now be written as follows:
81(A) = [C(),41(A)] + 2(t)(8,) (A)

for Ae G ,

or

8(A) = -D¢£(A)(C(t)) + 2(t)(6,)(A) (7. 1

We can write this in cohomological form. Consider C(t)

as a 0-cochain, i.e.,

ce) e c’(s,0,,) (7.8)
t i

Then, 7.7 is equivalent to the following formula:

8y = -dC(t) + 2(1)(8,) (7°9}
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(0f course, it has to be understood that "d" on the right
hand side of 7.9 refers to the coboundary operation with

respect to the representation p¢,.) Then, we see that:
) t

The cohomology class in H]‘((.':_‘,g:)‘p ) to which
t

] the l-cocycle Bt belongs, is an invariant

ti
of the equivalence relation among l-parameter

deformations.

In certain situations, one can show that the cohomol-
ogy groups parameterize the l-parameter deformations. I
will not go any further into this general aspect of the
theory at this point--I hope I bave done enough to convince
the reader that Lie algebra cohomology is the correct

algebraic tool to study deformation classes of hbmomorphisms.

Remark. There seems to be a general principle here, ''coho-
mology" of an algebraic structure serves to 'parameterize"
the "deformations'" of that algebraic structure. Presumably,
this should be studied in the context of category theory

and the theory of general algebraic structures.

I will now turn to a more specific computational

way of looking at these matters, in terms of power series.
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o

= j '
8.  DEFORMATIONS OF LIE ALGEBRA HOMOMORPHISMS- IN THE $p(A) = jZ':o 85 (M)t (8.3)

CASE OF VANISHING COHOMOLOGY

Let G and L be Lie algebras. Let for all Ae G .
t > 9, G+ 1L Thus, each eJ is a linear map

~ ~

1~}

be a one-parameter family of Lie algebra homomorphisms. > L

Let Interpret this as a 1-cochain of G, with coefficients

p(A)(C) = [¢0(A),c] (8.1) determined by the representation p, i.e.,

o5 € C1(G,p)

for j = 0,1,2,...

for A e 9, Ce E

be the representation

G » L(L) Of course,
. 8, = ¢
defined by formula 8.1. 0 0
Set: Let us determine the conditions imposed on the ej
N o
¢t _ 2: ejtj (8.2) by the requirement that each ¢, be a homomorphism:
j=0

8, ([A,B]) = [8,(A),0,(B)]

Remark. By = in 8.2, I mean that the power series on the Then,

right hand side of 8.2 is the Taylor series of the function & : .
Z oo (e’ = 2 [0;(8),0,)e)K
1=

of t on the left hand side. Of course, if t =+ by j,k=0

depends analytically on the parameter t, this will mean Here, the conditions can be written in the following form:

equality in the function sense--but this is not necessarily

6, ([AB]) = X [0;(A),0,(B)] (8.4)

required. j¥k=i

,

What are the ej on the right hand side of 8.2? Note for A,B ¢ G, i=0,1,2,..

that 8.2 means that:
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Let us write down explicitly the first few of these
conditions:
For i = 0:
eolA:B] - [SO(A)’GO(B)] >
which is, of course, the condition that

60 z ¢0 is a Lie algebra homomorphism.
For i = 1:
6, ([A,B]) = [00(A),0,(B)] + [6;(A),8,(B)]
= 0(A)(8,(B)) - p(B)(6,(A))
Hence, condition 8.4 means, in this case, that:

a6, = 0 (8.5)

where '"d" is the coboundary operator of the cohomology

defined by p, 1i.e., that:

o, ¢ AL(G,0) . ©(8.6)
For i = 2:

8, (IABI) = [9g(A),6,(B)] + [61(A),00(B)] + [0,(A),4(B)]

= p(A)(8;(B)) - p(B)(1,(A)) + [6;(A),8,(B)] .

We can write this as:

LIE ALGEBRAS : 97

dez = [91,91] s (8.6)
where [el,el] is the 2-cochain defined as follows:
[8,,0,1(A,B) = [6,(A),6,(A)]
Remark. The mapping

6, ~ [65,0,]

is an example of what topologists call a cohomology opera-

tion. It passes to the quotient to define an algebraic

operation on cohomology classes.

Thus, the one-parameter deformation t » ¢t of

¢ = ¢0 may be represented by ‘the sequence
{ej} = {eo,el,ez,...}

of 1-cochains, satisfying relations 8.4. Let us examine
how these cochains change when the deformation is replaced
by one which is equivalent with respect to a one-parameter

group of inner automorphisms of L. For C e L, set:

¢ (t) exp (Ad tC) (¢, (t)) (8.7)

= (Ad €)ItI
& EETRENG)

j
(Ad ©)7e, LK

sk I
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Set: Then, we can write relation 8.11 in the following form:

8, - 8y = dC , (8.12)

op = X eyt (8.8). -

Comparing 8.7 and 8.8, we have: i.e., 91 and ei cobound, i.e., determine the same element

of H'(G,0).

Conversely, if el cobounds, i.e.,

' (Ad c;jek
8 5£§ai 7T (8.9)

6, = dC , _ (8.13)

Again, we can readily write out these relations for the 1

first few values of i, and consider the cohomology then we can define ¢{ by formula 8.7, and read off the

interpretation of the resulting relations: following relations:

1 = ’
0 0 (.10) % = %
i.e., the initjal homomorphism does not change. This is, ei =0 ’

of course, evident from 8.7.
F i.e., the Taylor series expansion of the deformation ¢{

or i = 1: -
contains no term of order tz.

81(A) = [C,4(A)] + b, (A)

(8.11) Theorem 8.1. Let g,g be Lie algebras and 1ef ¢: g > E

= -dC(A) + 6, (A) be a Lie algebra homomorphism. Let

Here "C" means "interpret the element C of L as an p: G » L(L)

element of
be the representation defined by the following formula:

..o

s(A)(C) = [6(A),C]

and interpret . R
for A e e L
dc ~!

as its image under the cohomology operation: Suppose that:

(8.14)

[}
(=]

1
d: 6,0) » cl6,0) . H(G.0)
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Suppose that:
t » ¢t
is a one-parameter deformation of ¢, i.,e., a curve in
Hom (G,L) which is equal to‘ ¢ for t = 0.
Then, there is a sequence of one parameter subgroup
of L (= group of inner automorphisms of L) such that the

deformation

o0 = a0 a0,

have the terms in their Taylor series vanish for j=1,2,...,n

Proof. We have seen above that we can choose C1 so

that

L = exp (Ad Cp)(s,)

has vanishing first term in its Taylor series. Hence, its

second order term
o ¢ cles,0)

is a 2-cocycle, hence--by our hypothesis 8.14--cobounds,
i.e., is the coboundary of C2 e L. Set

007 = exp (ad )0

which has terms j = 1,2 equal to zero in its Taylor series.

Continue in this way for arbitrary n.
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Remarks .

a) Suppose that groups zl(t), zz(t),...

can be chosen so that there is a curve t + &(t) in L

so that:
£(t) = lim £ (1) (8.15)
n-e { '
Then set:
0p = () (ey)
Since

0 = lin 2,(00)

we know that all coefficients (beyond the constant term)

o« .
¢t vanish.

all the data is analytic, ¢: is constant in t, equal

in the Taylor series for In particular, if

to ¢. In particular:

¢t is equivalent under L to ¢,

for each t.

In words, all homomorphism deformations of ¢ are trivial

if H'(Gey) = 0.

The method we have chosen to prove this is direct but
crude., More subtle differential and/or algebraic methods
have been developed to handle this situation. For example,

see the work of R. Richardson listed in the Bibliography.
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b) Here is one typical situation to which this
argument may be applied. Suppose that G is a finite
dimensional semisimple Lie algebra, L is any finite dim-
ensional Lie algebra. We see then that, by the J.H.C.

Whitehead Theorem quoted in a previous section,
H'(G,0) = 0

This means, geometrically, that a Lie algebra homomorphism
b 6> L

is "rigid", in the sense that, for any other homomorphism
#: G+ L

which is sufficiently close to ]

in the vector space
topology of L(g,g), there is an ¢ ¢ L = group of inner

automorphisms of L such that:
¢’ = 4(¢")

(In words, ¢' is equivalent to or congruent to ¢)

In particular, this may be applied to the case where:

V = finite dimensional vector space
L=L(V)

$: G » L 2 L(V) is an irreducible linear
representation of G,

This means that:

LIE ALGEBRAS
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Any other linear representation of G which is "close"
to ¢ is equivalent to ¢. In particular, this is a quali-
tative explgnation why the equivalence classes of irreduc-
ible representations of semisimple Lie algebras form a
discrete set. (In fact, they are parameterized by points

on a '"lattice", determined by their maximal ﬁeights;)

c) A typical situation encountered while interpreting

Lie's work usually requires that L be infinite dimensional.

In this case, one will typically obtain by these arguments
the result that deformations are trivial in the formal

power series sense. One knows very little about when these

formal power series can be made to converge. (A hint of an
idea for the case where G 1is finite dimensional and semi-
simple might be Guillemin and Sternberg's convergence proof
[1] of a formal power series argument of mine [1], using
the "unitary trick”, passing from non-compact to compact
groups by analytic continuation.)

Here is one important speculation. Suppose

an abstract Lie algebra

Ll B N ]

V(X) = Lie algebra of c¢® vector
fields on a finite dimensional

manifold X.

Then,
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L = group of diffeomorphisms of X.
A homomorphism

¢: G+ L = V(X)

determines an action of G on X, i.e., an "infinitesima;

transformation group." Two such are said to be equivalent

if they can be transformed into each other by a
phism of X. One of Lie's main problems (which

by brute force calculation for dim X = 1,2, 6

diffeomor-
he "solves"

finite

dimensional, in this paper) is to find these equivalence

classes. (Usually, under the assumption that the problem

is "local" in the sense that classification up to local

diffeomorphism is required.)

Then, if
H'(G,p,) = O

where ¢ is a given homomorphism: G - L, i.e.,

geometri-

cally, a given infinitesimal transformation group action

of g on X, then ¢ 1is equivalent to any ¢'

be connected to ¢ via a curve in Hom (G,L),

which can

at least in

the formal power series sense. (Of course, much of 19th

century analysis we would now characterize as 'what one can

do with formal power series.'") When these formal power

series can be replaced by actual diffeomorphisms

diffeomorphisms) is a key question to which I do

(or local

not know
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the answer, at least in adequate generality.

More generally,

1
H™(G,0,)

may be considered as the tangent space to the space of deform-

ation of a given homomorphism ¢. Its dimension may often
be expected to coincide with the number of "independent
parameters™ found in Lie's calculations of equivalence

classes of infinitesimal transformation group action.

9. DEFORMATIONS OF SUBALGEBRAS OF LIE ALGEBRAS

There are many interestiﬂg deformation problems
connected with Lie algebra theory that are both mathemati-
cally interesting and that have important ramifications in
geometry or physics. We have just discussed one--the
deformation of homomorphism problem. Here is another.

Let L be a Lie algebra, with L the group of inner
automorphisms of L. Recall that a Lie subalgebra S of L
is defined as a subset such that:

a) S is a sub-vector space of L.

b) [s,S]

Let S denote the set of all such subalgebras.

Let L act on S in the natural way.

Two subalgebras §1,§2 € S are equivalent
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(with respect to L) if there is an
element £ € L such that

Sz = &)

Most generally, the "deformation" problem is to

parameterize the orbits of L acting on S. More specifi-

cally, it may be thought of as the problem of deciding

when two "smooth" curves
t > 5t
t > S(t)

in S differ by a "smooth" curve in L,

There are certain complications due to the fact that
$ 1is not necessarily a manifold, or even an algebraic
variet&. One difficulty is that the dimension of the
elements of S may vary, and the isomorphism class of the
Lie algebra structure on § may also vary. I will not go
into the full story at this point, but will only treat
one-parameter deformations which involve isomorphic Lie
algebra structures. In other words, we consider one-

parameter formulas
t+S(t)yclL ,
such that there is a Lie algebra G such that:

§(t) is isomorphic to G .

LIE ALGEBRAS

We suppose that this isomorphism can be chosen as

We also suppose that it depends smoothly on t.-
Suppose

is another such family of isomorphic subalgebras.

they equivalent under

existence of

4p: G S CL

#: 6 > S'(E)

a curve

t > &(t)

in L such that:

Define:

Then,

Further,

L?

2(t) (S' (1))

for all t.

alt) = ore(t) Moy

a(t) is a map: G + G which is a

Lie algebra isomorphism.

l(t)¢ta

e(e)e () toy

¢

107

When are .

Such equivalence requires the

t

S(t)
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Here is how to interpret this formula. Let: p'(t) = h(t)p(t)

G = group of automorphisms of G. Much of Lie's geometric work (to be covered partially in

Construct the direct product group later volumes) invokes special cases of this problem in

L x G quite different circumstances.

Let it act on Hom (G,L) as follows: Return to the study of deformations of Lie subalgebras

(2,8) () = Mg-l 9.1) of 5. Given two curves
for (L,g) €L x G, ¢ ¢ Hom (G,L) t o,
t -+ o1

Here is the problem:

. in Hom (G,L with
Given two curves (~'~)

= = M
€+ by000 9 = 6 = 9
in Hom (G,L) £ind the "invariants" we know from previous work how to write down a sequence of
’ »

R 1
- ' 1 .
required for equivalence, i.e., the 1-cochains e1’62""’91’62"" e C°(G,p), where op: G~ L(k)

. is the representation defined as follows:
existence of a curve t » £(t),g(t) P ollows

in L and G such that p(A)(C) = [¢4(A),C]
9 = 2(t)eg()! (9.2) for Ae G, Cel

In fact, these 1l-cochains are just the coefficients in the

Remark. In this form, we clearly have encountered a very .
- Taylor series expansion:

general problem of differential geometry. Let H be a

' = ¢
group, M a manifold on which H acts as a transformation e e jéi eJ . (9'3)«
group. The problem: Given two curves t =+ p(t),p'(t) in
e -
M, find the "invariants'" that determine when there is a ¢£ = ¢+ Za_eitj (9.4)
JS

curve t + h(t) in H such that:
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We can then find the relations between the (6.) and the U - ) - .
j 81 = Foe® e rmrog®)? - 1o g GE geey?

(ej) by substituting 9.2 into this relation. Alternately,

we can differentiate 9.2 repeatedly with respect to t. -
7 ? - Bl + 2(0)0 ()Y - apy(0) 9.8)
For variety, I will choose the latter approach. 1
Set: Consider the consequences, say for:
. d t=0 .
8, (1) It % '
We know that:
81(t) = S ¢ 8,(0),03(0) ¢ z1(G,p) .
1 dt “t 1 1 ~?
(9.5) Let us pass to the quotient under the map
0. (t) = 1 a? zt - Hl(g.p) .
2 2T 442 ¢
It can be proved that the groups G and L act trivially
5 on the cohomology classes.
1 d )
280 = 7% Now,
t
Set: 8(0) = AdC ,
for some C ¢ E ,
ds “(t)-l = B(t) (9.6) . . . .
dt . since L is the group of inner automorphisms of L.
. Denote by
d -1 .
(t} = (t .
Y a &) ©-7) 5,007, 1(0) e H'(G,p)

t > B(t) and t » y(t) are then the infinitesimal genera-

tﬂe cohomology classes to which these cocycles belong.

tors of the flows t + £(t) and t + g(t). Let us now Then, we have from 9.8:

combine relations 9.2, 9.5, 9.6 and 9.7. : ’ . o
’ 8,(0) - 01(0) = ¢v(0) (9.9)




Remark. It follows implicitly from this argument that
r(o) ,

considered as an element of
LG, = clg,o)

is a cocycle. Let us pProve it, in general. Suppose then
that

$: G+ 1L

is an arbitrary Lie algebra homomorphism, Define p: G + L%

as usﬁal:

P(AY(C) = [¢(a),C] .
Let y: § * G be a derivation, i.e., y satisfies the
following relation:
Y([A,B]) = [y(A),B] + [A,vy(B)]
Set: ’
o= ¢y,
a linear map: g + L, i.e., an element of

-~

c1

~

Gyp) .
Let us compute the coboundary of n.
dn(A,B) = P(A)(n(B)) - p(B)(n(A)) - n({A,B])

= [0, ev(B)] - [4(B),0v(A)] - ¢Y([A,B])

$C[A,Y(B)] - v([A,B]) + [¥(a),B])
= 0 . ‘
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-

since Y is a derivation. This‘proves; independently,
that n is a 1l-cocycle. Its cohomology'class defines a
mapping

Y+n = 68(y)
of

E |
Der (G) + H™(G,p)
Let us examine what happens to this cohomology class

if y is an inner derivation, i. e., 1f there ;s an A e G
such that

Y(B) = [A,B] .
Then, o ‘
¢([A,B])
= [e(n),¢(B)]

n(B)

= -[6(B),0(A)]
= p(BI(6(A) = d(e(A))(B) ,

where ¢(A) is con51dered as an element of P (G.p) In

particular, we see that:

The l-cocycle n cobounds, if y is

an inner derivation of G.
We can restate what we have proved as follows.

If all der1vations of G are 1nner

(e.g., if G is f1n1te d1mens1onal
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r(o) ,

considered as an element of
LG, = clg,o)

is a cocycle. Let us pProve it, in general. Suppose then
that

$: G+ 1L

is an arbitrary Lie algebra homomorphism, Define p: G + L%

as usﬁal:

P(AY(C) = [¢(a),C] .
Let y: G~ G be a derivation, i.e., vy satisfies the
following relation:
Y([A,B]) = [y(A),B] + [A,v(B)]
Set: ’
N 4y,
a linear map: g + L, i.e., an element of

-~

c1

~

Gyp) .
Let us compute the coboundary of n.
dn(A,B) = P(A)(n(B)) - p(B)(n(A)) - n({A,B])

= [e(A),0v(B)] - [#(B),0v(A)] - ¢y([A,B])

$C[A,Y(B)] - v([A,B]) + [¥(a),B])
= 0 . ‘
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since Y is a derivation. This‘proves; independently,
that n is a 1l-cocycle. Its cohomology'class defines a
mapping

Y+n = 68(y)
of

E |
Der (G) + H™(G,p)
Let us examine what happens to this cohomology class

if y is an inner derivation, i. e., 1f there ;s an A e G
such that

Y(B) = [A,B] .
Then, o ‘
¢([A,B])
= [e(n),¢(B)]

n(B)

= -[6(B),0(A)]
= p(BI(6(A) = d(e(A))(B) ,

where ¢(A) is con51dered as an element of P (G.p) In

particular, we see that:

The l-cocycle n cobounds, if vy is

an inner derivation of G.
We can restate what we have proved as follows.

If all der1vations of G are 1nner

(e.g., if G is f1n1te d1mens1onal
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and semisimple) then the map
&: Der (G) ~ Hl(G,p)

defined above is zero.

Return to our basic deformation problem, Given a

curve
t ~» ¢t
in Hom (9,9) with
$p % ¢,

we see that the first invariant (or first obstrugtion, in

topological language) is the image of

8) in H'(G,0)/8(Der (6)) .

In particular, if

§(Der (6)) = Hl(G,p)
the invariant vanishes for "a priori” reasons, and we expectjﬁ
"rigidity" of the deformation problem, i.e., that two Lie

subalgebras

SR
of L which are both isomorphic to G and which are
"sufficiently close" (say, in the natural topology of the

Grassman manifolds of the vector space L) are equivalent

under jnner automorphism of L.

THEORY OF TRANSFORMATION GROUPS

By Sophus Lie

INTRODUCTION

In a series of papers, of which the following is the
&®
first, I mean to develop a new theory, which I call the

theory of transformation groups. The reader will note that

these investigations, with which I have zealously occupied
myself since 1873,*' have many points of contact with
several mathematical disciplines, especially with the
theory of substitutions, with geometry and the modern
theory of manifolds, and finally also with the theory of
differential equations. At the end of this york'I will
enumerate all the investigations known to me which are more
or less related to my theory of transformation groups.

This first paper is divided into two parts, of which
the first provides the determination of all transformation’
groups of a l-dimensional manifold, while the second deter-

mines all the groups of a 2-dimensional manifold. Later

,It is the only surviving one. [Ed. note.]

Gottinger Nachrichten No. 22, 1874; Archiv for Mathe-
matik og Naturvidenskab, vol, I, III, IV, Christiania
1876, 1878, 1879. [Collected Papers, vol. V, papers I-VI.]
The first note cited contains 2 resume of all the results
of this paper.
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papers will treat on the one hand the general theory o‘
n-dimensional manifold, and, on the other hand, in co
tion with these theories they will develop new points o

view for the general theory of differential gquations.

Part I.

DETERMINATION OF ALL TRANSFORMATIO“.GROUPS o
OF A 1-DIMENSIONAL MANIFOLD

Chapter 1

THE GENERAL PROBLEM

In this part I settle the following general problem.
Problem. To determine the most general function £ of x

and T parameters 8,,8;,...,8 sati;fying_gn equation of

T
the form

4

f(f(x’al"“'ar)’bl"'"br) - f(x,c1135,,§r3: : +(1.1)

in which it is assumed that the 5 dépend only on:the a's

and the b's.

This problem can perhaps be more clearly formulated by
using the concept of a transformation group, which we now

define.

Definition. A family of transformations

)

x!' = f(x,al,...,ar

where x' denotes the original variable, x the new one,

and the’ a; parameters, forms a transformation group if the

composition of two transformations of the family is a

117
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transformation of the family, i.e., when from the eqﬁ
x' = f(x.al,...,ar) ’
x" = f(x',bl,,...br) .
there follows
x" = f(x,cl,...,cr) ,
where the ¢; are functions of the a's and b's alone.

As usual we consider the unknown function

f(x,al,...,ar) as a power series in x and the a5,

which converges on some domain of these quantities. Conse-j

equently f is a differentiable function of its argumentsg

The form of the condition (1.1) imposes the obvious addi-
tional .requirement that x,al,...,ar can be so chosen in
the domain of convergence of f that f(x,al,...,ar) is
in the projection on the first factor of the domain of
convergence of f, -

If the quantity f(x,al,...,ar) satisfies one or
more relations of the form

Y 6. (a,,...,a )af -0 ,

then the number of parameters can be diminished. Indeed,

if @pseeesay 4 are independent functions of the ay

satisfying the above partial differential equation, then f 1
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can be put in the form

f(x,al,...,ar) = ¢(x,a1,...,ar_1)

Definition. A group with r parameters
X! = f(x,al,...,ar)
is called an r-term group if the number of the parameters

cannot be diminished.

Using this terminology we can reformulate our
problem as:

Determine all r-term transformation groups
of a 1-dimensional manifold.

From a given r-term group x' = f(x,ai,.;.,ar) one
easily constructs new r-term groups. In fact, if ¢ is an
arbitrary function, with ¢'1 its inverse, then the
equation
F(x,al,...,ar)

xt = ¢7HE 0,8y, .0,8,)]

again determines an r-term group, as one immediately verifies.

Note that<the given group can then be put in the form
xt = BRI ,ap,.. 0800

so that the relation between the two groups is symmetric.
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Definition. Two groups

X' = f(x,al,...,ar)' ,

X' = F(x,al..,.,ar)
are similar if the second can be put in the form
<= o7 e ey, a0]

-1 .
where ¢ and ¢ are inverse functions, and hence alse¢:

the first can be put in the form

X' = IFGT )y, e )]

From this definition it follows at once that two
groups which are similar to a third are similar to each
other. Similar groups can be considered identical, if one

wishes.

COMMENTS
Here 18 one suitably general formulation of Lie's
general problem.

Let X and 4 bpe manifolds. Supposge,

given a mapping
’

Xx4a+X

denoted by
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(x,a) » £(x,a) .
For fized & € A this defines a map

- ¢a: X » f(x,a) = ¢‘(x) .

Suppose also that the maps

(o}

a

form a transformation semigroup on X.

We shall eay that such a structure is a

parameterised transformation gemigroup

on X.
Of ecourse, Lie makes "emoothness" assumptions on the
map
XxaAa-+X .
Prom today's point of view, smoothness in the sense of €~

manifold theory ie one reagsonable assumption. Lie uses

local, real-analyticity. Various alternate possibilities
involving algebra or analytic geomtric ideas may also be
congidered.

In these camment;, we shall call such an objeect a

Lie_transformation semigroup on X.

A preciese definition of what is meant by r-term will

be available when we discuss the notion of the infinitesimal

traneformation.




. Chapter 2

THE INFINITESIMAL TRANSFORMATIONS
OF A GROUP

2.1 AN ﬁkAMPLE OF A TRANSFORMATION GROUP ON R

The simplest example of a group is the so-called
linear group, defined by the equation

X + al
X! = __..._____azx * a (2.1.1)
\

That this equation does determine a group is verified by
writing down the second equation

x'*ul

x" - s Asmremmsend N
X +
&2 G3

and then expressing x" in terms of «x:

a, + a.a
M B s
T+73,a,
x'l =
%2 T %3% , %2%1 * %33
T+ape, T+ oa

showing that x" is a linear-fractional function of x.

If one puts

then x" = x. From this we see that the composition of the

two linear transformations

123
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-8 -
(a,8,,85) ana |3, %2 1
a LY * a
3 3 3

formations,

If one puts in (2.1.1),
a, = 0, a, = 0, a; =1,

then one obtains the identity transformation «x!'

thus belongs to the linear group. On the other hand, if
E4 \

8) =€, a, = €, a5 =1+ és,
wh i
ere el,ez,e3 are independent infinitesimals, then, by

throwing out the infinitesimals of second order, one obta

the infinitesimal transformation

X' = x + - _ 2
81 esx szx .

In particular, one obtains, by appropriate choice of the

uantiti infini
q ties €j» the three infinitesimal transformations

X' = x + Al or: 6x = Al
x' = '
X + Azx §x = Azx . (2.1.2
x!" u 2 '
X + Asx §x = ASXZ

of which all the other infinitesimaj] transformations of the

group are linear combinations.

INFINITESIMAL TRANSFORMAT ION  »

= X, Wf\
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The linear group (2.1.1) thus contains the identity

transformation and three independent infinitesimal trans-

formations. The finite transformations of the group are

ordered into pairs of inverse transformations.

COMMENTS

A map of form 2.1.1 i8 called a linear fractional

transformation. It is not literally a mapping of R + R,

since the formula 2.1.1 shows that for certain values of

X, X' = o, Ag explained in Chapter B, Seetion 8, it can
be eonsidered either as a local Lie.transformation group
or as a group of birational trahsformations on R, 1in the
senge of algebraic geometry.

Whatever the precige interpretation, formulas 2.1.1

define three vector fields Al, AZ‘ AS’ on R:

:a_-- = 3 = Za
Al 3% Az X 3z 3 A3 oz (2.1.3)

The infinitesimal transformations corresponding to the Lie

semigroup aetion 2.1.1 are then linear combinations of these
thr;e vector fields. ‘

The assignment of an "infinitesimal transformation
group" to a "transformation group" is a basic element in

Lie's theory. I will now present a modern way of looking
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at this for the reasonably gemeral ocase of a L ra

tion group aoting on a manifold X. (See Chapter B for

definitions of these concepts.) Im order to keep to the
notatione used in the text, I will denote the Lie giaup b
A .

Thus, the transformation group action is defined by a map:
Xx4+Xx ,

determined by formulas of the type:
(x,a) » f(x,a) = x¢ .

Another notation we ;se ig:

9, (x) = f(x,a) .

For fized a,

¢a: XX

is a diffeomorphism.

The group 'law ig denoted by
(81035) > a;a,
Thus, the "trane formation group” property mea;s that

) A
n12 T farte
for al,az €A .

We are assuming that 4 forme g aroup, hence contains the
tdentity element, which we denote by 1, and inverses, whie

ve denote by a’l,
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Let
4

denote the tangent veotor space to A and the unit

element 1.

Given a tangent vector Vv € Al’ we can define a

vector field
Av e V(X) ,

as follows:

Av(x) = tangent vector at t=(
(2.1.4)

of the curve

t - ¢a(t) x),

where t -+ a(t) <e any curve in A such that:

a(0) = 1

Tangent vector to a(t) at t=0 4ig v.
If A 418 a vector space, we can write 2.1.4 in the follow-

ing more concrete form:

Io:

A, () £0x, 10tv) | g

-
(s

(2.1.5)

lar
(a4

414ty (x))‘t-o

i8 the infinitesimal transformation of the

In words, Av

flows in X generated by all curves in the

t > a(t)

parameter space A with the same tangent veetor VvV and

t=0.
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We oan aleo write 2.1.5 somewhat aymbolioally qs:

(f(x.ao*eV) - x

A, (x) = 1im
€0 €
or
f(x,ao*sv) ~ x + gAv(x) s
or

f(x,ao*sv) = X + eAv(x) + (higher order terms in ¢)

Of course, the trang formations 2.1.1 form a group,
t.e., contain inverses., Lie's terminology "linear group”,
18 now replaced by "the groups of linear fractional trans-

formationg” o»r the "projective group."

2.2 THE INFINITESIMAL TRANSFORMATIONS

In the theory of permutations it is shown that the
elements of a permutation group can be ordered into pairs
of elements, each the inverse of the other. Now, since the
distinction between a permutation group and a transformation
group lies in the fact that the former contains a finite
and the latter an infinite number of operations, it is
natural to conjecture that the transformations of a trans-

formation group also are ordered into pairs of inverse
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transformations. In previous works I came to the conclusion

that this is actually the case. I now add explicitly to the

definition of a transformation group the requirement that

the transformations of the group can be ordered into pairs

of inverse transformations. In any case, I conjecture that

this is a necessary consequence of my original definition
of a transformation group. However, it has been impossible
for me to prove this in general.

We therefore restrict ocurselves to groups
x' = f(x,al,...,ar)

having the property that to each set of values 8ys000s8y
there is another set of values Agsee-ray such that the

equation

f(f(x,al,...,ar),al,...,ar) = X

holds identically.
From this it follows first of all that the groups we

consider always contain the identity transformation. We

will now show that they also contain infinitesimal trans-

formations.

Let ay,...,8, and Qgreeesly be the parameters of

two inverse transformations of a group, and let Wyse oo sty

be independent infinitesimals. Then the expression

f(f(x,al,...,ar),a1+m1,...,ur*mr)
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can, b h i
» DYy throwing out the second-order infinitesimals b
put in the form T

f
(f(x,al,...,ar),ul,...,ur)

af(f H) E BLC Y
* § wk[ (X a]. ;:r)’sl’...’g]
k (

and theref
0re our group contains the transformation

XT = X + E:w ?f(f(x'al""’ar)’s]_"--:ﬂ)
kK K OB —I

k ’

(Bk=uk)

Which is evldently an 1nfinites ma tlaﬂsfolmation. If on
1 1

g1 he 1 P . dls ti Ct v 1 s
1 1 1 w
ves t [[de ende“ t ]lf injites mals n alue »

Successively, then one obtains «f-1

distinct infinj
infin imal
transformations, itesimal

whi .
Frens: hich are linear combinations of the
infinitesimaj transformations

r

..,ar),Bl,...,er)
Bk
(Bk=ak)

k=1,...,n

k

relation of the form
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AE(£(X,8,5e0098_)5B8.5...,58_)

] (By=ay)

For if one considers the quantities f,ul,...,ur as indep-

endent variables, then such a relation would take the form
}E af(f,ul,...,ar)
auk

from which it would follow that the number of parameters of

wk(al,...,ur) = 0 ,

our group could be diminished.

We thus obtain the following important theorem:

Theorem 2.2.1. If the transformations of an r-term group

can be ordered into pairs of inverse transformations, then

the group contains an identity transformation and r indep-

endent infinitesimal transformations.

Since the expression of our infinitesimal transforma-

tions contains not only x but also 8y5cc0s8, it seems

at first to be thinkable that an r-term group may contain

more than r infinitesimal transformations. But then the

infinitesimal transformations, and

soos s < . . s r
this is impossible since the group is to contain only =

group would contain T

transformations altogether, and these in general are finite.
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In general it is advantageous to put the

tesimal transformations in the form
6X = X(x)st

where X(x) depends only on x gapg not on al,...,ar.

COMMENTS

Here is my version of thege arguments. (It wiiy be
done in generality adequate to also cover the 8ituation
desoribed in Part I71,) A8 in the Previous 8ection, 1leg X

be a manifold, A g4 Lie groyp,

£f: X x4 4%
a mapping defining @ transformation group action of 4 aﬁ
X. (411 the argumentg generalize readily to the case of q
local Lie group action.)

In order to keep as ologe @8 possible to Liec'g notq-

tione we 8uUPpose that:

X an 4 are veetor 8paces.

be the diffbamorphiam defined qg followe:

’
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b () = £(x,a) .

Fiz a ¢ A. For b e A X e X, set

IR (grep®sl (x)) - (2.2.1)

(Since we gssume that A is a veotor space, the tangent

a 18 identified with A itself. Thie

8pace to A at
i8 the meaning of the formula on the right hand eide of

2.2.1.) As X varies,

x > A (x)
defines a vector field on X. .

The map
b ~» Ab
i8 g linear map

2.2.2)
4, > V(X) (

The image set consists of the infinitesimal transformations

defined by the Lie traneformgtion group.

[
What does Lie mean when he says that the "group

' L " e ig
containg the infinitesimal transformations 2.2.1 ? Her

a reasonable interpretation. Write 2.2.1 as:

-1 (2.2.3)
¢a* b¢a a 1+ EAb
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For finite ¢, the map on the left hand 8ide of 2.3.3
belonge to the group. Assuming some 8ort of closure
eondition, ag e+0 ¢t 18 reasonable to 8ay that the "infingd
tesimal transformation on the right hand side of 2.2.2
belongs to the group. "

What does Lie megn vhen he says that "the group

containe r-tepmg”? My interpretation 18 the following:

Definition, 7The Lie transfosmation group is said to be
an r-term group, if:
a) The parameter manifold A ig r-dimensional

b) The map 2.2.2 i8 one-one.

Lie also 8ays that, if the bParameter manifoid a is
r-dimenpianal, but the trans formation group is not "r-term”,
the number of parameters can pe reduced. To gee what might

be involped here, for ecqeh a e 4, let:

Wa C Aa

be the kerneil of the lineagnr map 2.2. Using the hypothesig

one can show that:
dim (W) = constant qs & rgnges over 4.

The veetor field system on A 18 g » Wa

non-singular and completely integrabie. (See
Chapter B.)

.
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The veoctor field system thus defines a ﬁoiiation of A.
One proves readily that: :

If X 18 a connected manifold, and if

a,;' belonge to the same leaf of the

foltation of A, then

= t .
s %a
Hence, the transformation group can be parameterized by

the gpace of leaves of the foliation. Locally, this means

"
A 2 er o arameters”, as
"parameterization by a smaller qumb fpr

deseribed by Lie.




_Chapter 3

RELATIONS AMONG THE INFINITESIMAL
TRANSFORMATIONS OF A GROUP

3.1  INTRODUCTION

Let

8x = Xl(x)st, §x = Xz(x)ﬁt,...,dx = xr(x)Gt

be r infinitesimal transformations of a group
X' = f(x,al,...,ar) s

we shall show that the r quantities X

B ¢ which

1)‘ r’
are certain functions of x, are related in pairs by simple

differential relations.

3.2 JACOBI BRACKET RELATIONS AMONG INFINITESIMAL
TRANSFORMATIONS

We first carry out the finite transformation
X' = f(x,al,...,ar) ,
and then an infinitesimal transformation
t . ' cee '
8x (Alxl(x )+ + Arxr(x )) 8¢
The composition
M = £(x,89,...,a.) + 6t ZAkxk(x')

137
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must, by the definition of a transformation group, be
, a

transformation of the form
X" = f(x,a1+da1,...,ar+da)
r .

This gives the equation
f(x,a +da,,... =
1*da; ) f(x,al,...,ar) + 8t }; M),

or, b . s s s s
» by introducxng infinitesimals and throwing out those

of second order,

af
% yé;dak = 6t§Akxk(fJ

Such an equation holds for al1 values of the Parameters )
under the assumption that the differentials da, have *
appropriate corresponding values, and since thekratios
dak:dt depend only on the qQuantities A. and 4. and
are independent of X, it follows that :n partici;a;-there

are r equations of the form

X, (£) = 4, 3 af
1 1 52—t A, 0— +... of
a]. 2 Baz + Ar *—aar ,
9f 3f af

X f =
2() Bl?é_"'Bza\*"'*B

X (f) = 1. 8f of
r 1_""‘L e e af
da; 2 3a, + L, 5;; ,

where the quantities Ai’Bi""’Li
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depend only on

a;,85,...,8,. Here the determinant ,

. det (AIBZ"'Lr)
must not vanish, since otherwise there would be a relation

of the form

$y(87,.0.5a )X, (£) +--o+ ¢_(ay,...,8 )X (£} = 0 ,
1'71 r’'’1 r+°1 r’’r

and this is impossible because the r infinitesimal trans-

formations are independent.
Therefore, by solving the preceding system of equations

one obtains r equations of the form
of '
-a—iT = Mlxl(f) teood err(f) N

.g.% = NX (£) +oce N X (£)
(3.2.1)

= Rlxl(f) +eee+ RX () ,

¥
R
o

where the quantities Mi'Ni""’Ri depend on 811855.:.,8

only. The right side of these equations must satisfy, in

pairs, the well-known integrability conditions.

we obtain % r(r-1) relations, of which we shall develop

the first:

In this way
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2 = 3
b2, 2 MK () VLI CY

In doing this we remind ourselves that the Xk depend

only on the single argument f. Thus, one has

o - (Zk My ;;K)(ZNixi) . (g Ny ;’)f(_i)(z kak)

i X

> (ﬂls i "’”k)x ,
™ a2 aal k
whence:
dx dx. N, 3
k i kM
N.{x. s 3 k.

%:Zi:Mk 1(1af— Xy IF ) Zk:(aa1 Ta;)xk ,

in which the indices k and i vary through 1,2,...,r.
In the double sum on the left the term
dX dx.
X: oK o X, gl
i df k df
occurs twice, once with the coefficients MkNi and again

with the coefficient -MiNk. Hence, the above equations

can also be written as

P

ax dx, N, oM
1 - k _ i) _ k
2 % 21: (M N MiNk)(Xi aF " X F) = Zk: (55‘ - Ta—) X -

1 2

Altogether one obtains '% r{

left sides are linear in the

r-1) such equations, whose
% r(r-1) quantities
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ka dX.
X, - Xy
i df k df *
We shall show that these equations can be solved for the
% r(r-1) quantities referred to. This follows from the

well-known proposition:

If the determinant A of the rxr matrix (aij) is
not zero, the same is true of the determinant of the
% r(r-1) x % r(r-1) matrix (ai
determinant is equal to a power of A.

jakq - akjaiq)' The new

Now since the determinant (M1N2-°~Rr) is non-zero
by the preceding remarks, the same must be true of the
determinant whose elements are the MiNk - MkNi" and so
one finds, by solving the previous % r(r-1) 1linear equa-
tions, % r(r-1) new relations of the form

dxk dxi
Na - %ar " Caa¥t SiX vt CpeXe -

Here the ¢ are functions of 8350058, and since the

iks
Xk as well as the expression on the left depend on f

alone, and the quantities f,al',...,ar can be considered as

independent, it follows that the «c. must be absolute

iks
constants. Thus, the following fundamental theorem has

been proved.
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Theorem 3.2.1. If éx = Xl(x)dt,...,dx = xr(x)dt are r

independent infinitesimal transformations of an r-term

transformation group, then the X's satisfy relations of

the form
dX dx.

k _ i L
5 % " % I Cik1¥1 *UCt CikeXy o

where the c.

] .
iks are constants

This theorem together with the formulas 3.2.1 suffi¢
for the determination of all transformation groups of a

1-dimensional manifold.

Chapter 4

INFINITESIMAL TRANSFORMATIONS

OF VARIOUS ORDERS

4.1 UPPER BOUND ON THE NUMBER OF PARAMETERS

We shal

cannot exceed

Again 1

1 show that the number r of parameters
three.

et

8x = Xl(x)dt,...,dx = Xr(x)dt (4.1.1)

be r independent infinitesimal transformations of an

r-term group.

X-X0:

ax,
Xj(x) = X;(xg) * (Hx—)x

and form the

of the group.

We think of the xi(x) as power series in

- )41 dzi - )z oo
(x-xg) * 3 d_z_xo(""o

0 X

general infinitesimal transformation
§x = 8t ZAX;

We thus obtain inxi as a power series

in X-Xg, and indeed it-is possible to choose the para-

maters i; so that 2X;X; has the form

In this A

r-1

= - r-l - r -
inxi Ar-l(x xo) + Ar(x xo) +
must be ¥ 0 because

143
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ax arIx
X(x) 1 e 1
170 dx . dxr-I
0 X
0
det . .
dx atIx
x(x) T T
ro dx . e T
0 x0

tesimal transformations 4.1.1 are independent.
From this it follows at once that one can always
choose r independent infinitesimal transformations of‘tﬁe*;

group which have the form

x = (ao + al(x-xo) + az(x-xo)2 oo ar_l(x-xo)r'1 +...}é%
6x = (by(x-x,) + bo(x-x )2 #vevs b (x-x,)F L #e00)6t])
1(x-%g 2 (X% r-1X"%g
sx = (b ,(x-x )T % + b (x-x)T L 4ee)se

r-2(X%g r-13%"%g ’
8x = k. (x-x )T 4. )6
r-1 0 ' °

We will sometimes say that the last infinitesimal transforma- b

tion is of order .r-1 at the point x = Xg» that the next

to last is of order r-2, etc., and finally that the first

transformation is of order zero.

i 3
R
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Now if the infinitesimal transformations

§x =

Yi(x)dt
and
dx = Yk(x)dt
are of orders i and k respectively, then the expression
Y dYk y in
idx k dx
is of order i+k-1; and since this expression (Theorem 3.2.1)

has»the form

So¥p

oYy e Yey

we can conclude, if
i+k-1 > r-1 ,

that all the c's are zero. But the quantity

dy dy.
Y, X -y, i
i dx k dx
must not vanish, since otherwise one would have Yi =

const., Yk’ and this is impossible since these two infini-

tesimal transformations are to be independent. Thus we see
that the number i+k-1 r-1.

cannot be greater than Hence,

if we put, as we can,
i=r-1, k=r-2,

we get
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2r-4 < r-1 ,

from which it follows that r is at most 3.
A.W

4.2 DETERMINATION OF 1-TERM GROUPS

I therefore separate the problem of “determining all -

groups into the three problems of determining all 1-term,

all 2-term, and all 3-term groups.

If 6x = X(x)6t is the infinitesimal transformation
of an arbitrary 1-term group x' = f(x,a), then, as we

saw in §3, there is a relation of the form
E - A@ - x®

whence, by integration,

f%f&.y= A(a) da

or
¢(f) = y(a) + const.
To determine the integration constant we recall that there
is a value a, of the quantity a for which f(x,ao) = x,
This gives
$(x) = ¥(ay) + const. ,

whence

x(a) ,

$(£) - ¢(x) = y(a) - ¥(ap)
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so that
£(x,a) = ¢71(p(x)+x(a))
It follows that every 1-term group is of the form
x' = 3 )

and on the other hand, it is clear that this equation
always determines a 1-term group, for any functions ¢

and x. This gives:

Theorem 4.2.1. Every l-term transformation group of a

l-dimensional manifold is similar to the linear group

x!' = x+a,

COMMENTS

Here are some results which are proved, or are rele-
vant, in this chapter. Throughout our discussion, X
denotes a connected, 1-dimemsiomal manifold. It is well~
known that such a manifold is diffeomorphic to an open
interval
a<:£<b

of real numbers.

Theorem 4.3.1. If A 48 a veoctor field on X which does
not vanish at any point, then there is a coordinate function

y for X such that:
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>
L]
s

Proof. GSuppose that:
= 2
A a(x) X
We shall show that there is a real-valued function
x + f(x)
on X s8uech that:
A(f) = 1
The map x + f£(x) <8 a diffeomorphism

of X with an interval of real numbers,

and
£(0) = 0

To do this, suppose, for example, that
X=R.

The condition that A vanishes nowhere means that

a(x) # 0 for all x e R

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

Let £ + x(t), -e <t <e, be the solution of the differ-

ential equation

£ - axn; x = o .

(Such a solution exists for € suffictently small.)
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If f satisfies 4.3.3, we have:
d ¢
() = 1,

By 3.5, we have:

£(x(t)) = t (4.3.6)

Now, if € i8 sufficiently small, the map t + x(t) s a
diffeomorphiem. Hence, we can define f by relation 4.7.6.
We have shown that, for € sufficiently small, there

i8 a solution of 4.3.3 in the interval

- < X < € ,
such that
f(0) = 0 .

We continue to define f for larger values of f£(x)

by the process of analytic continuation. A standard
argument ehowe that it can be defined in thie way over

the whole interval

- < X < ®©®

Now, 4.3.3 means that

for all x, -» < X < w

df
= # 0
Hence, either

g%(x) > 0 or
(4.3.7)

g% (x) < 0 for all x.
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Congider the map

x> f(x) = y

of R+ R. Ite image is connected, hence is an interval
a<y<b .
Let ue show that it is one-one. Suppose that
f(xy) = £(x,) (4.3.8)

Condition 4.3.7 means that x + £(x) 4is either strietly

inereasing or decreasing. In either case, 4.3.8 forces
17 %

t.e., the map is one-one. The implieit function theorem,

together with condition 4.3.7, now implies that the inverse

map i8 Cm, t.e., the map is a diffeomorphism. If ome now

introduces Y a8 a new coordinate for X, it is readily

seen that 4.3.1 is implied by 4.3.3.

This result gives a more precise version of Lie's

Theprem 4.2.1.

Theorem 4.3.2. Let A,B be two vector fields on X such
that:

[A,B] = o0 (4.3.9)
and

A(x) # o for all x e X .
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Then, there is a real constant c such that:

B = cA (4.3.10)

Proof. By Theorem 4.3.1, we can choose the coordinate
funetion Xx such that
9
A'ﬁ-
Suppose

]
B = f(x) x

Condition 4.3.9 implies that

df _
= 0

»
i.e., f = comstant. Thie proves 4.3.9.

Remark. In the C case, one can construct itwo vector
fielde which satisfy 4.3.9, but not 4.3.10. Of course,
this cannot happen with real analyticity, which is the

assumption Lie makes.

Theorem 4.3.3. Let G be a finite dimensional Lie algebra

of vector fields on X, and let xo be a point of

such that:
G(xo) # 0 . (4.3.11)

If A 18 an element of G which vanishes to an infinite

order at Xqs then:
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A=0 ing neighborhood of Xge

Eroof. Using hypothssie 4.3,11, thers ie an elemant
B¢ G such that:

B(xg) # 0 .

By Theorem 4.3.1, there 18 a coordinate funotion for X,

in a neighborhood of Xgs which we label "xX", suoh that:
9
B = x -
Suppose :
)
A = f(x) %

The hypothesis that A "vanishee to an infinite order at
xo” means that:

gn
E;i f(xo) = 0 for all n . (4.3.12)

Let
@ GG
be the linear map defined as follows:
a(A) = [B,A]
for all A ¢ G
(In the now standard notation of Lie algebra theory,

a = AdB.)
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Singe G is g finite dimensional vector space,

there is a polynomial P(x) such that:

P(a) = 0 (4.3,13)

For example, suppose 4.3.13 takes the following form:

m um-l

o + a +ecct a, = 0
m-1

0
with coefficient agscees8 g whieh are real numbers.
With the special form we have assumed for the vector

fields A and B, we then have:

-1

a"s a" s -

L — +-+0 = 0, (4.3.14)
dx™ m-1 ax™ 1 A

i.e., f satisfies a linear differential equation with

constant coefficients. By the well-known propertiecs of

such equatione, if a function x - f(x) solves it, and
vaniehes to the m-th order at a point, it vanishes identi-
eally. (Alternately, the solutions of 4.3.14 are real
analytie.) In particulanr, applying 4.3.12 to the particular
funetion £, which is the component of the vector field A

in the coordinate system (X), we see that
f=0 ,
Ffinishing the proof of Theorem 4. 3. 3.
Theorem 4.3.4. Let G be a real Lie algebra of vector

fields on X. Then,

dimension G < 3 (4.3.15)
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Proof. If the vector fields in G vanish identically ﬂ

at each point of X, the relation 4.3.15 is trivial, since
dim G = 0.
Let Xg be a point of X s8uch that

G(xg) # 0 (4.3.18)

Introduce the filtration of G determined by the order of

vanishing at Xg. (See Chapter C.) Let
e
be the subset of these vector fields which vanish to order j

at Xg-
A basie relation is then that:
(¢d,6%1 < gItk-1 ’ (4.3.17)
Now,
66> ¢ton
Since 9 acts on a l-dimensional manifold,

dim (6/6h = 1 . (4.3.18)

Choose a coordinate function x for X 8o that Xq has

coordinate:

and sueh that:

£ 9 (4.3.19)
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(Again, recall that this is possible, by Theorem 4.3.1,

because of 4.3.168.)

Let A be a non-zero element of G. By Theorem 4.3.3
there i8 an integer j such that A vanishes precisely

to order j at 0, i.e.,
A= ey (4.3.20)

with
f£(0) # 0 .

Thie means that
Aeg
A determines a n;n-zero element of
cl/gi*t. '

Note the following general property:
dim (6%/¢¥*) < 1 (4.3.21)
for all k.

Combining 4.3.19, 4.3.20, we have:

[B,A] has order j-1
[B,[B,A]l] has order j-2 , (4.3.22)

and so forth.
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Now, choose j ae the largest intege» such that Now, by a standard argument of linear algebra,

the i8 an element A e G whi 2 : - .
here eme G which vanishes to order pre dim G = dim (9/61) + dim (91/92) + dim (92/93) PN

eisely j at Xo- By 4.3.22,

k+1 By 4.3.23, the terms <+ are 3ero, whence 4.3.15.
) .

dim (6*/g -
Theorem 4.3.4. Let G be a finite dimensional real Lie
for k = j,j-1,... —_—= ~

algebra of vector fields on X. Then, there is a eoordinate

Now, apply 4.3.17 and Theorem 4.3.2, funetion x such that:

16,6} c g2

9
€6
Let us find the values of k for which: X EL
rke1 >3, and each A ¢ G ie of the form:
" 2, 3. '
k>1 ., A = (ay +ayx +ayxt) 57, (4.3.24)
or with ao,al,a2 e R

k>2
P f. W iready know (from Theorem 4.3.3) that
Hence, Zf k > 2, roo e a ady f

dim 6 < 3 , (4.3.25)

6*,61 = o
and that each A € 9 vanishes to at most the second order

By Theorem 4.3.2, the elements of Gk and G are ZinearZyJ
~ ~ 1 at any point of X.

dependent. This is only poesible if:

k=3j, or Case I. There exists a B ¢ 9 such that:

k

¢t =0 Ad B is nilpotent.

.f L e oint of X at which B
Thue, if j were > 3, there would be a contradie- In this case, we can choose a p f

. , 4 { L x valid in a
tion (since k could be taken as 2), hence, does not vanish, and a coordinate function a

jzg2 . (4.3.23)
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neighborhood of this point sueh that:

)

B = 5;

"Ad B nilpotent" means that

(Ad B)® = 0

for n suffieiently large. Condition 4.3.25 and the Cayley-;

Hamilton Theorem imply that:
(ad B)3 = o

This means that:

which implies that A 1is of form 4.3.24.

Now, let us suppose that Case 1 is not satisfied.

Suppose the coordinate function X 1ig choesen 8o that

e G

1

Ad B 78 not nilpotent, hence has a non-zero eigenvector. If §

it has a real eigenvalue A, there ie an A € G such that
[B,LA] = 2AA

In particular, Ad A is nilpotent, which contradicts our
assumption that Case 1 i8 not satisfied, and the non-zero

eigenvalues of Ad B are complex numbers.

(4.3.20%
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Hence, there are elemente AI’AZ in gc’ the
complification of g, such that: )
[B,A)] = 24,
[B,AZ] = TAZ
Then,
[B,[A;,A1] = (X [A},A,]
Using 4.3.25, we have either:

A+X =0 or [Al,AZ] = 0
It i8 left as an exercise for the reader to show that each of
these possibilitice leads to a contradiction.

Remark. Condition 4.3.268 ie a differential equation for A.

It ie a simple example of Lie's general technique for defining
Lie algebras, namely by differential equations. The recent
book by Kumpera and Spencer [l] represents a vast development

of these ideas in the context of modern mathematics.

These results are the basic structure theoreme for the
local study of finite dimeneional Lie algebras of vector
fields on one-dimensional manifolds. (One might have contin-
ued to study what happens in the neighborhood of points X
such that

G(xg) = 0
but it is typical of Lie's work that he avoided such 'non-

generic" situations.) All of the results presented by Lie in

this Part I are easily deducible from them.



Chapter 5

SOLUTION OF THE GIVEN PROBLEM

5.1 2-TERM GROUPS

If 6x = Xl(x)dt and §&x = Xz(x)ﬁt are the infini-
tesimal transformations of a 2-term group x' = f(x,al,az),

then by previous results there are relations of the form

's_a'— - A(al'az)xl(f) + B(alnaz)xz(f) F
55; = C(al,az)xl(f) + D(al,az)xz(f) ’ (5.1.1)
d

) 1. .
L L& €1X1 * cX,

In this the constants < and €, cannot both be zero,

since otherwise there would be a relation of the form
const. Xl + const, Xz = 0
Hence we may assume that, for example, < # 0. We put

= ]
Clxl + czxz. Xl N

then:

- - = 1
1% "L C1X; * X, X

161
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Hence, it is no restriction to assume €y = 1, c, = 0

and so

If, in this equation, we consider Xl as known, Xz as

unknown, we find by integration that

and, by substituting this into the first two of the equa-

tions (5.1.1):

of . R df
aa; - A% Bx1(f)_[x1_(r7 '
f  _ . af
3a, - % Dxl(f)fm

If we now introduce

df
xEy - ¢
1
as an unknown function, we obtain the equations
¢ _ 3¢
H’i‘ A+B¢s ‘ra; C+D¢’

whose general integral is of the form

o(f) = ¥y(ay,a,) + Ky,(a;,a,)
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To determine the integration constant K, which depends
on x but not on a;,2,, We recall that there are values
ag,ag of the quantities ay,8, for which f(x,ag,ag) = X.
Hence,
0o _0 0
$(x) = y(a],a)) + Kky,(ad,ad)
so that K may be eliminated to give

#(5) = Do) + b, ,

where b1 and b2 are certain functions of a; and a,.

Hence
f(x,a8)) = 97 bex)b,)
so that every 2-term group is of the form
x' = 7 by e ()b,
On the other hand it is clear that this equation always

determines a 2-term group, which is similar to the linear

group x' = a;x + a,. This gives:

Theorem 5.1.1. Every 2-term group is similar to the group

' o= X + .
X ay a,

COMMENTS

A 2-term group "ie a 2-dimensional Lie subalgebra of

V(R)". The argument used to prove Theorem 4.3.4 implies
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that a coordinate X may be chosen (at least locally) so

that G has

3
-

i8 a basie. Theorem 5.1.1 readily follows.

5.2 3-TERM GROUPS

To determine the most general 3-term group x' =
f(x,al,az,as), we choose three independent infinitesimal

transformations of the group

§x = det , §x = Xzét , §x = X36t

which are of the form

3 4
Xp = 1+ az(x-xy)” + a g (x-xg} "+,
X, = (x-x,) + b (x-x )3 oo
2 0 3 0 ’
_ 2
X3 = (x'xo) + »
We now form the three equations
LA =
XZXS szé alxl + aZXZ + a3X3 s
'
[ [ =
X3X) - XyXg BiXy + BpXp ¥ BgXg
[ t = .
XX - %1% YiXp * Xyt ovgXs
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we have then

Yl = -1 , Yz = 0

To determine the remaining constants, we put

XK XK X
*®
and we note the identity

[0X)X,1%5] + [1X,Xg1X] + [[XX,1X,1 = o .

Substituting twice into this the values given above for the

[xixk] gives a relation of the form

LyXy + LX, + LX, = 0,

which shows By = 0. Thus one has
[X2X3] = X3 . [XSXI] = -2X2 . [XZXI] = -X1
Now we consider X3 as given and seek to determine Xz

and Xy The equation

¥ This equation is a corollary of the well-known Jacobi
identity

[[AaBlC] + [[BClAl + [[cAlB] = o |,

if one puts

df
ax 7
and then forms the equation

[[H1H21H3] + [[HZH 1H

3 1] + [[H3H1]H2] = 0
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shows that

The equation

dx
(- v . = o=
X3X1 X1X3 2X 2X3 x3

~N

can also be written as

a ("1) - oL fax
dx\ X5 X3 X3
and this gives
X 2
Yl = ( %5) + const. ,
3 3
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where the integration constant must be zero because

[X,X,1 = -X,;.

We substitute the values we have found

2
- . dx = dx
X, = Xsfx3 X Xs( Xs)

into the three equations

of
a.
i

and thereby find three equations of the form

2
of ag\? s
Ja. - AiXS(fX—s) Bixsfx—3 * CiX5(6)

= = Aixl(f) + BiXZ(f) + Cixs(f)
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where the quantities Ai’ Bi and Ci are functions of

ay, a, and as. To simplify the formulas we introduce

df
o(£f) =
X3 (f]
as an unknown instead of f and thus obtain the three

equations

IQ’

2
= Ai¢ - Bi¢ + Ci ’

Q)

a.
1

whose general integral is of the fornm

v, (a,,a,,a,) + Ky (a,,a,,a,)
o(f) = A 1°72°73 2 01°%20%3

1+ Kws(al.az,as)

To determine the integration constants K, which are on -

ay,3,,84
ag,ag,ag of 81,325,354 for which f(x,ag,ag,ag) = X,
gives

0 .0 0 0 .0 0
‘J)l (al ’az ’as) + K‘bz (31 Daz ’as)

o(x) =
1+ Kig(a),a5,8;)
whence, by elimination of K,

by + byo(x)

¢ (£)
1+ bé(x)

where bl,bz,b3 are certain functions of 83:3,,34. This

proves the following theoren:

but not on x, we recall that there are values
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Theorem 5.2.1. Every 3-term group of a l-dimensional

manifold is of the form

x' =

-1 31¢(x) + az
¢
(a3¢1x5 ¥ 1
Every

for some function ¢ (which may be arbitrary).

such group is therefore similar to the linear group

alx + az

33X+I

x' =

We thus have solved the problem of this part, for by

collecting our results we have

Theorem 5.2.2. Every transformation group of a 1—dimensional§

£

manifold is similar to a linear group and hence depends on

at most three parameters.

COMMENTS

Again, the assumption that G <ie& a 3-dimensional Lie

algebra of vector fields on R implies (using the argument

of Theorem 3.3.4) that it has a basig consisting of
g;,xa—,x

That the group it genmerates takes the form indicated in

Theorem §.2.1 <8 readily seen by various techniques (most
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straightforwardly, by solving the differential equation;

dx - 2
at (ao + a;x +oayx )

with real parameters ao,al,az.)




Part II

DETERMINATION OF ALL TRANSFORMATION GROUPS
OF A 2-DIMENSIONAL MANIFOLD

Chapter 6

GENERALITIES

Before we turn to the transformation groups of a
2-dimensional manifold, we make some general observations
on the transformation groups of an n-dimensional manifold.

1f in the equations
xi - fi(xl,...,xn,al,;..,ar) (i=1,2,...,n)

one considers xi,...,x' as original variables and

n
XyseeesX, 8s new variables and 815...,8, as parameters,
then these equations define ' transformations. I say

that such a family of transformations forms a group if the
composition of two transformations of the family is again

a transformation of the family, i.e., when from the equations

xi = fi(xl,...,xn,al,...,ar) = fi(a) ,

xg = fi(xi""’xﬂ'bl""'br) ,

follows

X! = fi(xl""'xn’cl""'cr) ,

171
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where €qse-e2Cy depend only on the a's and the b's,

and neither on x or the index i. In other words, we

require equations

£,(£,(a), .0, £ (a) by, ,'br) = Ei(XgaeesX sC€paeesCh) ]

As in the preceding part we restrict ourselves to
groups whose transformations can be ordered into pairs of
inverse transformations, although we still conjectufe that
every group has this property.

We think of the unknown functions fl""’fn as

power series in x and the a's which converge in some

Consequently, the f. are

domain of these quantities. i

single-valued differentiable functions of their arguments.
From the definition of a group it follows that one must be

able to choose the quantities XyseeesXpsdysees,a so that

r

fi(x,a) is in the projection on the first factor of the

domain of convergence of fi‘

If in the equations of a transformation group

xi = fi(xl,... X 5815...,8 )

r

one replaces 815-..,8 by certain functions of these

r

quantities, say QpseersGpy which are to be new parameters,

then the equations obtained in this way

x{o= (X uxghag,en,0n)
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again determine a transformation group,.which is to be
considered equivalent to the original. It may happen that
the new equations contain a smaller number of parameters

than the old. Such a lowering of the number of parameters

can only occur when fl""’f considered as functions of

nl
ajs--+»3,, are all solutions of a linear partial differ-
ential equation of the form
3f
%wk(al,...,ar) Ta_; = 0
If all the f's satisfy this equation and Qgseeeslr g
is a system of solutions depending only on aysee0sd,

then it is possible to put the. fi in the form

¢i(x1,...,xn,al,...,ar_l) .
For each group there exists a certain minimum number of
parameters. If this number is r, we shall say that the
group is an r-term group. This definition can also be

expressed as follows:

Definition. A group is an r-term if it contains

distinct transformations.

If the equations
M =
xi fi(xl,...,xn,al,...,ar)

determine a transformation group, and if one replaces
XpsenesXy by new variables Yyseeos¥y by means of the

equations




174 GENERA&gTIES

X = 0 (ypserenyy) = 6
then it is easy to see that the equations
05 (yjs-evsyp) = fi(el,...,en,al,...,ar)
also determine a transformation group. This is because the

new and the old equations determine the same transformation

of the x's. Two such groups will be called similar.

Definition. Two r-term groups of n variables are similar .

when one group becomes the other by the introduction of new

variables.

My investigations of transformation groups are meant

in the first place to settle the following problem.

Problem. To determine all r-term transformation groups of

an n-dimensional manifold.

In treating this problem it is permissible and indeed

expedient to consider similar groups as identical.

COMMENTS

Here is one way of interpreting this material. Let
X be a manifold, G a loecal Lie group, and suppose given
a local Lie group action of G on X. Let G be the Lie
algebra of G. The local transformation group defines a

Lie algebra homomorphism
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G~ V(X)
We consider local transformation group actions for which
thig map i; one-one. The transformation group G 18 then
gaid to be an p-term one if G is an r-dimensional real
Lie algebra.

Let (G',X') be another local transfbrmation‘group

of this type. (G,X) 18 said to be similar to (G',X")
if there are pointes

xe X, x' e X',
open neighborhoods

XxXeUCX

x'eUrcC X' ,
and diffeomorphism

a: U > U

and a Lie algebra isomorphism

such that:

a, (X(¥)) = ¢(X)(a(y))
for all y e U .

(Intuitively, this condition means that o maps the group
action on U onto the group action on U'.) Lie's problen

i8 to classify the_similarity classes of Local transforma-

tion group actions.




Chapter .7

THE INFINITESIMAL TRANSFORMATIONS
OF A GROUP

In tﬁe following we shall show that every r-term

group in which every transformation has an inverse contains
r-1
«© -

infinjtesimal transformations which characterize the

group. The only, or at least the simplest, method of deter-
mining all transformation groups is based on investigating

their infinitesimal transformations.

7.1  LINEAR COMBINATIONS OF INFINITESIMAL TRANSFORMATIONS

A transformation is said to be infinitesimal if it

can be put in the form
xi = X, ¢ Xi(xl,...,xn)ﬁt

wheré 8t is an infinitesimal. Generally, we shall write

such equations as

§x.

i ° xi(;l,...,;n)at

. If one reﬁlaqes XypeenX by new variables, say

n

Yisr++s¥ns then our infinitesimal transformation assumes
the form

by, = 6tY =X

i - T %

177
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On the other hand if we. make the same change of

variables in the expression 1 axl n axn 4
3F ] oF 3 3
A(F) = Xl 5;; + + Xn §;§; ’ B = Yl 57; +eood Yn 5;; .
we get .
then it also contains the l-parameter family of transforma-
9F ayl 3F Byn )
A(F) = —;I }E sii X +or+ 5;; }E 5;; Xy tions determined by the symbol AA + uB and depending on

the parameter A:u.

Thus we see that the equations of the infinitesimal trans-

. . We say that r infinitesimal transformations
formation and the expression A(F) transform in the same
Al,...,Ar are independent if they are linearly independent.

If a group contains the r infinitesimal transformations

r-1

A(F) as_the symbol of our infinitesimal transformation.
Al,...,Ar then it also contains the « infinitesimal.

Let us assume that a transformation group contains
. transformations determined by the symbols AlAl Feeed ) A?’
the two infinitesimal transformations Tt

in which Al""'lr are arbitrary constants.

6xi = Xist and 6x; = YiGT .

Then it must contain the composition of these two transforw} COMMENTS

tions, namely .
In Chapter A I have suggested that the differential

§x. = Xiét + YidT .

i geometrie objects called "vector fields" should be under-

As the ratio 6t:871 runs through all possible values, one } stood in two ways--ae "infinitesimal traneformations”, i.e.,
obtains from this infinitely many distinct transformations, as equivalence classes of flows, and as derivations on

which belong to the group, This gives the theorem: functions, i.e., as homogeneous, linear firet order differ-

ential operators.

Theorem 7.1.1. If a group contains two infinitesimal

The material in this section should be interpreted
transformations whose symbols are

in this way. Lie thinks of an "infinitesimal transformation"
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as an equivaZ9"0€ class of flowe. He then defines their
aymbols as the operation on functions--now called Lie
darivgtjve-—dasoaiated with the "differential operator"
definition.

Let ue examine Theorem 7.1.1 in thie light. Let
t + ¢t be a flow on a manifold X, Z.e., a one-parameter
family of diffeomorphisms of X, such that:

¢0 =  identity map

For eqeh t, *f € F(X), set

AgE) = (oghr I er) (7.1.1)

t+ A ig then a curve in V(X), called the infinitesimal
t

genegrator of the flow. Two flows are said to be infinitesi- }
'

mally eguivaze”t if their infinitesimal generators have the

b

t =0, An infinitesimal transformation ie

same value at
an equivalencé class of flows.
Let t at,Bt be two flows on X, with infinitesimal]

generators
' t > AB .

Set:

Let us compute its infinitesimal genera-

the product [LOV.

tor {C,} by direct application of formula 7.1.1.
t
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C () = hr & (vreen

= 8t I ((a,8,)%()

= @ hr I (srate)
= (ofl)*(s'l)*(—-s-E (a*cf)) + B* (3— a*(f))
t t ot t t 3t t

>

= -1, %
a, *(By(ap(£)) + A (£) (7.1.2)
Thie i a basic formula of Lie theory, Specializing

it, for t = 0, we have:

c = B, + A (7.1.3)

0

Thie means that:

The infinitesimal transformation of the
product of two flows is the sum of the

infinitesimal transformation.

This is the essential content of Theorem 7.1,1.
" Here is another way of thinking of this argument
involving "infinitesimals"” more directly.
Suppose that X I8 a vector space. Consider the

flowe at’et written "infinitesimally™ as follows:




182 INFINITESIMAL TRANSFORMATIONS

a (x) = x+ tA(x) = x+ t6 (x)

Be(x) =~ x + tB(x)
Then,
at(Bt(x)) ~ Xx + tB(x) + tA(x+tB(x))
~ x + t(B(x)+A(x})
This shows that the sum
A+ B
of two veetor fields corresponds "infinitesimally" to the

product of two flows. .

Similarly, we can show that -A corresponds infini-
-1

tesimally to the inverse flow t - a, "
Given
at(x) a2 X + tA(X)
set
Be(x) = x - tA(x)
Then,
Bt(at(x)) = X + tA(x) - tA(x+tA(x))
1 X s
-1
t.€., Bt ~ 0,

Remark. The "approxzimate equality" sign =~ means up to

terms of order >2 in t. Notice that this can be interpretey
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in a purely algebraic way (eay, in terms of formal power
series), independently of limiting operations as they are

used in calculus.

7.2 LINEAR INDEPENDENCE OF INFINITESIMAL TRANSFORMATIONS

Every transformation 815...,3 of the r-term group

r
x; = fi(xl,...,xn,al,...,ar)

has, by our hypothesis, an inverse transformation in the
group. If the parameters of the inverse are Lt ERRERT
where the a's are certain functions of the a's, then

one has the n equations

£, (£ (x58) 000, (x,8) 40,000 0a ) = X

We now consider the transformation

xi = fi(fl(a)""’fn(a),al*wl!"')ar+wr) ’

which is in the group. In this the wy denote infinitesi-
mals, and hence the transformation equations can be written

as

x{ = fi(fl(a),...,fn(a),al,...,ar) +

3. (£.(a),...,f (3),Byy.0.,B8)
. 2: vy i1 '"n 1 *Tr
k aek

(Bk=uk)
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afi(fl(a),...,fn(a),Bl,...,Br)

§x., = w
i K K 28
. (Bk = ak)

thus determined, is infinitesimal, and depends on the r

arbitrary infinitesimals Wyseerste I claim that the o
infinitesimal transformations so determined are all distinctj
For, suppose that for each i there were a linear

relation of the form

afi(fl(a),...,fn(a),Bl,...,Br)

3By

% ¢k(al’ s aar)
(Bk = Gk)

in which the oy is independent of the index i. Replacing]

by fl(a),...,fn(a),al,...,ar would

XyseeesXpp8yseeesdy

then give n relations of the form

afi(fl,...,fn,al,...,ar)
Bak = 0 ’

% ‘pk(al" w°:ar)

so that the number of parameters of the given group could
then be diminished.

Thus, we get the theorem:

Theorem 7.2.1. Every r-term group contains the identity

transformation and r independent infinitesimal transforma-

tions.
rions
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That an r-term group cannot contain more than r

independent infinitesimal transformations follows from the

fact that otherwise it would contain «' distinct infini-

tesimal transformations, which is impossible since the group

T

contains only = transformations altogether, and in

eneral these are finite.



Chapter 8

RELATIONS AMONG THE INFINITESIMAL
TRANSFORMATIONS OF A GROUP

Let “Ays...hA. be r independent infinitesimal

r
transformations of an r-term group

x{ = fi(xl,...,xn,al,...,ar) H

we shall show that each expression Ai° Ak - Ako Ai is a

linear combination of the Aj'

8.1 DIFFERENTIAL EQUATIONS FOR THE TRANSFORMATION GROUP

I take first a finite transformation
xi = fi(xl,...,xn,al,...,ar) s -
and then an infinitesimal transformation
Gxi = xi(x',...,xﬁ)ﬁt
of the same group; their composition
x; = fi(xl,...,xn,al,...,ar) + Gtxi(xi,...,xﬂ)
must be a transformation of the group, say
" =
x{ fi(xl,...,xn,al+dal,...,ar+dar)

This gives for each i a relation of the form

. (Xy,.00,X ,85,...,a_)
. - i1’ >m’"1’ T
8t Xi(fl,...,fn) é §§k dak

187
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where the infinitesimals dak are independent of the
jindex i. Dividing by &t now gives relations of the formﬁ

3f . (Xypeve X 38y500.
- e R S
X, (£ppeeenfp) = Zk: Bk(al,...,ar) I

n

where again the Bk are independent of the index i and

also of XyseoosXpe
Let now Al""’Ar be r infinitesimal transforma-
tions, where
] ] .
Aq qu Xy Thoe an 5xn ’

then for each q there are n relations of the form

afi(xl,...,xn,al,..

P fp) = Zk:qu(al,...,ar) 3

X . (f
ql( k

where the qu are independent of the index i, but do
depend on the index gq.
I claim that det (qu) # 0; otherwise, for each i

there would be a relation

-

Fbgagseaa )X (Fpuenf)) = 0,

with Y, independent of i, and this is impossible since

our r infinitesimal transformations were assumed to be

independent. This shows that det (qu) # 0, and therefore

we can solve to get relations of the form
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Bfi(xls...,x ,al,...,ar)
aak

= %qu(alx---sa )x ( 1)"°)fn)

where agaih qu is independent of i. Obviously

det (qu) $ 0.

8.2 LIE ALGEBRA RELATIONS AS INTEGRABILITY CONDITIONS

The right side of the last equations satisfy the well-
known integrability conditions. This gives % r(r-1) rela-

tions, of which we develop the first:
3
b o) d{Fraa) - o

We recall that X depends only on the arguments fl""’f .

Therefore,

83X . af aX.. of oL oL
YL, 4k L o, Ty ( lq . 29) - 0
% 4 “1q Bfa Ba }5: }&: 2j _t'j' 3a % qi Z?a da;

by substituting the values of Bfa/aa2 and afa/Bal, this

giveg
2,
E Zqu ﬁ'q‘ ZLZJ ja ? %:LZJ 3E, %quxqa *
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or

axX . X, . 3L 9L
YL L. XX, =9 - x AX). ¥ x . ~1a . __29
S5 1q7°2j S ja Bfa qa Bfa q qi\ 3a 3a

or finally

ZE %:qu ZJ(A (x )-Aq(xj.

In this equation the term Aj(X ) - Aq(in) occurs

qi

twice: once multiplied by quLZq and the other time
multiplied by LlJLZq Hence our equation can be put in
the form

% 2 (lgloyLyshaq) Ay (gs) A (X;1))

oL 3L
= Ex.(;laz -~——9-31) ,
q ai\day a,
in which the left side contains the % r(r-1) quantities
(X L) - A (X,
Ay (Xos) q%51)
In a similar manner one obtains altogether % r(r-1)
equations which are linear ingthe % r(r-1) quantities
j(X 2) - Aq(xji). And since det (LaB) # 0, it follows

that the determinant of the matrix whose entries are the

determinants of the 2x2 submatrices of (LaB) is also # 0;

so that by solving the linear equations found one obtains
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% r(r-1) relations of the form

e

Aj (qu) - Aq(xji) - §¢qu(81""’8r)xsi s

where the. ¢qu are independent of the index i. But now
both the left sides and the xsi are functions of ‘

£1s+++»f, alone and are independent of CIPRRRIN S " from
which we conclude that the ¢qu are constants. This gives

the following fundamental theorem:

Theorem 8.2.1. Let Al""’A be r infinitesimal trans-

r

formations of an r-term group, where

3 ' 3
A = X — teeeg X —
q ql axl qn 3x,

Then for each i there are % r(r-1) relations of the

form
A, (xqi) -Aq(xji) = Zs:chsxsi R
where the c. are absolute constants, independent of the

Jgs
index i. These equations can be put together into the

% r(r-1) relations

oA - A A, = A
S R TR R I };‘CJqss

On a later occasion we shall show that conversely

that if r expressions A »A_ have the property that

100y
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Aj- Aq - Aq- Aj is a linear combination of the A's
with constant coefficients, then they are the infinitesimal

each

transformations of an r-term group.* The correctness of |
this assertion for the case -n = 2 will follow from the
further developments of this paper.

By means of Theorem 8.2.1 we determine in this paper
the infinitesimal transformations of any group of a 2-
dimensional manifold. In the next section it is shown how

one then determines the finite transformations.

8.2 COMMENTS: THE LIE ALGEBRA OF A TRANSFORMATION GROUP

Let G be a Lie transformation group on _a manifold X.

(See Chapter B.) I will show how one may define a finite

dimensional Lie algebra of vector fields on X, which may

be considered as the infinitesimal version of the action of

G on X. (This functor--replacing a transformation group
by ite "infinitesimal"” version--is the basic tool in Lie's

work.)

Denote the action of G on X, multiplicatively, as

usual:

(g,x) » gx

E A —

I gave a proof of this theorem in vol. III, p. 94 of the
Archiv for Math. og Naturv,, Christiania [Collected Papers,
vol. V, paper IV, p. 78 £ff.]
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Definition. A flow

t->¢t

in X Z8 said to arise from the action of G 1if there is

a curve

t =+ g(t)
in G such that:

¢;(x) = g(t)(x) (8.2.1)

g(0) = 1 (8.2.2)

Definition, The collection of infinitesimal trgneformations

asgsociated with the flows on X artging from the action of

G is called the Lie algebrg of veotor fields on X defined
by the transformation group struyoture o» the infinitecimal

versi L
ergion of the aetion of G en X, (Wg ehow below that

the set of these infinitesimal transformationg--when consid-

ered as vector fields on X --do indeed form a Lie aqlgebra.)

Let us now work thie out analytically. Given g ¢ G,

let g also demote the tnanafarmation
X +> gx |

associated with g.
If t > g(t) <s a ocurve in @, beginning at the -

identity element, them the infinitesimal trangformation

A e V(X) determined by the flow on X,
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x> gx)x ,

i8 given by the following formula:
AE) = 5 R 4ag (8.2.3)

Let G denote the set of vector fields on X defineﬁ?

in this way.

Theorem 8.8,1. G forme a real vector subspace of v{x).

Proof. Let t > g(t), g;(t) be two curves in G
satisfying 8.2.8. Let A,B e V(X) be the corresponding

infinitesimal transformation. Then,

AeB)(5) = B ((a(2)gy (8I%(6)]pug -
A® = & (™|,

These formulas exhibit A+B and -~A as infinitesimal trane 4
formationa associated with flows.

To finteh the proof that G is a real vector subspace }
of V(X), tet ae€ R, Let t > g(t) be a curve in G, and?
let A e V(X) be the corresponding infinitesimal transforma

tion. Then,

g(e)*(£f) = £ + tA(f)

Hence,
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glat)*(f) =~ £+ (at)A(f)‘
= £+ t(ah)(f)

Then, aA <8 the infinitesimal trans formation defined by
the flow associated with the curve t + g(at). This proves

that sealar multiples of elemente of G again lie in G.

Suppose that g e G, and that A e G CV(X) s an
infinitesimal transformation of G. Let
8a(A)

be the vector field on X defined as follows.

ge(A)(£) = g leqacgr(e)) (8.2.4)

for £ & F(X)
In words, ge4(A) <8 the vegtor field which resultas From
transforming A via the trangformation on X defined by g.
Theorem 8.3.2. If A€ G, ge G, then

84(A) € G . (8.3.5)

Broof. Let t + g(t) be a oyrve on G, g(o) = 1,
such that the corregponding flow hae A ae infinitesimal

genergtor, Set: D

g,(t) = gg(t)g}

t > gy(t) e again a curve in G, with gl(O) = 1. Let

ue compute ite infinitesimal traneformation; denoted by B.
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i
(a4

(gg(t)g Hy*(f)

B(f) t=0

mlm
(24

(g'l*g(t)*g*(f)lt.o
= g-l*Ag*(f)

s ysing 8.2.4, ga(A)(E)

This proves 8.2.5.

Theorem 8.2.3. G 18 a finite dimensional subspace of

V(X). Its dimension is no greater than the dimension of G. |

Proof. Let
61
denote the tangent space to G at the identity element.
Ite dimension 18, of course, equal to the dimension of ‘6.
Let t - g(t) be a curve in G such that g(0) = 1.
Let A € G be the corresponding infinitesimal transforma-

tion. Let

v € G1

be the tahgent vector to t » g(t) at t = 0.
For fized Xx € X, consider the map ¢(x): G =+ X

defined as follows:

¢(x)(g) = s8x
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We see from its defimitiom that:
P(x)a(v) = A(x) € X, (8.2.8)

In particular, the infinitesimal transformation A is
uniquely determined by V. There is then a map--essentially

defined by formula §.2,8--0f

1> 8

It ts readily geen that this map is linegr and onto. Since

G1 is finite dimensional, so is G.

Theorem 8.2.4. G is a Lie subalgebra of V(X), iZ.e., if

A,B € G, 8o does

[A,B] € G .

Proof. Let t =+ g(t), gl(t) be two ourves on G,
whose corresponding infiniteaimgl trans formations are
A and B e 6 Ccv(x).

By Theorem 8.3.3,
gl (S)Q(A) 5_ 9
for all s.

Set:

d
C = T &l (8.2.7)

Since G i8 a finite dimemeional vector space, it should

be clear that
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CedG

~

Let ug compute it eaxplieitly, using formula 8.2.4:

g1 ()e(A) () = gy(s) Lea(g (s)*(£))

hence:
cH) = 2o (g(5) teag, () ()|,
= -BA(f) + AB(f)
= [A,B](H)
Hence,
[A,B] = CeG

Thege results cover the main facts about the relation

between Lie transformation groups and Lie algebras of bector

fields. (They readily extend also to "local” Lie trans-
formation groupe.)

Here i8 a more intuitive way of determining the Lie
algebra G. Suppose that G and X are vector spaces.
Let "g" and "dg" denote elements of G. Then, the curve

t > (grtdgdg’l = g(t)
t8 a curve in G, whoee tangent vector at t = 0 is dg.
The vector field A 1is obtained as follows

(g+dg)g'1(X) = Xx + A(x) . (8.2.8)

Another way of writing this is:
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(g+dgg P (x) = x + A(x,dg) +-+- (8.2.9)
where °°' denotee terms of higher order in dg and
(x,dg) > A(x,dg) ¢ Xy
i8 a map
X x G, »~ T(X)

which is linear in G-

Example.
a) X = real vector space,
G = GL(X) = group of invertible linear maps: X + X.

Since X > gx 18 linear in X, 8.2.9 can be pvewritten as:

Cagele) = A(x,dg) . (8.2.10)

b) X = real veector space,
G = group of affine automorphisms of X.
Thus, @ g € G Z8 a map of the following form:

g(x) = a(x) +vy
with: a € GL(X), y e X .

Then,

g1 = o lxey)
Set:

dg(x) —= da(x) + dy
Then, \
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dg(a L x-y)

dgg " (x)

da(a t(x-y)) + dy

(doa 1)) + dy - (daa"hy () (8.2.14]
Here is another less "symbolie" way of interpreting
formula 8.2.{1. Let:
/ L(X) = space of linear maps: X > X.
7o each B e L(X), y e X, define a map
A(B,y): X + X
via the following formula:

A(B,y)(x) = B(x) +vy

Interpret A(B,y) as an element of V(X) (identifying V(

with the space of maps X + X). Then, as (B,y) wvaries

over L(X) x X, the A(B,y) vary over a Lie algebra of

vector fields on X, which is the infinitesimal version

of the action of the affine group.

Chapter 9

A GROUP IS DETERMINED BY ITS
INFINITESIMAL TRANSFORMATIONS

In this section it is shown that r independent

infinitesimal transformations Al,...,Ar can belong to at

most one r-term group

ii = £ (x00X80,.00,8))

9.1  ONE PARAMETER GROUPS

I show first that if an infinitesimal transformation

Gxi = Xi(xl,...fxn)dt

of an arbitrary group is known, one can always derive from
it a l-parametei family of transformations of tﬁis group.
We have previously found the An relations
Xy (£y5000£ )6t = %;i—idak = af,
in which the da, were independent of the index i and

satisfy a certain simultaneous system
dak = lllk(al,'..,ar)tst
Let

- (0) (0) ,(0)
Wk(fl,...,fn,t) Wk(f1 IRPENT SR )

be the integral equations of the simultaneous system

dfi = xi(fl,...,fn)st, and 1let

201
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Oy (ay,

be the integral equations of the system dak = wk(a TEEFL

The initial values
by the equations
(0) _
fx

and I choose the aIE

fk(xl""

£(0)

fk(xl,...,

0)

...,ar,t)

DETERMINATION BY INF. TR.

- (0)
8y (a;

(0)
and a,

x
n*?1

can be assumed connectd

03

e e

© ,

a
*“r

,850))

so that the equations

)X ,a

hold. Then one finds the

Wk(fl,...

which have a solutio

£; (xq,

In this; t 1is an arbitrary quantity, while the

known functions of the definite quantities ap

parameter t.

n

e X_,d
2450

n

(0)
1 ’

n

,f ’t)

1’

cesap

0,

equations

= Wk(xl,

.,ar)

Lx,t(0)

Xk

®; (xq,

(0)

. ’xn’t’to)

Thus we have shown that the l-parameter family of

transformations

Xk

belong to the group.

@k(x

12"

-,Xn,t)
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9.2 UNIQUENESS OF THE INFINITESIMAL LIB ALGEBRA OF
VECTOR FIELDS

Let now A;,...,A  be r independent infinitesimal

transformations of a group, where

= —a—— LR I a
Ak xkl axl * * xkn 5xn

Then one finds «' finite transformations of this group

as follows.

One forms the general infinitesimal of the group

AlAl oot ArAr ,

and then integrates the simultaneous system
dx dx

1 . ... 2 n_____ . st ,
Zikkxkl z:Akxkn
considering the Ak's as constant., If

Wl(xl,...,xn,klt,...,krt),wz,...,W

afe independent solutions of this system, then one solves
the equations
Wi(xi,...,xﬂ,xlt,...,Art) = Wi(xl,...,x ’Al 0""’Art0)
for the x{; the transformations
' =
xg fi(x1

Sxp ) (t-tg), 2 (Eot))

determined by the preceding equations belong to the group

by previous results; moreover, they depend on the Tt
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Theorem 9.2,1. The infinitesimal transformations of an r-

parameters Al(t-to),...,kr(t-to); therefore if we show

that the number of these parameters cannot be decreased, term group cannot all belong to a different r-term Jreyp.

then they in fact provide all the transformations of the

group. 9.3 COMMENTS: THE EQUATIONS DEFINING A TRANSFORMATION
GROUP

The xi can be expanded in powers of (t-to):

xi = x; ¢ (t_to) EZAkai(x1""’xn) Foas Let G be g Lie group, X a manifold on which G

Hence if for each i there were a relation acte.: In the Comments to Chapter 8, I

ax! have shown how G acting on X determines a Lie glgebra
T vgOg(t-tg),eed (t8g)) —me——r =
q

_ of vector fieldes. I will now show how these vector fields
a(xq(t to))

determine the transformation group qetion, at least locally.

then, by expanding the left side in powers of (t-to) and
Suppose X 18 a vector space. The transformation

setting the coefficients of (t-to)0 equal to zero, one . . .
group action is determined by a map

would obtain a relation of the form

(0) GxX>X
z;wq -Xqi(xl,...,xn) = 0 ,

Write thie map as

0) . '
where the wq are constants and are independent of the (g,x) + £(g,x) = gx

index i. But then our infinitesimal transformations would §
Let G aet om G x X as follows:

*
not be independent, contrary to what has been assumed.

. . s e The naform o int b
Therefore, our power series determine ' distinct trans f f apo (g,x) ¥

. . e G <Ze
finite transformations, and so they are actually all the &o

gy (g,x) . (9.3.1)

m

(ggyt g0
transformations of the given group. Thus we obtain the 0 *%0

following fundamental theorem: Then,

-1 . -1
r—_— = =
In the text it has been tacitly assumed that not all the f(gq(g,x)) f(ggy »8p%) 88p &p*
quantities 1y, vanish under the substitution t = t,. If
this exceptioﬂal case does occur then the developmengs of
the text must be modified somewhat.

= gx

= f(g,x) . (9.3.2)
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Let us make these equatione more ézpliait, in terme

Identity 9.3.1 saye that:
Y Y Lo of loecal coordinates for G and X. (We choose coordinates
The X-valued funotion £: G x X »+.X 80 as to make contact with Lie's notation.) Choose indices

i8 invariant under the action of G (and the summation comvention) as follows:

on G x X. R s s ;
i<i,jgn = dimX

Let t =+ g(t) be a curve in G, with g(0) = 1. . N .
i u,v <m = dim G

A

Its action (via formula 9.3.1) on G x X determines a flow

i . u
e e . Let b'e b rd t X b 3
on G x X, which has an infinitesimal generator e %) e coordinates for . (a7) e coordinates

for G. Then set:
t > A; € V(GxX) .
} Av = oAl &, paud
Now, A} ecan be decomposed as a sum of vector fields 4 L " 2a”

i om G and X: Thus,
i ' , u 3

_. § Al = AL —
| Ay = AL* AL 4 (9.3.54 t 5.0
; AL € V(G), A, € V(X) A, = Al 2o
{ axl

N Remark. t + AL is the infinitesimal generator of the flow Remark. Al ie a left-invariant vector field on G. A,

'
t

g > gg(t)-1 on G is the infinitesimal generator associated with the action

. ' t A 18 the infinitesimal generator of the flow of G om X.

x + g(t)x Write the map

on X. f: G x X > X

Hence, the invariance of f wunder the action of G (which, recall, defines the group action of G on X) in

on G x X <implies it satisfies the following set of differ-'f terms of these functions as follows:
ential equations: f*(xi) - fi(x,a) . (9.3.5)

Ag(f) = A{(f) + At(f) = 0
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The functions on the right hand side of 9.3.5 then satisfy
(making 9.3.4 explicit) the follouwing system of differential

equations:

i : 1 i
Ala) 2L A ¥ - (9.3.6)
3a X ’ ‘s

Remark. The way Lie proves Theorem 8.2.4 i8 to show that

it 18 a consequence of the integrability conditions for

equations 9.3.6.

Now, the action of G on G x X which givee rise to
9.3.6 (and determines the functions ') is composed of two

separate actions, one on G itself via right translations,

the other the given action on X. Now, the firet action is
given as soon as G is given. Hence, Equations 9.3.6 imply
the uniqueness stated in Theorem 9.2.1. Here is a restate-

ment of this result in modern language.

Theorem 9.3.1. Suppose G <8 a connected Lie group, X
a manifold, and

f: 6 x X + X

f': 6 x X + X

two maps which define G as Lie transformation groups on
X.” et G and G' be the Lie algebra of vector fields on
X determined by the two actions.

Conclusion: If g = g', then f = f',
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dere is another geometric way of ;tating these tdeas.
Let G be a Lie transformation group on a manifold X.
Let M be.the subset of G x X x X oaonsisting of the points
(g,x,) € 6 x X x X
such that
y = §gx
(In worde, M <{s the graph of the map

(g,x) » gx GxX->X)

Then, M <is the mazimal orbit eubmanifold (see Chapter B)
of a vector field systems on G x X x X, This vector field
system is determined by the group structure onm G plus
the Lie algebra of vector fields.

To understand this result better, consider the special

case where:

G = the additive group of the real

numbers, demoted by R.
Denote an element of R by t. Let f
f: G x X » X

be a map determining a transformation group action.

For t e G, @set:

o, (x) = £(t,x) (9.3.7)
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For fized t, ¢, is a map: X + X, As t wvaries, it The orbit ocurve t -+ ’t(x) Of.the

determines a flow on X. Let group are the orbit ourves of the

t teld - A,
A, e V(X) vfc or field

: In terms of coordinates i Sy
be ite infinitesimal generator. ! (x7) for X, with:

i \
Now, the group property implies that: A = Al 3 , $
’ : axt ’ A
(9.3.8M .
¢t1+t2 ¢t1¢t2 this means that the solutione of the ordinary differential

for ty,ty € R. 4 flow satisfying this property is called equations

dxi

& = Ay

a one-parameter group of diffeomorphisms of X. Here is a

basic result, whose proof is left to the reader.
are the orbit curves of the group. Again, this comnection

Th 9.3.2. A flow t ~ 2] manifold X 1is a one- . )
eorem flo ¢y on ama b e between ordinary differential equations and groups is a L/’/

parameter group of diffeomorphisms of X if and only if basic feature of Lie's work

its infinitesimal generator t - At 18 independent of t.

Return to the general situation. Suppose that G 1is

Thus, the "infinitesimal generator" of a one-parameter } a Lie group, which acts on the manifold X. Let G be the

roup is a single vector field. There is then a mapping Lie algebra of vector fields on X, which are the infini-
tesimal transformations of the flows on L81

Infinitesimal generator: (one-parameter group on X). » ' d d ° X arising from
curves in G. Here is another basic res :
(vector fields on X) coutt

As a special case of Theorem 9.3.1, we see that the map is Theorem 9.3.3. Let t + A, " <t <= be a curve in G.

one-one. Then, there is a curve t » g(t), -« < t <w, in G, such

If t =+ ¢, is a one-parameter group of diffeomorphiamag that g(0) = 1, and A, ie the infinitesimal generator of

of X, with A e VX) its infinitesimal gemerator, A the flow in X determined by the curve t =+ g(t).
I
has the following geometric relation to the group.
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Proof. Let G act on G x X in the following way:

go(g:x) = (558,%) (9.3:b):

Remark. This is the product of the left-action of G on
iteself, and the trivial action of G on X.

Let 1
£f: G x X+ X (9.3.10}

be the map defining the action.of G on X, Z.e.,

f(g,x) = 8gx (9.3.11%

Then, 9.3.9 and §.3.11 imply that:
goflg,x) = g,(gx)

= using the transformation group
property,

(gg8)x = £(gy(g,x))
This means that:

f intertwines the action 9.3.9 of G
on G x X and the given action of G (9.3.12f

on X.

Let G' be the Lie algebra of vector fields on G x X S

determined by the action 8.3.9 of G onm G x X.

e
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Remark. G' consiste of the veotor fields on G x X which
are invariant under pight tranmslation by G, and do not
depend on the X-variables. In other words, they are invar-
iant under the action of the group of all diffeomorphisms

of X, and the right translation groups of G on itself.

Because of the intertwining property of £, i.e.,

9.3.12, we have:

£006) = G

s

Let t -+ A% be a curve in 9' 8uch that:
1 -
f*(At) At . (9.3.13)
Now, we muest show that there i8 a curve t > g(t)
in G, defined over - < t < », guch that:
g(0) = 1

A% is the infinitesimal gemerator of the
flow on G x X determined by g(t) and

the action §.3.9.

That such a curve exists locally in t should be clean--
as for any flow, it is just a matter of solving ordinary
differential equations. (In this case, in terms of local
coordinates (au) for  G.) What is remarkable in this
case i8 that the local solution, beginning at g = 1 for

t = 0, can be analytically continued over -» < t < o,
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I will not go into the full details of this proof--essential
it involves the faet that the vector fields Aé are inqgg;
iant under pright translation by G, acting on G x X.
That At is the infiniteaimal generator of the actio
of t + g(t) on X now follows readily from §.8.13. This

finishes the proof of Theorem 39.3.3.

An important special case of Theorem 9.3.3 ocecurs
when a single vector field A € G i chosen. The flow it

generates is then determined by a curve
t » g(t)

'

in G such that:
g(ty*t)) = g(t))e(t,)

for tl,t2 € R.

Sueh a curve in G 18 called a one-parameter subgroup of G
They play an important role in the modern and elassical

theory of Lie groups. Thus, we may say that:

If a Lie group acts on a manifold X,
the Lie algebra G of vector fields

on X it determines is precisely the
set of infinitesimal generators of on;~

parameter subgroups of G.
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This correspondence between one-parameter subgroups
and Lie algebras can be made more precise and "functegsal”.
In fact, if:

t > g (t),g,(t)

are two one-parameter subgroups of G, set:

gz(t) = lim [31(%) gz(%)]n

pres
g () = lim [31(1‘1@) gz(nﬁ) 31(;1'1@) gz(nﬁ)]nz

It can be proved that the formulae determine new one-
parameter subgroupe. They easbntidlly determine the Lie

algebra structure associated with G. If:

A e V(X) <s the infinitesimal generator of 8

B e V(X) is the infinitesimal gemerator of gjs
then:
‘ A+B ie the infinitesimal generator of 83-
[A,B] <s the infinitesimal generator of gy
'Here i8 another important property. Let t -+ At be
a curve in G C V(X).

The differential equations

N W)
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26 Chapter 10

TRANSFORMATION OF LINE-ELEMENTS
determining the orbit ourves of the flow generated by At

are called a Lie system associated with the action of G.,

(see TMvols, III and IX.) We see that they are determined
)

G which are given by solutions of

10.1 PROLONGATION TO THE CONTACT MANIFOLD

by curves t > g(t) in In turning now to the transformation groups of a 2-

differential equations involving the parameters of G.

dimensional manifold x,y, I interpret x and y as

global action of G on X, .
Furthen, as a consequence of the Cortesion coordinates or o plome.

they have solutions over the full interval -» < t < <.

I denote the infinitesimal point-transformation

§x = E(X.Y)Gt > 5)’ = ﬂ(xx)')‘st

by the symbol

or
A = gp +tnq ,

where 3/3x = p, 3/3y = q, and I consider this transforma-
tion as an operation taking each point (x,y) of the plane
to the neighboring position (x+Eét, y+nét). At the same
time the line elements of the plane, whose coordinates are
x,y and dy:dx = y' assume certain neighboring positions

for whose determination it suffices to compute §&y'. One

dx %éﬂzl - dy g%ﬂgl

dx2

has:

£k

51

217
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§x
ax-d 8L - ay-d 8§ axan - ayae
) dx2 dx
3 an _ 3EY _ L2 2
= 3% * Y'(‘% ax) y 5%

If we want to make it explicit that the transformation

A = gp + nq carries not only the point (x,y) but also

(x,y,y")

the line element of the plane into a new positionﬁ\

then we denote our transformation by the symbol

) an an . 3E\ . 42 23E]2
B = & %? * N sy * [5? * y'( y 3X Y 3y |9y "

COMMENTS ON SECTION 10.1

The prolongation proceés is basic to Lie's work.

I have deseribed it, in general, in GPS, in terms of

noontact manifolds™. I will now briefly desecribe what is

involved, in the specific situation dealt with here by Lte.

Let X be a manifold. Recall that T(X) denotes

d _
the tangent vector bundel, while T (X) denotes the cotan-

gent vector bundle. Let

prd (x)
denote the bundle over X, whose fiber above a point

x € X 18 the projective space associated with the vector

space
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d
Xx ,

i.e., the projective space of the space of l-covectors.

Remark. Tﬁe aymbol "PTd(X)" i8 read as follows: The

projective cotangent bundle of X.

Here is another useful way of looking at this. Let
R - (0)

denote the multipliecative group of non-zero real numbers.

Let
d
T (X) - (0)
denote the bundle of non-zero cotangent vectors. Let

R - (0) act on TY(X) - (0) by dilitation, i.e.,

The transform of © € xi by A e R - (0)

is the scalar product A6.
PTd(X) ie then the orbit space of the action of R - (0)
on TN - (0).
" Geometrically, PTS(X) may be identified with the

space of first order contact elements of hypersurfaces of

X. In GPS this epace was denoted by
clan-ny
n = dim X

where

Here is how this association is set up. Let Y be

an (n-1)-dimensional mapping, and let
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6: Y + X g(v) = g.(v)

be a submanifold mapping. For y € Y, for veTX .

¢*(Yy) Let it act on Td(X) as follows:

is an (n-1)-dimensional linear subspace of X¢(y)- This g(e) = (g'l)*(e) (10.2)

. Y . . e o X .
determines a one dzmenazozal linear subspac f 6 () for 6 ¢ Td(x)
namely, the set of 6 ¢ X¢(y) such that
This action of G passes to the quotient to act on
9(¢,(Yy)) = 0 a

PT (X)
Such a one-dimensional linear subspace defines a point of

PTd(X) which ve demote by It i8 this action (and its "infinitesimal” equivalent in
R ich we

terms of vector fields) with which Lie is concerned in

3 (y) . . . .
this section. It is one of the typical examples of "pro-

As y varies, we obtain a map longation” of group actions, which again is a key feature

3¢: Y » PTO(X) in Lie's work.

T i G = dif ; ; :
called the prolongation of ¢. It also plays a key role he action of diff (X) <is also compatible with
in Lie's work. It ie a "lifting” of ¢, <in the sense that the diagram 10.1. In words, if

the following diagram of maps is commutative: $: Y » X

i8 a submanifold map, if

g¢

i its transform by g € G, then

prd(x) ]
Y (10.1) §
NX B 3(gd) = g3 . (10.3)

This indicates the "naturality" or "functoriality” of

Now, let G be a group of diffeomorphisms of X.
° ¢ g pof 77 P the prolongation process. (I believe a case could be made

Eaeh g € G aects on T(X):
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that Lie was one of the first mathematicians to appreciate

the meaning of "functorial” arguments.)

At the Lie algebra level, the prolongation process
leads to a map
vy - veerdoo) (10.4)

which is a linear, first order differential operator, in

the general sense deseribed in Chapter I of GPS.

Here is the simplest geometric definition of 10.38.
Let t =+ g(t) be a one-parameter group of diffeomorphisms
of X. (The argument can be modified to cover the case of
a one-parameter loecal group.) Let A e V(X) be ite infini-
tesimal genmerator. Let t + g(t) aect on PTd(X) via
prolongation. Let B be the infinitesimal generator of
this group. Then

A -+ B

18 the prolongation map 10.3.

B can also be defined, as emplaihed in GPS, in terms

of the contact differential form structure on PTd(X),

defined by a single 1-form 8 on PTd(X). Let

m: pTdx) - X
be the projection map. Then, B <is characterized by the
following two conditions.

ne(B) = A (10.5)
B(6) = £6, for some £ e F(PTY(X))
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B is an infinitesimal automorphism of the ocontact structure.
To specialise to the case considered by Lie in this
section, let:

x = r®

Denote Cartesian coordinates X, in the usual analytie-

geomeiry way, by

(x,y)
Let R,9 denote the linear coordinates on Td(RZ) such
that:

N 3

x(ax) 1= 9(5;)

Ay . o2

2az) = 0 = 3(%)
Then,

(x,y,%,9)
forms a coordinate system for Td(M). Set:
y' o= %

(Formally, § = dy/dt, & = dx/dt, hence

V. @
y )
Y' passes to the quotient, to define a funetion on PTd(X).

(x,y,¥")

thus forms a coordinate system for PTd(X).
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If
b X » (x,y(x))

is a one-dimensional submanifold of X, then
3¢ <8 the submanifold:

X + (x,y(x), %§ = Y'(x))

d
The contaet 1-form © on PT" (X)

coordinates by:

]

"

=¥
<
+
<

=¥
»

Let

A= elen i

We can compute its prolongation B using 10.5 and 10.6.

10.5 requires that:

A(x) = B(x) = &
A(y) = B(y) = n
Hence,
B(6) = dn - B(y')dx - y'dg
- Wax + Wy - B(y"dx - ?'(ﬁ dx +
s 3% 3y ax
= f(dy-y'dx)

Comparing coefficients, we have:

i8 given in these
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= 3N . e 38
£ ay v ay

Bly") = (31 -y ay) y'oe 30 g0 28

This is precisely the formula for B given in the text.

The notation

) 3
P = -s-i- ’ q = -a—y-

i8 standard in the 19-th century differential geometry

literature. One can, in fact, interpret P and q as

unerions on e cotrangen un e ] . e contac orm
., the cot ¢t bundle to R:. T "

is then:

6 = pdx + qdy .

10.2 PRESERVATION OF JACOBI BRACKETS UNDER PROLONGATION

Let Al,...,Ar be r independent infinitesimal trans-

formations (of a group), where
Aj = &P+ nyq (i=1,...,7)

with the relations
Ajohy - ApeA, = }; Cixshs (10.2.1)

I then put
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an, an. 3. L1 3
= 9 3 1 f i ciy . .2 _"i)8 Ek 3. on. 9E. \ 3¢
By = fisx™ Moy’ [ax vy (ay T ) Y 3y ]'37" N = -Ai(-s;—) . Ak(-r-yl) - (B"“yl - rxl)b“‘yk
or
| > (o - ok ) oot
By = &P *mati; T ay ax | 3y

and then claim that the B, satisfy the analogous relations’ By 10.2.1 one has

- = F— +t N, g - Evendie = =
B;o B, - B oB, § CiksBs %1 3x N3 oy fk 3% "k 3y zs:ciksns ’

or, equivalently, (10.2.2)

]

B, (g,) - B (z)) é;ciksgs and therefore, by differentiating with respect to x:

3 . : . :
By direct computation one finds A.( nk) _ (anl) . &4 a"'k . 3"1 ank - 3y ani R ank ar‘i
il9x X ox 98X X 3y X  ax x 3y

Bl(Ck) - Bk(Ci) = L + M}" + N}" ’

ans

where = Y C. w2
3 iks 9x 4

Bnk ani Bnl (ank ng)
L= Ai(ax ) . Ak(§§—> T Ax y  3x or
an
s
any (ani BEk) L= gciks x
T 3x \3y T x ’
Similarly, if the relation
onp gy an. 3t an; 3gy ’
il\a ax k\9d 9x 9x 9
y Yy y £ aEk . agk -k BEi - BEi - Z c £
i 9x idy k 3x k 3y iks”s
Bgi 3nk s
iy W™ (10.2.3)

is differentiated with respect to y, one gets
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355
No= - Xlis

Finally, differentiating the Bquations 10.2.2 and 10.2.3

with respect to y and x -respectively, and then subtract-

ing these relations, one finds
an 13
s _ ]
Moo= %ciks <5y X )
Therefore,
t N'Z = ZC ——
Lo+ Myt + Ny . Siks | 3%
or
Bigp - B8y = é; Ciks®s

as claimed.

COMMENTS ON SECTION 10.2

In terms of the notation introdueed in my comments
to Section 10.1, this section proves that the prolongation
differential operator

vy » verto)

ie a Lie algebra homomorphism of vector fields, i.e.,

preserves Jacobi brackets. This property can, in fact,

be deduced from the group-theoretiec meaning of prolongation,
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and without explicit calculation, but it is typical of Lie's

work that qualitative arguments (which one can guess that
Lie understood perfectly well) are replaced by detailed

(and tedioﬁa) caloulations. Presumably, this was because
mathematics in the 19-th ceentury had to gppear computational

in order to be acceptable. It is amazing to note how the

sttuation is now reversed!

10.3 LINEARIZATION AT A FIXED POINT

Let us now suppose that both the quantities gi,ni
vanish for x = Xg» Y = Yo geometrically, this means that
all the infinitesimal transformations (of the given group)
leave the point (xo,yo) fixed. Then the line elements
through this point are transformed according to the infini-

tesimal transformation

oan. (X,,¥.) ans 9. 3.
syt - [__ojw_ (o2 - L) g2 51]“

axo ayo axo 5y0
= (0 s (10.3.1)
which is a linear transformation of the quantity y'. And

since the equation

Bily = Byd; = %; Ciks®s

becomes
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There i8 aleo a dual action

(0) (0)
0 %k 0y %5 (0) .
*

Cl ayl = ck a)" = zs: Cikscs g+ g-

yd
it follows that the linear infini- of G on X,: called the eo-linearization of G qt the

when x = xO’ Yy = YO’

tesimal transformations 10.3.1 always form a group. This fized point. Thie gTOUP Passss to the quotient to get o
proves the following general theorem: - de
X

Theorem 10.3.1. If the infinitesimal transformations of a It is thie action (in the case dim X = 2) that Lie degeribes

group leave fixed a point of the plane, then they act as a in Theorem 10.3.1,

group of linear transformations on the l-parameter family Ae usual, there is also an infinitesimal version of

of line-elements through that point. these remarks. Let G be a Lie algebra of veetor field
ad 8

on X. G has A X 2
G @ fived point at Xq if the following

COMMENTS ON SECTION 10.3 condition is satisfied:

G(x = .
Here is the general background. Let G be a group &( 0) o . (10.3.2)

of diffeomorphisms of a manifold X. Let x € X be a With 10.3,8 satisfied, we can define a linear repres-

fized point of X, +i.e., entation

gx = X p: G ~» L(X))

for all g e G by the following formula:

oo p(A)(B(xO))- = [A,B](xo) (10.3.3)°

for BeV(X), Ac G .

gs maps Xx hd Xx

As g wvaries over G, this defines a group of linear maps x .
— (s = .
. tnee  Alxg) = 0, the right hand side of 10.3.3 oniy

on the tangent space X_, called the linearization of G
b depends on the valye of B at x

0’

at_a fized point. :
There i8 a duql aotion of G on Xd :
~ XA

d .
Ay = -peayd (10.3

e




232 LINE-ELEMENTS
This action, when tpanslated into a vector field

action on Xd , tis then projected via the map
x

¥ - - pxd

X0 0

into a vector field action on the projective space. Again,

this is the aetion veferred to in Theorem 10.3.1.

10.4 LINEAR STABILITY SUBGROUP

This theorem can be extended to arbitrary transforma-

tion groups of the plane as follows.

Let us suppose that the infinitesimal transformations

Apee

fixed'the point (xo,yo). Then in the expressions

A of an arbitrary r-term group do not all leave
r
= py A
MA e MAL P& Mk qu K"k

the constants xk can always be chosen so that E:xkgk and

2 An, become zero when x = X;, Y = Yg. Then one finds

that the group always contains 7r-2 (and in special circum- i}

stances may contain r-1) [independent] infinitesimal trans- '2

formations Bl"“’Bp fixing the point (xo,yo). Now the
X being infinitesimal transformations of the group,
satisfy relations of the form

ByoBy ~ BpeBy = zs:diksAs
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And since the left, and therefore also the side, of this
equation vanishes when x = Xg» ¥ = ygs it can be put
in the form

BjoBy - By By = zs:miksBs

But now we can conclude, exactly as in the preceding section
(10.3), that the infinitesimal transformations Bk trans-
form the line-elements through the fixed point according to

a linear group. This gives the following theorem:

Theorem 10.4.1. Those infinitesimal transformations of a

group which leave fixed a point of the plane, transform the

line-elements through this point according to a linear group.

In this situation there are .four essentially different
cases, according as the linear group depends on 3, 2, 1 or
0 parameters. And correspondingly, there are four distinct
types of transformation groups of a plane. We shall return

to this principle of classification.

COMMENTS ON SECTION 10.4

Let G be a Lie algebra of vector fields on the

manifold X, and let Xq be a point of X. Set:

H = {AeG: A(xqy) = 0}
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Now, if A,B wvanish at Xqs t.e., belong to H, 8o does

their bracket and sum, t.e.,
H Zs a Lie subalgebra of §.
The geometric property of § is8 that:

Each one-parameter group generated

by elements of § leaves X, fized.

§ i8 called the stability subalgebra at Xqe (It 18 also

eqlled the isotropy subalgebra.) Hence, § acts on the

tangent and cotangent veectors in a way described in the

previous eection.

Chapter 11

INFINITESIMAL TRANSFORMATIONS
OF VARIOUS ORDERS

11.1 ORDER OF AN INFINITESIMAL TRANSFORMATION AT A POINT

If 6x = g£(x,y)8t, 6y = n(x,y)8t or A = Ep + nq
is the symbol of an infinitesimal fransformation, then £
and n can always be expanded in powers of X-x5 and

Y-Yo*
g = .ao +oay(x-xp) + by (y-yg) + az(x~x0)2 + b,y (x-x) (y-¥,)

2
+ Cz(Y'Yo) ko

noT oag tag(xexg) + By (y-yg) ¢ aZ(X-xo)z + By (x-xg) (y-y,)
+ YZ(Y‘YO)Z Fev

1f ag # 0 or ag # 0, we say that our infinitesimal trans-
fqrmation is of order zero at the point (xo,yo). On the
other hand, if both a, = 0 and ap = 0 while at least one
of al’bl’al’sl’ # 0, we say that the transformation is of
order one.

More generally, we say that an infinitesimal trans-
formation &p + nq is of order s at (xo,yo) if, in the
expansion of & and n in powers of x-Xg and n-ng,
all the terms of order 0,1,...,s-1 are absent, while the

term of order s is actually present.

235
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In investigations of infinitesimal transformations 1t

very often suffices to consider only the terms of lowest

i .  When
order in the power series expansions of g and n

in the following I speak for example of an infinitesimal

transformation

(x-xg)a *eo0 s

nitesimal transformation E&p + n

I understand by this an infi

i - d
of which & is of order 2 2 with respect to X-X, 2an

y-y while n contains a term of first order, namely
Yo

X'XO.

COMMENTS ON SECTION 11.1

Let G be a Lie algebra of vector fields on a mant=

fold X, and let X be a point of X. In Chapter C I

have explained how X determines a descending filtration
a

¢ - ¢ = ¢todion

f G G1 congists of those vector fields which vanish
0 ~. ~ ) Z

t i.e which vanish to "first order or higher". G
a Xos €y

onsists of those which vanish to second or higher order.

]

According to Lie's definition, an AeG 280 order s

at x tf:

s+1
Ae G but A£G

14
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The properties of thease filtrations are fundamental
to the techniques of this paper. (Indeed, an algebraist
might be able to recast all of the results of this paper

into a purely algebraic-filtered Lie algebra context.)

11.2 GEOMETRIC PROPERTIES

Under the transformation £p + nq the coordinates
Xgs¥g of an arbitrary point acquire the increments
£(xgs¥g) 8t and n(x;),yy)ét, where &(xq,¥g), n(x;,Y)
are the terms of order zero in the expansion of & and n

in powers of x-x, and y-yoj

Hence if a given infinitesimal transformation is of

order > 1 at a point (x;,¥y),

the position of this point.

then it doesn't change

If we want to investigate how such a transformation

transforms the line-elements through (xo,yo), we use the

formula 10.3.1:

Gy' = M + y'(m - ag0) _ Y'Z 3&0 st
Xy 3y, 9Xg ¥,

which now takes the form

sy' = [ag *+ (8;-a,)y" - byy'lst
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If the transformation is of order > 2, then obviously all

the line-elements through (xo,yo) retain their position.

The same happens if the transformation is of order one under

the assumption that it has the form

(x-xg)p *+ (y-yglq +- -
On the other hand, if Bl # a, then the line-elements
through (xo,yo) are transformed linearly. In this case,
there is always at least one, and in general two, elements

satisfying the equation

2
0 = u]. * (81'31))" - bly'

and which therefore retain their position unchanged.

11.3 DIMENSION OF INFINITESIMAL TRANSFORMATIONS OF
VARIOUS ORDERS

If Al""’Ar are r independent infinitesimal

transformations of an r-term group, whose general infini-
tesimal transformation is therefore of the form

xlAl LR XrAr’ then, if r > 2, it is always possible
to choose such values for the xk that z:xkAk is of

order one at the point (xo,yo). Thus one can always find

r-2 transformations of order one. If r > 6, then there

are values of the A, for which I M\ A, is of order 2 at

(xo,yo), and so there are r-6 transformations of order 2.
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Similarly, there are r-12 infinitesimal transformations

of order 3, and so on.

We sometimes say that p first order transformations

Bl""’Bp are independent first order transformations if

no linear combination of them is of order > 2

Hence, a group contains at most four independent

[infinitesimal] first order transformations.

COMMENTS ON SECTION 11.3
Let G be a Lie algebra of vector fields on aq mani-
fold X. Let x be q point of X, Let:

T
G" = set of vector fields in G which
vanish to order T or gregter at Xx.
1
Then, G i8 the stability subalgebra at x. Let
. |
p: G+ L(Xx)
be the linearization representation of Gl. (See comments
to Section 0.3.) It is readily seen that:
p(§2) = 0
Now,
1 2 -
16¢t,6?) ¢ 91+2 1 GZ

Hence:

§2 i8 a Lie ideal of Gl.
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L A represen-
o then passes to the quotient to define a linear D

1,.2
tation of the Lie algebra G /G".

A Y e

i8 one-one.

proof. Let A€ 91. To gay that
p(A) = 0
is to say that:
[A,B](x) = O
for all B e V(X)

ns that A vanishes

since A(x) = 0, this condition med .
A G

to the -second (or higher) order at X, i.e., A€ G,

. 1,.2 .
hence the image of A in G /6" is zero
Theorem 10.3.2.

.3.1)
dim (61764 < nf (10.3

with: n = dim X.
. X R
proof. L(Xx)’ the space of linear map8 Xx > Xy
1 which
is identified with the space of nxn real matricés, te

, 2
i8 of course of dimension n .

Of eourse, if
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which is the case being considered, 10.3.1 specializes to

Lie's statement.

11.4 PROPERTIES OF TERMS OF VARIOUS ORDER

It is easy to show that the independent first order
transformations of a group must have certain definite forms
according as the number of them is 4, 3, 2, 1, or 0.

It is at first thinkable that the group may contain
four independent first order transformations. Then obviously

these can be put in the form
(x_xo)p AN (y-yo)p LRI (x-xo)q LEREIN (y-yo)q PP

If the group has only three independent first order
transformations, there are two essentially different cases

according as there is a transformation of the form
(x-xo)p + (y-yo)q I = U #eee

or not. In the latter case the three infinitesimal trans-

formations are of the form:
(x_xo)q + qU +¢- = B 4.
(x-xg)p - (y-ygla + BU #:-» = By +...

(y-yo)p + YU 4.+ = BS O
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But one has

Bye By - BgoBy = (x-x)p - (¥y-ygla

1 3 3

and since B, o B; - By B; must be the symbol of an infini-

tesimal transformation of the group (Theorem 8.2.1), we

see that we must have B8 = 0. Similarly, it follows from

considering B, ¢ B, - B2° By and B3° B2 - By° By that

a=0 and y = 0. Therefore:

Theorem 11.4.1. If a group contains three independent

[infinitesimal] first order transformations, of which none

has the form (x—xo)p + (y-yo)q +..., then they are of
the form

(x=xg)q +++-, (x-X5)p - (y-ygla *--+, (y-yglp * -*
Let us now suppose that the group contains three

independent first order transformations, one of which is of

the form
U = (X'xo)P + (y_)’o)q *eve

Then the other two can be put in the form

ay(x-xp)a *+ B3 [(x-xg)p - (¥-yplal + vy (y-yylp +-

ap(x-xg)q + B, [(x-xg)p - (Y-yglal + v(y-yglp ++°°
where the first order expressions C1 and C2

by a relation of the form

L}
(@]
+

u
(@]
+

are connected
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C1° C2 - C2° C1 = A1'C1 + AZ'C2
In this, the ¢
, onstants A, and A, do not both vanish,

since otherwise the three expressions
a. B, - -
1P2 3281 s 8172 BZY]. 2 Ylaz ‘Yzal

would be zero, which is excluded b} the independence of

c
1 and CZ' Therefore it is no Testriction to choose the

infinitesimal transf v
; ormations C1 + , C2 *+¢+ 50 that
1" 1,.A2 = 0. This gives a number of relations among the
six const
stants 1’81’71'°2’82'72 by means of which they
can be determined in the most general way. But I do not

want to go any further into this.

COMMENTS

At this point Lie began the details of the classifica-
tion of the Lie algebras of vector fields that can act on
2-dimensional manifolds. My plan is not to comment immedi-
ately on these details,_but to go over the whole proof at
the end of the paper. Of course, if there is q general fact
involved, and if I believe it will help the reader, I will

comment directly on it.



Chapter 12

GROUPS FIXING A FAMILY OF CURVES
¢(x,y) = const.

12.1 CONDITIONS THAT A FAMILY OF CURVES ADMIT AN
INFINITESIMAL TRANSFORMATIONS

The infinitesimal transformation A = £p + nq in
general takes a given family of curves ¢(x,y) = a = const.

into a new family
3 3
s+ (oo oo - a

For the new family is to be identical with the given one,

a necessary and sufficient condition is that

] 3
A@) = gte+gta

be a function of ¢. Now assume that ¢ is a solution of

the differential equation
B(f) = Xg-+Y =z = 0
Therefore if one replaces f by ¢ in the identity
af

AB(H)) - B(A(E)) = (AX-BE) 35 + (AY-Bn) 3%

it follows from our assumption that both B(¢) and B(A(¢))

are zero:

3 3
0 = (AX-BE) 3% + (AY-Bn) §$

245
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Therefore ¢ is a solution of both the equations

3f af

(AX-BE) 3; + (AY'B’H) _3)' 0 ’
of of

Xzt Y5 = 0

so that these equations are the same.

Therefore, a necessary and sufficient condition for

the family of curves ¢(x,y) = a determined by the equa-

tion X(3f/9x) + Y(3f/3y) = 0 to admit the infinitesimal

transformation A = £(3/3x) + n(3/3y) is_ that the equation

AX-BE _ AY-Bn
% = T (12.1.1)

hold identically.

Finally, we assume that the family of curves ¢(x,y) =

is determined by a differential equation in implicit form

p(x,y,y') = 0
To decide whether the family ¢ = a admits the infinitesi-

mal transformation &p + nq = A, we put (§10)
=2 R -k} an _3g\. 2233
B "EH‘”ay"[ax" '(ay ax) v ’57]
and require that B(y) = 0 if and only if ¢ = 0, 1i.e.,
that the equation which results by eliminating y' from the
equations ¥ = 0 and B(y) = 0 be an identity. This
condition is equivalent to: the differential equation Y =

admits the infinitesimal transformation A. Obviously,
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when ¥ is of the form Xy' - Y this condition reduces

to the equation (12.1.1).

COMMENTS ON SECTION 12.1
Here are some general facts. Let X be a manifold,
A a vector field, ¢ ¢ F(X) a function, such that:

d¢ # 0 at each point of X.

The subsets

¢ = constant

are then codimension one submanifolds, and determine a

hypersurface foliation of X.

The condition that A leave invariant this hyper-

surface foliation, in the sense that the group generated

by A map a leaf into another leaf, is that:
A(d) <8 a function of ¢. (12.1.1)
Let:

\'

{B e V(X): B(¢) = 0}

V {8 the vector field system determining (and determined

by) the foliation. (In case dim X = 2, there is but one
independent vector field in V; the leaves are curves.)

12.1.1 is then equivalent to the following condition

[A,B] €V for all BeV . (12.1.2)
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In case

dim X = 2 ,

(which is the case considered by Liel, 12.1.2 means that

[A,B] = f£B (12.1.3)
for some funetion f € F(X)
Now, let

p1d (%)

be the contact manifold defined by X. Let

v e FPTIX))

be a function on this manifold. ¥ defines a family of

submanifolds. Let Y be a manifold of dimenation n-1,

and let
a: Y+ X

be a submanifold map. consider o as a solution of the

following first order, non-linear differential equations:

(da)*(y) = O (12.1.4)

d
If A 1is a vector field on X, let B e V(PT (X))
be the prolongation to the contaet manifold. Then,

B(y) = fv ., (12.1.5)

for some f e F(PTd(X)), is the condition that A leave

invariant the family of gubmanifolds of X determined by

the differential equation 12.1.4.
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12,2 FAMILIES OF CURVES INVARIANT UNDEﬁ 2-TERM GROUPS

There are infinitely many families of curves ¢ = a
which admit a given infinitesimal transformation. They
are found by choosing the function Q arbitrarily in the

equation

Eg Ny = AW

and then setting an arbitrary solution ¢ of this equation
equal to the constant a.

There are infinitely many invariant families of curves

for any 2-term group AI’AZ’ where

Aje A2 - Ay Ay - CiA CA, - (12.2.1)
We shall give only one. . -
Let us first assume that < and ¢, are not both
zero. If ¢ is any solution of Al(f) = (0, then, by

(12.2.1),
AjA,)) = 0,

which means, as before,.that the family of curves ¢ = a

admits both the infinitesimal transformations.

12.3 FAMILIES OF CURVES INVARIANT UNDER 3-TERM GROUPS

A _3-term group Al’AZ’AS always has at least one,

and in general only one, invariant family of curves, as will

now be shown.
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I put Ai - Eip + n;q (i=1,2,3) and for the deter-
minant
an an 3t 13
1 1 1 2 1
§ mw Yy Tw Y W
an an 3E 9E
2 2 2 _ .2 %52
S S AR AN T IR A
3 33x TV 3y y 7 3y

and claim that A = 0 is a differential equation invariant
under the group, assuming that it does not hold for all

values x,y,y' identically.

I put
E;.a__+ 3 +E.n_i_+ VEP_i_-E.E_i_- 'Zﬁa_=
i3x " Misy tix T Y \%y X 3y | ay?

by the developments of the end of the preceding section
(12.2), my assertion is equivalent to saying that the three
equations Bq(A) = 0 hold identically if A = 0. For

example, set ¢q = 2 and

then

IMPRIMITIVE GROUPS

B2£1 Bz"l
BZA = 52 n,
53 ns

Now, by (§ 10.2) there are
B8y = B1%

= B

Bamy 12
Bat1 = Bi%
Bafs = B5%,
Bais = Bsﬁz

B2tz = B35

251

;3 53 n3 CS
3 ny 1

+ €y P Ty

Bats  Byng  Byig

relations of the form

LSRR LV B L S

tegng T Gang * SNz s
MESTI TR LT IALF 1S
+ d151 + dzgz + dsgs ,
+dyng * dyny * dgng
*dygy * 4ty *dszy

where ¢ and d are constants.

Using these values, one has
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252
BjE, Byn, B%, 81 ! 1
+ £ n 4
BZ(A) = (C1+d3)A + EZ N,y %) 2 2 2
T Astz Agmp Agt,
£ ny 1 31 n 1 To determine the sum of the three last determinants, we
expand each determinant along the rows (AiEZ,Ainz,Aicz),
.n 3
+ |ByEy By Byip) o+ %2 z 2 and then consider separately the coefficients of
H‘ s —.3)' ’ H‘ ’ a'_y ’ Tx"" » 5;," ’
Now both agz/ax and anzlay have A  as coefficient, while
B, ALEy Binz = A, the coefficients of agz/ay, anzlax, 8;2/3x, a;;/ay all
vanish. Therefore
on (23 3,
2 ._2 - 2yt —= ) C. » ‘
B. ¢ Az, (‘—3 T Yy )i an 13
i=2 1 Y = —2 . v 2
BZ(A) (cl + d3 + 2 3y 2y 3y A,
so that
S0 that BZ(A) = 0 if and only if A = 0,
an, 2, 3L, This proves that the differential equation A = 0
—_—f . £ - 2y = A .
B,(8) = (cq*dg)d + 3y 3% 7 %y admits the infinitesimal transformation B), and in a
A1€2 A1“z A1C2 51 ny 9 similar way one sees that it also admits the transformations
. B and B,.
z + 1AE, Agny Ao ! ’
+ E2 N2 2 272 Let us now assume that 4 does not vanish for all
' .
£ ng z5 53 ng tg values of x,y,y'. Then there is one, or perhaps two,

equations of the form
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3 a_ 2| = = B
z ¢k(x’y’y')[5k P Tk sy Tk By'] 0 Lty

But it is easy to see that two such equations cannot

. By
hold. Otherwise, elimination of B3 would give an equation

9181 + ¢28, = 0
equivalent to the three equations

¢151 + ¢252 = 0, ¢1n1 + ¢2n2 = 0,

and since 51’”1’ as well as Ez,nz, do not both vanish
and depend only on x and vy, we can assume that ¢1 and
¢ depend only on x and Y.

Therefore, it is no essential restriction to set ¢2

equal to -1. But then,

£, = olxy)gy oy = $(x,¥Iny >
anz ' an agz a2 agz - anl .y anl i 351
x Y 3y T Y %y 3x 3y 3x
S22
Y 5y ,
which implies
3_¢=0 ﬂ’.-gﬂ:o’ EH.:O

8]
"
3
[
@
<

™
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and since £, and n, 8are not both zero, we see that ¢
must be a constant; but this contradicts the independence
of B, and B,. This proves that there cannot be more
than one relation of the form 2:¢kBk = 0.

1f one such equation holds, then the two linear

partial differential equations
B,(f) = o0, B,(f) = 0

form a complete system, to which the equation B3(f) =0
also beiongs. If y(x,y,y') is a solution of this systen,
i.e., if Bl(w) = Bz(w) = Bs(w) = 0, then every differen-
tial equation of the form y(x,y,y') = a = const. admits
the three infinitesimal transformations BI’BZ’BS‘ In this
case there is a l-parameter family of families.of curves
invariant with respect to the group. Here it should be
noted that y is independent of y'. In this exceptional
case, ¢ = a is not a differential equation in the usual
sense, and so we find here only the single family of invar-
iant curves y(x,y) = a.

.It can be shown that if A is not identically :zero,
then A = 0 is the only first order differential equation
which is invariant under our group. For if ¢(x,y) = a
is an arbitrary invariant family of curves, then there are

three equations of the form
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]

£ 39 n 3 which means that ¢ = a is an integral of the equation
k 9x k 9y

= ﬂk(¢) ’

A = 0. This proves the following theorem:
from which follow, by differentiation,

2 Theorem 12.3.1. Every 3-term roup lea invariant at
3 an : daq 2 3 Y group ves inv
—EK 8 , k3. k3 5k 2—% T Mk §§%7 ?

9X 9x ax 3y d§ ax X least one family of curves ¢(x,y) = a, and in general
ly one.
2 2 on
3y ap , Mk 20 . I ag g 24 -0 24
3y B3x 3y 9y d¢ 3y "k dxdy 3y

COMMENTS ON SECTION 12.3

eliminating d/d¢ now gives: Let X be a 2-dimensional manifold, with

rrdx)

T 9y \ax ax 3y

2k (_8_9;)2 . (3.% ) 3_“_15) 26 20 , 3”1‘(%3)2

the space of first-order hypersurface contact elements

to X. We denote the space by X'. It is 3-dimensional.
Let G be a 3-dimensional Lie algebra of vector

fields on X.

Therefore, Each A € G admits a prolonged veetor field--which

%81 (20 ’ (Egl - ill) 99 3¢ o (Qﬂ) we now denote by A' -- to X'. The mapping
8y M1 T %y (ax) ax 3y / 3x 3y  ax \dy
A~ A
3E, 20 2 g, i on, 3 36 . Iny (gﬁ)z =0 is a Lie algebra isomorphism between G and a Lie algebra
£ N2 T %y (ax) (ax F34 ) 3X 3y 3x ay

of veotor fields on PTd(X). Set:

= 'eX': dim G'(x' 2.2.1
) 3 5 ( )2 . (353 ] 3n3) 36 36 . g (a ) Y {x'eX': dim G'(x') < 2} (1 )
€3 N3 Ay

Notice that in terms of the local coordinate system
(x,y,¥') for X' used constantly by Lie, there i8 a fune-
tion A(x,y,y') such that

A =0 defines Y . (12.3.2)
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Thus, if A always has non-zero differential (which
ig the "generic" situation, and the one assumed By Lie)

Y <8 a submanifold of dimension 2 of X'.
Theorem 12.3.1. G' is tangént to the submanifold Y.

Proof. Let x' e Y. Let

t » x'(t)
be a curve in X, beginning at X', which is an orbit
curve of a veetor field A' in g'. Let t + g'(t) be
the one-parameter group of diffeomorphisms of X' gener-
ated by A'. Then,

x'(t) = g'(t)(x")
Hence,

G'(x'(t)) = g(t)alg(-t)4(G")(x"))

But, since g(t) belongs to the group generated by G',

(1), (61 = ¢ .
Hence,
dim 9'(x'(t)) = dim 9'(x')
for all t ,
i.e.,
x'(t) € Y
for all t
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This proves Theorem 12.3.1 u?ing ;he "obvious" geom-
etric fact that "G' tangent to Y" is equivalent to the
orbits of elements of G', beginning at points of Y, will
always be in Y.

0f course, Lie proves this gomputationally by showing
that

A'(d) <8 a multiple of A,
for all A e § .
We can see also what Lie means by "in general' in

Theorem 12.3.1. The "generic" points of X' are those

where dA # 0. If all points are '"mon-generic”, then either:

A =0 (12.3.3)

or
A = non-szero constant (12.3.4)
12.3.3 means that
dim G'(x') < 2 (12.3.5)
for all x' e X' ,
t.€., 9' acts intransitively on X'. This situation can
be analyzed separately.
Similarly, if 12.3.4 is satisfied--or more géneraZZy
if
A # 0 at eaeh point of X',

then G' acts transitively on X' at each point.
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It is posaible that Lie's use of this term "in
general"” can be made precise in terms of statements about
the "space"” of "all" Lie algebra actions on X. This
might be an interesting topic for research. The reader
should keep in mind, however, that there is usually a
common sense, intuitive and/or geometric meaning to the
use of this term, which the 19-th century authors used so

constantly!

12.4 FAMILIES OF CURVES INVARIANT UNDER GENERAL GROUPS

Let there now be given an arbitrary group Al""'Ar'

If a family of curves ¢(x,y) = a admits three transforma-

tions of the group, say Ai’Aj’Aq’ it follows in the same

way as at the preceding section (§ 12.3), that ¢ is an

integral of the equation

an n 13 23
q (-4 . 2a) . 42 a4 - =
(Einj x Y (By ax ) Y oy ) 0 Aijq

Thus, if the family ¢ = a admits all the transformations
of the group, then ¢ is an integral of all the equations

A.. = 0.
1]q
It can be shown that, conversely, if all the equations

Aijq = 0 have a common integral ¢, then ¢ = a Tepres-
ents a family of curves invariant under the group.
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In fact, proceeding exactly as at the beginning of
the preceding section (§ 12.3), one can give the expression

BpAijk the form
an 1
TET eyt + 2 =L -y —2}a..
uvw uvw 3y 3y ijq ’
where Cuyw 2aTe constants. Thus we get the theorem:

Theorem 12.4.1, The group Al""’Ar leaves invariant a
family of curves ¢(x,y) = a if and only if ¢ 1is an

integral of all the equations Aijq = 0.

If all the Aijq vanish identically, the considera-
tions of this section must be modified. Proceeding as in

the preceding section (§ 12.3), one sees that fwo of the

linear partial differential equations

af af 3f . -

form a complete system, to which all the remaining equations
Bk(f) = 0 belong. If y(x,y,y') 1is a solution of this
systemf then every differential equation of the form

Y = const. 1is invariant under the group. In particular,

if ¢ is independent of y', then ¢ = a 1is an invariant

family of curves.
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COMMENTS ON SECTION 12.4

Continue with the notation deseribed in the commenta

to Section 12.3. Let G be a Lie algebra of vector fiela%

on X of arbitrary dimension. For each triple ;

of elements of G, let

A(AI’AZ’AS)
be the funetion on X' whose vanishing at a point Xx' <is8
necessary and sufficient that

Aj(x"),A5(x"),A5(x")

be linearly dependent.
Let

6: X + R

be a real valued funetion, with a non-zero differential

at each point of X. d¢ <8 then a mapping
as: X » T4 - ()
Follow this with the projection mapping
X - - e = x
to obtain a map, which we denote also by d¢, <Z.e.,

dg: X » X!
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Then, Lie asserts that G leaves invariant the foliation

¢ = constant
if and only if
do*(A(A},A,,A0)) = 0
for each triple (AI’AZ’AS)
of elements of G'.

If the A(AI’AZ’A3) vanish identically for each
chotce (AI’AZ’AS) then:

dim 9'(x’) < 2
for all x' e X'

This means that (at least "generically”) there is a function
p: X' =+ R

which i8 invariant under G'. This determines a first
order, non-linear partial differential equation, for hyper-

surfaces on X, which is invariant under the action of G.




-Chapter 13

THE FIRST ORDER INFINITESIMAL TRANSFORMATIONS
DETERMINE WHETHER THERE IS AN INVARIANT
FAMILY OF CURVES

It will now be shown that in order to decide whether
a given group leaves invariant some family of curves, it
suffices to consider its infinitesimal transformations of

order zero or one at a general point (xo,yo).

13.1 A CONDITION FOR AN INVARIANT FAMILY

According to the preceding section (§ 12.4) one must

investigate all the equations 0 corresponding to

b1jq ~
the three infinitesimal transformations of the group and
see whether these equations, for an arbitrary value x = Xg»
Yy = vy, are satisfied by one value of y'. Think of &
and n as power series in X-Xg and Y-Yps then Aijq
vanishes for x = X Y =¥, whenever one of the trans-

J'q
transformations are of order 1. Therefore, if the group

formations Ai,A.,A is of order > 2, or if two of these

contains fewer than two independent infinitesimal transforma-

*
tions of order 0, then all the A vanish identically.

ijq
—
Geometrically expressed, this is the case where there is

a l-parameter family of curves each of which is fixed by
all transformations of the group.

265
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Hence we can assume that our group contains two independent
infinitesimal transformations of order zero at (xo,yo),

hence of the form
Al = p 4 " AZ = q +--
and we shall assume that there are p independent first-

order infinitesimal transformations:
lay (x-xp)+by (¥-yg)Ip + [og (x-xp)+By (¥y-yglla +-++
(k=1,2,...,p)

where p < 4. We form the p expressions Ale, which
arise from a composition of A1 and A, with a first-order
transformation.

Setting X = X5, Y = Yg» then gives

2
S S

The group leaves a family of curves invariant if and only

if the p -equations

12y

L}
o

ak * y'(sk'ak) -y k (13.1.1)

are all satisfied by one value of y'.

13.2 SOME GENERAL RESULTS

If the group contains four first order infinitesimal

transformations, which can be assumed of the form

FIRST ORDER CQNDITIONS. 267

(x-xgdP **0+ ,  (y-yg)p +ee
(x-xg)q +-++ r-ygla +--- ,
then the four equations (13.1.1):
oyt 2
y*'=0, -y'"=0, 1=0, y'=0

must all hold, which is impossiblel Hence a group with 4

independent infinitesimal transformations leaves invariant

no family of curves ¢(x,y) = a.

If the group contains 3 independent first-order trans-

formations none of which is of the form
(X'XO)P + (Y'YO)q ha ’

then we know (Theorem 11.4.1) that these transformations

can be put in the form
(x-xg)q *+ev , (x-x)p = (r-yplq +-++ ,
(y-yg)p *++ -+
And therefore one obtains the three equations (13.1.1):
1=0, -2yt=0, -y'“=090,

which again are contradicting. Hence, a group with 3 infini-

tesimal transformations of order one, none of which is of

the form
(x-xg)p + (y-ygla *--+ ,

leaves no family of curves ¢(x,y) = a invariant.
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Let us now assume that one of the first order trans-
formations is of the form (x-xo)p + (y-yo)q +.++ . By
the considerations at the end of Section 11.4, we can then

assume that the other first order transformations are of

the form
Cy *- = a;[(x-xp)p-(y-yglal + by (y-yy)P *+ ay(x-xg)q +-
C * = a,[(x-xp)p-(y-yplal + by(y-yplp * o, (X-x()q *+:

and satisfy the relation

6. - C.o - 13.2.1
CpoCy - Cyo Gy Cq ( )

Then the three equations of the form (13.1.1) reduce to the

two

2
- - |
ay Zaly' bly

"
o

2
a, - 2ay" - by

o ,
and the question is whether these equations are satisfied
by one value of y', i.e., whether
4(ajay-aya,) (aby-aghy) - (a,by-a,p)% = 0 (13.2.2)
In fact, this is always the case. For the equation

13.2.1 is equivalent to the three equations

ajby - ayby
- = .2.3
2(bya,-b,ya;) by (13 )

Z(alaz-azal = al
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and if one multiplies these by 2a1, ay " and bl’ respec-

tively, and then adds them, one gets
2
alb1 ta] = 0,
and this equation gives the equation 13.2.2 by repeated use

of the relations 13.2.3.

Hence a group with three independent first-

order infinitesimal transformations, one of which is of the

form (x-xo)p + (y-yo)q ++++ always leaves invariant some

family of curves ¢(x,y) = a.

If a group contains only two independent first-order
infinitesimal transformations, then two cases are possible.
If neither of these transformations is of the form

(x-xg)p * (y-yy)a *+--+ , then they have the form
Cl oo = [81(X'Xo)+b1(Y'Y0)]P.+ [al(x'x0)+81(Y'yO)]q+"'

. CZ tee = [82(X‘x0)*b2(Y'Y0)]P + [az(x’x0)+82(Y'yO)]q+"'
and it is no restriction to assume that

C1° C2 - C2° C1 = C1 . (13.2.4)

Now we obtain two equations of the form 13.1.1:

2
al + (81'81)Y' = bly' = 0 ’

ay + (By-a,)y' - by'? = 0,
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and the question is whether these are satisfied by one

value of y', i.e., whether
2
(81-81’“2)(31'81’1)2) - (“l’bz) = 0 (13.2.5)
This is always the case. For the equation 13.2.4 is equiva-

ient to the three equations
(ay,bp) = 3 = B; = % (a;-8;)
(bysa,-8,) = by (13.2.6)
(a;-By527) = 9y

and if one ﬁultiplies these by 31-61, oy and bl’

respéctively, and then adds them, one gets
1 . 2 _
apby * 7 (ap78y)" = 0
which gives 13.2.5 by using 13.2.6.

Hence a group with two independent first-order infini-

tesimal transformations neither of which is of the form

(x-xg)p + (y-ygla *+--°

always leaves invariant some family of curves ¢(x,y) = a.

On the other hand, if the given group does contain
the transformation (x-X,)p *+ (y-ygla +*** and only one
transformation independent of this, then one gets only one

equations of the form 13.1.1. Hence such a group leaves
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invar?ant a family of curves. The same is obviously true
of any group having at most one first-order transformation.
The considerations of this section prove the follow-

ing fundamental theorem:

Theoren 13.?.1. If a group of point-transformations of the

plane leaves invariant no family of curves ¢(x,y) = a,

then either the group contains four independent first-order

[infinitesimal] transformations of the form

(x-xg)p +-o+ ,  (F-yg)p + o

(x-xo)q LA (y-yo)q teoo

or else it has three such transformations of the form

(x-xg)p - (y-ygla *+--* , (x-xpg)q +--- , (y-yglp *:--
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GROUPS LEAVING INVARIANT ALL CURVES
OF A FAMILY ¢(x,y) = a

In this section we determine all groups which leave
invarjant all the curves of a family ¢(x,y) = a, But
first we make some general remarks on groups which leave
a family of curves ¢(x,y) = a invariant only in the

sense of interchanging the curves of the family.

14,1 A METHOD FOR SOLVING THE GENERAL PROBLEM

1f Al,....,Ar are the infinitesimal transformations
of such a group, then each Ak(¢) can be expressed as a
function of ¢:
Ak(¢) = Ek(¢)
Hence if we introduce ¢ as our new x-variable, we obtain
Ak = Ek(x)P + nk(x,)’)q .
The relations
Ajohy =~ Ao dy = Zs:ciksAs
provide % r(r-1) relations of the form

dg, dg,

N i §3Ciks"§s

273
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Hence, if we put

ge(Xp = B ,
and consider the B, as infinitesimal transformations of
the l-dimensional manifold of the x's, we get

BioByp BBy = TcyrBs o
from which it follows that the Bk form a group. By
Part I it is therefore always possible to replace x by
a function of x in such a way that the Bk's will assume
the form

(ao+alx*azx2)p
and hence constitute a linear group.

There are now four possibilities, accordiﬁg as the
group constituted by the Bk's has zero, one, two or
three terms., And the problem of determining all groups of
the plane leaving invariant a family of curves is corres-
pondingly separated into four problems. And it is possible
to treat these problems in such a sequence that the solu-
tion of each problem is essentially furthered by those of
the preceding ones.
The infinitesimal transformations of these groups

can be put in the form

2
A = (ao+a1x+a2x Jp + nq
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Now if the group has r > 1 transformations, then it

contains r-1 transformations of the form
B = (bytb;x)p + nq ,

where the Bk satisfy relations of the form

Bje B - Bpo By = XbyBs
Moreover, there are always r-2 infinitesimal transforma-
tions of the form
c = COP + nq ,
satisfying relations
CioCx - Gk Gy = X ksl
And finally there are always r-3 infinitesimal transforma-

tions of the form:

D = ¢(x,y)q ,

with relations
Die Dy = Do Dy = 3o dyysDs

This provides the following method of solving our

general problem. We first seek the most general p-term

family of transformations of the form Dy = ma which

satisfy relations of the form

DjeDy - DpeDy = 35djcDg
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s COMMENTS ON SECTION 14.1
Then we seek, in the most general way, one additional

infinitesimal transformation of the form C=p+ Urst Here is the gemeral framework for the method Lie

satisfying ¢ relations of the form sketches in thia eection.

Let G be a Lie algebré of veetor fields on a

CoDk-DkoC = ngSDS H

manifold X. Suppose there is a completely integrable

we emphasize that the right side of these equations does veotor field system

i . Then we seek, in the most general way, to
not contain C , v e v
determine an infinitesimal transformation of the form
: which is left invariant b G i.e.
B = xp * n4q satisfying p+1 relations of the form ! y G, s

[g,V] cv .

A

° - ] b, D ,
BoDy - Dy B zs:kss Lo

BeC - CoB =~—C+EYSDS T X + X'
S

be a submersion mapping whieh i8 a quotient mapping for

And finally we seek, in the most general way, an infinitesi-

2 . . V, 4i.e., the fibers of T are the leaves of V. Then
mal transformation of the form A = x“p + n,q satisfying ’ ? : f ?
there is a Lie algebra G' of vector fields on X' auch
p+2 relations of the form b

that:
AeDy - Dye A B z:akst ’ T4(6) = G
Aol - CoA = -28+ 2: BSDS , Thus, § i8 a prolongation of the action of 9' on X',
Lie i8 now dealing with the problem of classifying
AeB - BeA = -A+ GSDS : the possibilities for G, knowing the classification of the

ossibilities for G'.
After all these determinations have been made, we P f G

verify that all the families of infinitesimal transforma- There are two aspects to this. One might call them

. ; the "algebraic" and the "geometric". First, consider =
tions we have obtained in this way actually do determine g g ) «

a group of finite transformations.
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purely as a Lie algebra homomorphism. Let H be the
kernel. Then,

[G,H] c H

t.e., H 18 a Lie algebra ideal of G, and

G = G/
One says that G 18 an extension of G' by H.

In certain circumstances, it is possible to classify
algebraically these extensions. For example, if H <s

abelian, the extensions are governed by the second cohomol-

ogy group of the Lie algebra G', with coefficients in the

representation deduced from Ad G' aeting on §° (See

VB, wol. II, Chapter 2 for a simple treatment of this.)
In particular, if G' is gsemisimple, G is determined by
this representation.

Lie did not, of course, know any of these faney
algebraic techniques. (It would perhape be interesting for
an historian to analyze whether Lie, by the evidence of
how he actually worked out his problems, developed special
cases of these techniques.) His method is more "geometric'--
Find eoordinate systems for X' in which G' takes its
"eanontieal form", them analyze how thege coordinates are
put together with coordinates for the leaves aof V to make
up the vector fields in G. This method is probably only

practical in case
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dim X' = 1 ,

which i8, of course, the case being treated here. (In
case X' {8 higher dimensional, there are probably to
many ecanonical forms for gf.)

Here is another general technique one can abstrast

from what Lie does. Choose a Lie subalgebra

and set:

L o= malLh)
L s now a subalgebra of G, and Lie deduces a clasi-~
fieation for (9,9') based on a classification for

L,L").

14.2 LIE ALGEBRAS OF INFINITESIMAL TRANSFORMATIONS IN
ONE VARIABLE

Let there now be given an arbitrary family of trms-

formations of the form D = ma with relations
Dy Dy -~ Dg Dy = X ciksPs -

From among these we choose the r-1 independent transforma-
tions Di,...,D{__1 which are of order > 1 at a genenl

point (xo,yo). And since each expression Di°Di - DfDi
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is of order one, we see that such an expression is always

a linear combination of the Di.

Theorem 14:2.1., If r infinitesimal transformations of

the form Dk = md satisfy relations of the form

DyeDy - DDy = ey Do s

then among them there are r-1 independent transformations

Dy which satisfy the corresponding relations

DjeDf - DEeD! = I dyy DL .

By means of this theorem_we can determipe the most
general group of the form na as follows. We first take
the most general infinitesimal transformation of the form
D1 = nl(x,y)q; we then determine, in the most general way,
an infinitesimal transformati?n b, = nz(x,y)q satisfying

a relation of the form

Dla b, - D, e D1 = alD1 + aZD2
Then we determine the most general transformation D3 = nsq

satisfying two relations of the form

Dyo D, - D, D b

1 3 3 1

103 * byDy * byD,

Dye D3 - Dy D, €Dy * €Dy * 505

and so on.
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14.3 CONTINUATION

An infinitesimal transformation of the form n,q
can always be given the form. Xl(x)q, where xl is an
arbitrary function of x, by replacing y by a suitable
function of x and y. To determine the most general
2-term family

b, = mae s D, = n,a
we remark that D, and D2 can be so chosen that the

relation between them assumes the form

DyeD, - DyeD, = €D

1 10

* where ¢ = 0 or 1.

Now, by replacing y by a suitable function of x and Y,
we can give D1 the form D1 = Xl(x)q. We then obtain,

for the determination of D2 = nq, the equation

i .

ay € >
whence

n = ey + f(x)

If € #0, then e =1 and we replace y by y + f(x),
and thereby our two transformations assume the form

X1Qa Yq-

Hence there are only two types of 2-term families of

the form LI namely
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X,9,X,9 X,4,y9

if b, = qu, D2 = qu, D3 = nq is a family of

transformations with relations of the form

[Dy,Dg] = a0y + 3,0 + agdg
[Dy:D5] = ByDy * b0y + by
then there is a transformation D = alDl + aZDZ such

that [D.D3] is a linear combination of D, and DZ’

and it is no real restriction to assume D = Dl' Then

ain .

Xl 3—9- alxl + aZXZ s
an

XZ 3y b1X1 + bZXZ + b3n

and these equations are satisfied if n 1is an arbitrary
function of x.

If n depends on y also, then, by the first equa-
tion, ny is a function of x, and therefore in the last
equation one has bs = 0. From this one concludes that n,

is a constant., For our equations show that each expression

an
(A)X) *+ AX,) 55

is a linear combination of X1 and XZ:
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3
(AX *AX;) 5 = BjX) + BX,
Similarly,
(B,X,+B,X.,) 20 .. (c.x. +
1M17%2%) 5y 1% * CX,
whence

2
an
“1"1*“2"2)(57) - CyX, + CX

and in general

2
]
(A1x1+A2x2)(3§) = LX)+ L)X,
where k is an arbitrary positive integer, For example,

if one sets Al =1, Az = 0, one obtains three equations

of the fornm:

w@) - ow

ay

an -
135 Xyt ek o

2
) .
xl(ay) B1Xy ¢ BZXZ s
where the right sides of these equations are linearly

dependent.
Yo¥1 * vplagX*ayXy) + v, (8,%) + 8,X,) = 0

YosYyeYp not all 0. Therefore
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2
an )
x1(70 *isy Y2 (33) ) =0

from which it follows that ny 1is a constant. Since this{

constant is ¥ 0 by our earlier assumption, we can take
n o= y+£fx) ,

and in fact it is no real restriction to take n = y.

The 3-term family of transformations we have found has thed

form

XIQ! xzq' yq .
Now let gq, yq, nq be three transformations satisfying.
the familiar relations. Then, n is determined by two

relations of the form:

Q

an . aO + zaly + azn

~

)
Yy e -n = by o+ 2byy + b,n

It is easy to see that a, = 0. Otherwise, elimination of
ny would show that n is a rational function of vy, 1
while integration of the first equation would show that
n 1s a transcendental function of y. Hence we put a,
and then find, by integrating the first equation, that nj}

is of the form

2
no= agy +ay” o+ f(x) .
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Since it is ne real restriction to assume a; = 0, we get:

2
noroayt o+ f(x)
If we substitute this value into the second of the equations

(14.3.1), we find that

2
n=y or n = £(x)

a; = 0 or f(x) =0, so that

Combining this with our previous work we see that the 3-

term family of transformations we have sought has one of

the forms:

xlq,qu,X3q~], qu.xzq,yq , qayq’yzq

14.4 CONTINUATION

If four infinitesimal transformations of the form
2 .
4, Y4 ¥ 9, nq satisfy the familiar relations, then n

is determined by three relations of the form:

o _ 2
3y a; + Zaly + 3a2y * asn
3
y 33 *m = by * 2byy * 3b,y + b, » (14.4.1)
yz M . 2yn = ¢+ 2c.y + 3.yl +
3y 0 ly 2)’ C3T\ ’
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and we see, as above that a; = 0. Theréfore, integrating
the first equation shows that n is of the form

no= oagy ¢ alyz * a3¥3 * f(f) ’

and it is no real restriction to assume a, =8 = 0
3
n o= agy ¢+ f(x) .

The second of the equations (14.4.1) shows that either
n = y3 or n = f(x), both of which contradict the third
of the equations (14.4.1). We conclude that no 4-term

group can have the form 4q, yq, YZQ. nq.

We now seek, in the mast general way, r+l infini-

tesimal transformations of the -form

qu.xzq,~~-.xrq,nq

satisfying the familiar relations. Proceeding exactly as
in the case r = 2 we obtain, for the determination of

n, r equations of the form:

an
1 3y ox

<
|
#

an -
X:1 3y IEVE S

X+ own

P4
-
N

f

where u must in fact be = 0, as before. Finally, for

any constants Al,...,Ar there is a relation of the form
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coe an
(A1x1+ +Arxr) 132 B1x1+"'+BrXr

In particular,

B e an = .«
(b1X1+ +Brxr)§?. C1X1+ «+C_ X »

rr
whence
2
(A1x1+...+Arxr)(§%) = c1x1+...+crxr ,
and in general
. an k
(Alxl*"'+Arxr)(5?) = L1X1+"~+err

In this equation let k take the values 0,1,2,...,r

successively and let Al’AZ""’A be fixed quantities.

T
This gives r+l equations, from which one obtains, by

elimination, an equation of the form

(Z:Aixi)<k0+k1 %% PO kr<%3)r) -0

Therefore
T
an ... an) .
kO + k1 y + + kr(ay) 0o ,
in which all the constants k vanish only if "y = 0.
Hence n, 1is a constant and n = ay + f(x), so that we

y
can assume either n =y or n

f(x).

Hence we find only the two families

X195X,9,...,X 4,¥q,

quzxzq;vo-sxrq’xr+1q
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Finally, we seek, in the most general way, T+2

infinitesimal transformations of the form
x]_anzqa“ --XIQ.quq (!‘>El)

satisfying the familiar relations. Since r > 1 we get

two relations of the form

2
Xjy = Zog¥; tepyton
(14.4.2) |

3
X 5% = L8;X; * By + 80,

in which it is no real restriction to assume a = 0. Inte-'ﬁ
grating the first equation gives

2

Xn o=y ToX + % agy’ + £,

and we now substitute the value of n this gives into the
second of the equations (14.4.2).
then n

Let us first assume 8 # 0; is of the form

no=oagy +oe(x)
and it is no restriction to take oy = 0.

B#£0
same form as the given (r+l)-term family,

The hypothesis

therefore leads to an (r+2)-term family having the

Now assume 8 = 0, Eliminating y from the equa-

tions (14.4.2) shows that ny depends only on x. There-

fore we obtain r equations of the form

a .
xk y 2: cksxs !
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from which it follows, as in the previous case, that n
is of the form n = ay + f(x), and it is no real restric-

tion to take o = 0., Hence our family again has the same

form as the given (r+l)-term family.

These considerations give the general theorem:

Theorem 14.4.1. If a family of infinitesimal transformations

of the form QI satisfies the familiar relations, then

it is of one of the following forms

qu qu
X,q X,q q
: yq
2
qu qu ya
yq

COMMENTS ON SECTION 14.4

When Lie says that a set of vector fields "satisfies
the familiar relations", he means that they are closed
under Jacobi bracket, i.e., that their linear span forms
a Lite algebra.

The elassification problem of the previous three

seotions can be described as follows. Let G be a finite
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dimenaional Lie algebra of vector fields on a manifold z,
and let V be a complstely integrable veotor field eystem

an 2 such thgt:

9 i8_tgngent to V

Thig means that each vector field A e G <s tangent .|

to the leaves of V. Lie's problem ia‘to:
' Classify the posstbilities for (z,v,6) .
Lie 8, of course, only clasgifying loocally, which

simplifies hig taek. (Perhapp only now is mathematics

developing the differentigl-topalogical tools to taekle

the job globally.)

We may then suppose that:
Z = XxY |,
where X,Y are manifqlds, such that:
The legves of V are the subsets
{(x,Y): XeX}

Thus, each A e G determines q vegtor field
BX
on the manifold x x Y, for each x ¢ X.
Let
M(X,V(Y))

denote the space of C~ mappings
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$: X » V(Y)
(To say that the map i8 C 18 to say that, for each

f e F(Y), the map

(x,y} =+ ¢(x)(E)(Y)
is C .
M(X,V(Y)) <8 a Lie algebra, which is infinite dimen-
sional as a Lie algebra over the real numbers. (It is also
a - "Lie module" over F(X), and finite dimensional as sych
an objeet). M(X,V(Y)) is encountered quite often in physice
(see LAQM, FA, VB, GPS, and volume VI and X) and I call it

the gauge Lie algebra or, sometimes, the Lie algebra of

currents.

Return to G acting on 1, tangent to the fibers

of V. Each A € G determinee a map

X Bx

[Xy]

-
of X+ V(Y), Z.e., an glement of M(X,V(Y)). Thus,
may be identified with an element of M(X,V(Y). Then, the

problem of these sections is really to:

Classify the finite dimensional Lie

subalgebras of M(X,V(Y)).

By "classify", one means "up to an obvious equivalence'.

Namely, consider the diffeomorphieme on X X Y of the form

(x,y) =+ (x'"(x),y'(x,y))
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i.e., which preeerve the foliation determined by Y. Two
subalgebras which are equivalent under this group of
diffeomorphisme are considered the same.

There are relations to the theory of deformations of

Lie algebras and repregsentations. (See Chapter D.) Namely,

to each x € X, sget:
G(x) = ¢(x)(G)

{g(x)} i8 a family of Lie algebras, parameteriszed by X.
This defines a Lie algebra deformation. G(x) <s also
given as a Lie subalgebra of

V({Y) '
As x varies, thie defines a Lie algebra homomorphism
deformation.

The formulas in Theorem 14.4.1 determine these defori

ations explicitly. Here,
X = Y = R
There are, up to isomorphism, only three finite dimensional §
Lie glgebras which can appear as subalgebras of V(R). Thig
explains why there are three boxes. For the third box, the§
Lie algebra is semisimple. In Chapter E I prove the vanishd
ing of the relevant cohomology group for the semisimple
case. Thie ie why the formulas given im the third box do

not depend on parametera.
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14.5 COMPLETION OF THE DETERMINATION OF GROUPS IN THE
PLANE WHICH LEAVE INVARIANT A FAMILY OF CURVES
We now show that these families of infinitesimal

transformations always determine a group. The equations

1 1] LAY
x' = x, y' =y + alx1 + azxz + + arxr
determine an r-term group of finite transformations, and
the infinitesimal transformations of this group are the r

quantities qu.

Moreover, it is clear that the equations

x' = Xx, y' = ay + a;X) +-+ a X

r'r
determine an (r+l1)-term group of finite transformations,
and the infinitesimal transformations of this group are
the r+} quantities qu, yq.

Finally, it is well known that the equations

81)""8.2

y+1

x!' = Xx y!
» as

determine a 3-term group with the infinitesimal transforma-

) 2
tions 4q, yq, y°q.

We have now determined all groups of the plane which

leave invariant all the curves of a family ¢(x,y) = a.
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COMMENTS ON SECTION 14.5

In this section, Lie gives the explieit formulae for
the group actions corresponding to the Lie algebra deforma-
tions classified in Theorem 14.4.1. Thus, for each x e X,

he defines a group G(x), and a mapping

G(x) x Y+ Y

which defines a transformation group action of G(x) on Y.

This example involves, first, a deformation {G(x)} of
group structures, then, second, a de formation of the

transformation group actions. There is still much work

needed to understand the general features of these objects! ﬁ

Chapter 15

SOME AUXILIARY THEORIES

In this section we develop a general theorem on
arbitrary transformation groups. First some remarks on

linear groups.

15.1 GENERAL REMARKS ON LINEAR GROUPS

An infinitesimal transformation of the form
n
i/;‘ll k)': €ix*iPx
will be called a linear transformation. By meang of this,

the Xy receive the following increments
8x, = ( %; cikxi)ét (15.1.1)

It follows from Cauchy's investigations of simultaneous
systems of the form 15.1,1 that the x; can be replaced

by suitable linear combinations of themselves to give a

system for which Cix T 0 when i > k. Thus every linear

infinitesimal transformation can be put in the form

€11%1P1 * (€12X1*€g%p)Py + (C3%)*Cp3Xp*C33X3)Py *- o

+ + +o s X + o0
(C1q¥1%C2q%2"" " "*Sqq¥q)Pq

295
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COMMENTS ON SECTION 15.1

The result stated here is that ch_lineer transformgl

tion of a wector space into itself cgn, by appropriate

choice of basis for the vector space, be put into triangu-‘

lar form. This requires that the scalar field of the vectﬂa

space be algebraically closed {e.g., the complex numbers),‘f

a hypothesis that Lie does not seem to 8tate explicitly.

15.2 CONTINUATION

We now suppose given two linear infinitesimal trans-

formations A = E:nipi and B = E:gipi such that

[A,B] = A ' (15.2.1)3‘;

We shall show that it is possible to replace XpseoesX,

new independent variables so that A and B are simultane;

gusly put into a remarkable form,

We first put A in the form discussed in the pre-
ceding section (15.1), so that the coefficient of P is
of the form €xy. In doing this it can happen that more
of the Nyes  say NasNzs.e.5n_, also assume the simple

q
Form €Xy, SO that

A = e s e
e(x1p1+x2pz+ +xqpq) + Ng+1Pq+1 *7 7% MpPy

AUXILIARY THEORIES 297

It is no real restriction to assume that €%, LEREY quq

is the most general linear function of x. satisfying a

relation
A(Ecixi) = & Z(:ixi .

I first claim that € = 0. For if € # 0, it is no

real restriction to assume € = 1, and we will show that
the integer n cannot then be finite.
The equation (15.2.1) is equivalent to the n equa-

tions

A(Ei) = B(ni) = ni (15.2.2)
and hence

A(Ei) g =X for i=1,2,...,q
From this we conclude that 51,...,£q, xl,...,xq are indep-
endent. For if there were a relation

vlgz 4o oo vng + “1x1 oo o uqxq 0 ,
applying A to it would yield
v1(£1+x1) +eeot vq(gq+xq) + ByXy Fooot uqxq = 0 ,
from which there would follow the impossible equation
VX heet vqxq = 0 .

Therefore, n > 2q, and it is permissible to set

xq+1 = El,...,xzq = Eq .
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Applying A gives

A(Xq+i) = A(Ei) - Ei + Xy (i=1,...,q)

or, since ‘A(xq+i) - “q+i’

n - X

a*i + X (i=1,...,q) ;1

q+i
This determines the q quantities nq+1,...,n2q. But

A(Ej) - B(nj) - nj ’
and therefore the q quantities Eq+1""’52q satisfy

relations of the form

q+i) ) Eq+i - E:i. " nq+i = xq+i * Xy

(i=1,...,q)
or ’

ACE_,.) = & . +2x .+ X, (i=1,...,q)

q+i
from which it easily follows that £q+1""’52q’ xl,...,xZq f
are linearly independent. Hence n > 3q and it is no real |

restriction to put

g

X2q+1 qr1r 0 X3q = Baq

Applying A gives

Alxyoag) = AlEL,3) = B, * 2x .. + x; (i-l,...,qé

q+i q+i q+i q+i i

or, since A(Xyo,5) = npo.ys

N2q+i = Xoqei T PXqei * Xy
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Continuing in the same way as before, one sees that
Ezq+1,---.€3q.xl.---.xq.--.,xzq,...,xsq are independent
and hence n > 4q, and so on. Since n is a finite

integer, we see that ¢ = 0.

15.3 CONTINUATION

Hence we can put

A = 0.py +---» O.pq + "q+1pq+1 tees

B = Elpl tecet EqPq + Eq+1Pq+1 toee ’
and from 15.2.1 it follows that
A(El) =0, A(Ez) = 030--9A(Eq) =0 ,

from which it follows, by our previous hypotheses, that

El,...,Eq depend only on xl,...,xq. Now I can choose

X so that there is a relation of the.form

q+1

A(xq+1) = CyXy e quq + qu+1 ;

then

Ngr1 & 1% YTTTY Cq%g * Xga

It is easy to see that c = 0. One proves this by setting
X = ¢ = xq =0 in A and B and then applying the
considerations of the preceding section (15.2) to the result-

ing expressions A(O) and B(O), which are # 0 if ¢ ¥ 0.
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Hence we can put

A(xq+1) CyXy *occ+ €q%q " Mg+l ¥
it is thinkable that "q+2""’nq" for example are still
linear functions of xl,...,xq. In this it is no real

restriction to assume that QX +ectra X +---+aq.x

: q°q q'
most general quantity satisfying a relation of the form

A ( 2:°ixi) = Bypxy it BXq

By 15.2.1 there are then q'-q relations of the
form

Alkgep) = 8yxp *+eoo+ 8xg

and therefore § "Eq' are functions of kl,...,

q+l’”

xq,...,xq..
We continue in this way. Choose xq,+1 so that

there is a relation of the form

A(xq'+1) - Clxl FEREEY cqxq FYRETY cq'xq' + qu'*l

and we see, as before, that c = 0. Therefore,

X, +'°'+ ¢ X

1 q'“q'

and it is thinkable that still more of the n's, for
example, “q'+2""'nq"' have this form. It is no real
restriction to assume that the general solution of the

equation

is the}

(i=1,...,q' -}
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A(d) = CyXy *+roct cq,xq,
is
¢ = &.x

1%1 +eood § uX

q qll
But'by 15.2.1 there are relations of the form
A(Eq.+i) T CpXp trrr cgiXgr
and therefore 5q,+1,...,;q" are functions of XpseeosX

qll i
and so on.

Hence there is an increasing sequence of integers

q,9',9",q9",...,n such that "1""’nq are zero;

Ng+1?* " 2Ngr depend only on xl,...,xq; LPYFS ERRRRL I

depend only on xl,...,xq., and so on; and that at the

same time 51,,..,gq depend only on XpseeesX

q
€q+1!"V’€qv degend Onlz on xl""’xq'§ iq.+1,i...€q"

depend only on xl,...,xq". and so on.

15.4 A NORMAL FORM FOR A 2-TERM LINEAR GROUP

It only remains to make certain simple transformations.

A linear transformation of xl,...,xq leaves A and B
in the form we have found for them, In particular, we can
arrange that £1p1+"'+5qpq, which depends only on
xl""’xq' pl,...,pq, assumes the form mentioned in
Section 15.1 by such a transformation. Then make a linear

transformation of qul,...,xq, so that
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1Py T BqPq 1T BqiPg

;sumes the canonical form of 15.1, and so on. Continuing

. this way, we obtain the theorem

weorem 15.4.1. If two linear [infinitesimal] transforma-

ons A=Y n;p;» B -z:gipi satisfy

[A,B] = A ,

en it is possible to choose the independent variables

seeea Xy in such a way that n; depends only on

seresXs 9 while each €, 1is a function of x

*

170

S10%
MMENTS

This i8 a special case of what i8 now known as Lie's
gorem in Lie algebra theory; namely, the matrices of a

near representation of a golvable Lie algebra may always

put into triagngular form. See Samelson (1), VB, vol. II; %

1 vol. VII cf IM,

Without doubt this theorem has been known for a long
ne, although perhaps in a different form. It is a
tcial case of 'a much more general theorem, which I have
:ablished on a different occasion.
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15,5 THE STRUCTURE CONSTANTS OF A LIE ALGEBRA

We now turn to quite arbitrary groups of point-
transformations of an n-dimensional manifold XgaeeesXp e
Let Ajy....A, be independent [infinitesimal] transforma-

tions with relations
[Ai’Ak] = Zs: C:lks“\s ’

we will now establish certain relations among the ¢

iks
In the well-known Jacobi identity

[TAL AL TLA) + TIAGALAD + [TAGATAL = 0

substitute the above values of the quantities [Au’Av];

gnd do this again. This produces an equation of the form

ClAp * CpAp # i+ CAL = 0,

where the Ck are functions of the v’ Since the Ay
are independent infinitesimal transformations, it follows

that

%; (cikpcpsc * ckspcpic * csipcpko) =0,

in which 1i,k,s,p vary over 1,2,...,r.
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COMMENTS

The (cijk) are called the structure constants of

the Lie algebra with respect to the bases Al,...,Ar. The

quadratie relations given in the text are the Lie relations, ;

and are the necessary and sufficient conditions that a
given set (cijk) of constants be the structure constants
of a Lie algebra. In the older literature on Lie groups

and algebras the role of these structure constants was

15.6 THE LINEAR ADJOINT GROUP -

Again, let Al""’Ar be arbitrary (i.e., not neces-

sarily linear) infinitesimal transformations which are

independent and satisfy relations
Ay A] = Zs: ikshs
I claim that the linear infinitesimal transformations
af
By = X 5% % Siskk
s k
satisfy

[B;,B5] = A::Cists .

Indeed, substitution gives
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.81 = 3 2L p {c. €. .-c. _c. )X
it 9N P jos isk Tios jsk'7k ?
amd our claim is that this expression can be brought ta
the form

of
Zcijs ZG: 5)?5 Zk:csckxk ’

5

or, equivalently, that the sum

C. _C. ,-C. .1 -C. . -
z; ( jos Tisk ClGSCJSk clJSCSOk) g; (cjcscsik+coiscsjk

+cijscsok)
vanjshes jdentically. In the preceding section (15.5) we

saw that this is, in fact, the case. Thus:

Theorem 15.6,1. 1,...,Ar are independent [infinj-

tesimal] transformations with relatjions

If A

[Ai,AJ.] = zs:cijsAs ,

then the linear expressions

9f
B. = eeans C. X
i o axs ; isk™k
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The Jaogobi identity guarantees that 15.6.1 ig satisfied’

on-
Theorems 15.4.1 and 15.6.1, as well as the well- i.e., that p peally defines a Lie algebpq representaﬁ¢
known theorem of Section 15.1 have an important applica-

tion in the next two sections.

OMMENTS

Let G be a Lie algebra, V a vectop space, L(V)

the aspace of linear mapa V + V. A linear representation

f G {8 defined as q lineanr mapping

p: G+ LV . -
ueh that:

P(LAB]) = 0(A)p(B) - o(B)p(A) (15.6.1)

for all A,B ¢ 9

The adjoint representation (which is the modern

ame for the representation defined by the Bi in the

2xt) 18 8uch a representation obtained by setting:

V = underilying vector 8pace of

(3~}

p(A)(B) = [A,B] = Ad A(B)

for A e G, BeG=V
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B1Py *rt EgPpg et *q'Pq"

assumes the canonical form of 15.1, and so on. Continuing

in this way, we obtain the theorem

Theorem 15.4.1. If two linear [infinitesimal] trahsforma-
tions A=Y ngP;» B -ZEipi satisfy

[A,B] = A , ,

then it is possible to choose the independent variables

XpreoeaXy in such a way that n; depends only on

XysreesXs 1 while each Ei is a function of Xireeos
x
X;_ 10%5.

COMMENTS

This is a special case of what is now known as Lie's
theorem in Lig algebra theory; namely, the matrices of a

linear representation of a solvable Lie algebra may alwaye

be put into triangular form. See Samelson (1), VB, vol. II;

and vol. VII cf IM,

Without doubt this thearem has been known for a long
time, although perhaps in a different form. It is a
special case of 'a much more general theorem, which I have
established on a different occasion.
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15,5 THE STRUGTURE CONSTANTS OF A LIE ALGEBRA

We now turn to quite arbitrary groups of point-

transformatipns of an n-dimensional manifold XyaeeesXpe

‘ Let Al""’Ar be independent [infinitesimal] transforma-

tions with relations

(Ayphd = & cipshs o
we will now establish certain relations among the Ciks*

In the well-known Jacobi identity
[[Ai’Ak]’As] + [[Ak’AS]'Ai] + [[AS’Ai] ’Ak] = 0 ,

substitute the above values of the quantities [Au’Av];

and do this again. This produces an equation of the form

Cipy * CpAp +o* CAL = 0,

where the Ck are functions of the ¢ . Since the Ak

Hvpe
are indepéndent infinitesimal transformations, it follows

that

C11C2=-v9=cr=0’

i.e.,
.+ .
%;(cikpcpsu * ckspcp1c c51pcpk0)

in which 1i,k,s,p vary over 1,2,...,r.
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COMMENTS

The (Cijk) are called the structure conatants of ‘
the Lie algebra with respect to the bases Al""’Ar' The
quadratic rel&tians given in the text are the Lie ielatiéns,
and are the necessary and sufficient econditions thatAa
given aet (cijk) of constants be the structure constants
of a Lie algebra. In the older literature on Lie groups

and algebras the role of these structure constants was

emphasiaed, but this has been replaced by basis-free qethada.ﬁ

15.6 THE LINEAR ADJOINT GROUP -

Again, let Al"“’A be arbitrary (i.e., not neces-

r
sarily linear) infinitesimal transformations which are

independent and satisfy relations
[Aj,AL] = ZS: ikshs
I claim that the linear infinitesimal transformations

of
B, = zs: ax, chiskxk

satisfy
[B;,B5] = ZS: €585

Indeed, substitution gives
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woB.] = . .
l“i'hjl - X X z; %; (Cjoscisk cioscjsk)xk ’

g

and our claim is that this expression can he brought to

the torm

af
Zcijs ZG X %Csckxk ’

5 o
or, equivalently, that the sum
253 (chscisk'cigs%sk'ci;scsokj ) };-: (€505%sik*Caissjk
*€ijsCsok)
vanjshes identically. In the preceding section (15.5) we

saw that this is, in fact, the case. Thus:

Theorem 15.6,1. If Al,...,Ar are ;ndepegdent [infin}w

tesimal] transformations with relations

[Ai’Aj] = g cijsAS »

then the linear expressions

of
B 7 & a §°isk"k
satisfx

[Bi'Bj] ® 4; Cists
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The Jagobi identity guarantees that 15.6.1 ia eatisfied,
Theorems 15.4.1 and 15.6.1, as well as the well- i.6., that p peally defines a Lie algebra representation.
known theorem of Section 15.1 have an important applica-

tion in the next two sections.

COMMENTS

Let G be a Lie algebra, V qa vectop epace, L(V)

the space of linear maps V ~ V. 4 lingar represgntation

ef G is defined as q linear mapping

p: G » L(V) , .
such that:

p([A,B]) = po(A)p(B) - p(B)p(A) (15.6.1)

for all A,B ¢ 9

The agdjoint representation (which ias the modern

name for the representation defined by the Bi in the

text) L8 esuch a representation obtained by eetting:
V = underlying vector space of 6. ‘

p(A)(B) = [A,B] = Ad A(B)

M

for A e G, BeG=V




Chapter 16

DETERMINATION OF ALL GROUPS WHICH
TRANSPFORM THE CURVES OF A FAMILY
¢(x,y) = a IN A 1-TERM WAY

We now determine all famflies of transformations of
the form !
nlq,nzq,--.,nrq.p+rq
satisfyiﬁé the familiar relations. Recall that the u
have one of the forms determined in Section 14. We also
remark that each [nkq,p+nq] is a linear combination of

the ngq alone.

COMMENTS

Let X,Y be manifolds,

Z = XxY
m: Z + X

the Cartesian projection map. Let" G be a finite dimen-
sional Lte algebra of vestor fielde on 1. Suppose that
each A € G 18 projectable under 1w, i.e., there is an
A' € V(Y) such thdt: ' K '
TR(AT(£')) = A(x*(f'))
for all ‘f' e P(Y) .
Let G' be the eollection of such A''a, ‘Then,

Te: G + G’

309
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ie an onto Lie algebra homgmorphianm.
Let

H = {AeG: m,(A) = 0} .
Then, H {e an {i{deal of G, and

¢ - o .

G 1ie an extengion of 9' by H. However, the "geometrie”,

prolongation, feature of the 8£tuétion is also important.
(Thia oombination of algebraio and éeamctric featurea ia;
of oourse, typical of Lie'e w&rk.) | «
Here,
X=Y=R .

In this chapter Lie deals with the case:

dim G' = 1 .

16.1 CONTINUATION

We first determine all families of the form

2
q, Y4, ¥ @, p*nq. .
The quantity n is determined by equations of the

form
%% = ap* 2a,y + Sazyz
y 8 -n = by v 2byy + 3byy? (16.1.1)

23 2
y* 52 - 2yn = ¢y v 2c.7 + 3e,y
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The first of these shows that

n = ay+as yz 4'3 ys + £(x)

0 1 2 ’

or, since it is no real restriction to set 8y = a, = 0,

n = azys * f(xj .
The last two of the equations (16.1.1) show that a, = f(x) =
0, -so that n = 0, Hence, the family sought is of the
form

2
9, Y4, Y 9, P -

16.2 CONTINUATION

&3
'

s

Next we seek all families of the form
xlq,xzq,...,xrq,?fﬁq‘?;
We can assume r > 0, since when r = 0 we are dealing
with the single transformation penq, and thié take;yégén
simple form p if y is replaced bvlu suitable function
of x and vy. :

There are then equations of the form
[qu.p+nq] - cklxlq doovt ckfirq .

It is possible to replace xl,...,x by linear combinations

T
of them, X = ailxl teret dirxr, fp tyat in the trans-

formed equation
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[Xja,p*nal = cf;Xja +eeev cf Xiq  (16.2
the coefficients cii have very simple valuesr &
Let A = det (a;,) and let 84x be the subdeter-

minant with respect to a,,, $0 that

A.xk aikxi +oood arix; ;

cohputation then shows

A § ;
o i %: %3“k5°jp’op (16.2

We now make some remarks to orient ourselves in th;

discussion of these complicated expressions. In the liﬁl

3

infinitesimal transformation

TT & x : ~
7 9 %%y ieve _

B =

we make the substitution

}f"‘ij"j '

so that 3/3x is transformed according to

Therefore,

s0 that setting
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- gives

which is the same as formula 16.2.2.
- We have seen in Section 15.1 that any infinitesimal

transformation B can be put in the form

[
c11¥qPy * (631%1*C3%3)Py * (e Xty Xy*Cisx3Ipy

+ Y xtteeotc! X')pY 4o
(cq1%1 qq*¢’Pq *T"

by introducing appropriate new variables. Hence it is

i

possible to choose the constants ajy SO that cis‘- 0

for s > k. Thus we have the following important theorem:

Theorem 16.2.1. If r+l infinitesimal transformations

satisfy the familiar relations, then

xqu---ner; ptnq

it is no essential restriction to assume that these rela-

tions have the following form:

IXIQ°P"TIQ] - cllxlq

IXZQaP*nQI - C21x1q + szxzq

. . . . .

[kusP*HQ] - cklxlq +‘..+‘ckkxkq
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The first of fhoso equations giies

ax
2 -
& - ocu¥ oo

or, since it is no restriction to set X - 1,

M .
y €11 n

= cy + £(x) .
’ .
To simplify this value of n, put
y' = y*+ex) .
Then differentiation gives
Syt = 8y + %% &x
whence
peng = p+[cly-e)efs %%] Q'
Now choose ¢ so that
%% + £f-cp = 0

then
pP*ng = p+cy'q" .

This‘change of variables leaves fixed the form of the

transformations X,,.. Hence this family has the form
q.x2q3x3Q:° --.XTQ.P*CYQ ’

where X, is determined as a function of x by the inte-

grable differential equation

" ax
X
R % TR

(16.2.3)
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16.3 CONTINUATION

Finally we seek all faﬁilios of the form

qu, qu,...,xrg. yaq, p*nq .

Each - [qu,p4nq] is a linear combination of the qu and

yq. Thus there are r relations of the form

a

X

am .k
Xy T & E:ckixi Ty
whence
. 1.2
Ym V(Hi‘ * 2? ckixi)'* 7% *HE& .
On the other hand, considering [yq,p*nq] gives an equa-

tion of the form

y g_;l -n = §Gixi + §y , ‘(16.3.1)

into which we introduce the value of n just found. ' This
shows that all the ¢y are 0, and hence that there are T
equations of the form

Xarprnal = cXga +ooot X -
By a linear transformation bf the xi, as in Séction 16.2,
we can bring these equations to the simpler form

(Xa,p*nql = ¢ 1X;q *+* 00+ e Xpq
Setting Xl = 1 as in the preceding section, gives

a =

5% €1y no= ey ¢ £(X)
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in which it is no real restriction to set the cohstant c
equal to zero. If we substitute the value n = £(x) in
the equation (16.3.1), we find that n can be set equal

zero since'it is a linear function of the xk.

. g
Hence our infinitesimal transformations have the £p3

q, xzqa"'»xrq: Yq, P » E

N

where the X, are determined as functions of x by thqﬁ

integrable differential equations
dxk '
=R T ST o (16.3.2}

The developments of this.Section 16 give us the

}following theorem:

Theorem 16.3.1. A family of infinitesimal transformation

-of the form n34,.--5N.4, P*nq satisfying the familiar

relations has one of the following forms

q q q
yq qu o qu
2 . .
AR :
P xrq xrq
Pt ¥Yq ¥q

q
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CONNENTS ON SECTION 16.3

Let G be a Lie algebra, with

E c6

an ideal such that:
dim (g/ﬂ) = 1 .
Sugg;cc that thc_tiald of scalars of § 18 _the eomplex

numberg .

Let B be any slement of G which is mot in H.

Than;‘ '

AdB(H) CH .
Then, as recalled in Chaptar 15, Ad B oan, by choice of
bases of H, be put into triangular form. Thie means
that there ta a basis of H of the form:

Al,...,Ar
and relatione of the following form:

([BaA) = ephy

[B,A,] = Cy3A; * 154 (16.3.3)

.
.

Return to the geometric situation:
Z = XxY

X.» C = Y = The acomplez numbers
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How, assume (as Lie does implicitiy) that the vector fields ?
G are complez-holomorphic vector fields on 2, that x !
ie a oomplex variabls on X, y £s a complex variable on
Y. (The results obtained by working over the complexes
can readily be interpreted over the reals, as well.)
Suppose: .
m(6) = g

’

() = 0 .

Then, AyseoesA have the form indicated in the text, i.q.,f

Ay = ny(xy) %;
and 8o forth.

B 18 of the form
3 3
B n 3? + 3%
The Ai,...,Ar further have three forms determined by

Theorem 14.4.1. Lie now uses relation 16.3.1 to determine

the remaining quantities. Theorem 16.3.1 is the consequena

16.4 DETERMINATION OF THE GROUP TRANSFORMATIONS

It is now easy to verify that each of these families

actually does provide a group of finite transformations:

SN R
N
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1'

2. fhe infinitnsinng frgggfdrnation p gives the
1-term group

y'=vy, X' =x+a

3. The third family gives the (r+l)-term group
yn = gy ¢ 31 + azxz Feoed arxr ,
. 1
x! = x+Z log a .

4. The fourth family gives the (r+2)-term group

Y' = ay + 31 + azxz LA arxr »

X' = Xx ¢+ ‘0 .

These formulas are the group-relations aqrgccponding
to the Lie algebra relations in Theorem 16.3.{. They ¢f‘
readily derived by finding the orbit auﬁvcn of the veetor
fields lieted in Theorem 16.3.1.



Chaptir 17
GROUPS FOR WHICH THBE CURVES OF A FAMILY
¢(X,y) =°'s ARE TRANSFORMED IN A 2-TERM WAY

We now determine ali families of infinitesimal trans-

formations of the form
nIQD""nTQ! P’HOQ- xp*nq ,

satisfying the familiar relations.

17.1. CONTINUATION

There are two essentially different families of the
form
P, xp*nq

For, in any case one has

g_fl « 0

2n . ono= £ .

If f= 0, one obtains the family p,xp. 113 f‘# 0, then
one can replace y by a function of y so that £ will

become equal to 1. This gives the two forms:

P,Xp and Ps Xptq .

321
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17.2 CONTINUATION |

In determining all families of the form

qQ, Y9 yz‘b P, Xpthq -,

one obtains the equations

; 2

' %3 T 8ty tay
3 2

Y5 o = bgthbysbyt

an _ - 2
Y 3y T @ Cop * €1y + ¥y

which show that n = 0. This gives only the family:

2
4, ¥4, Y G, P, Xp

17.3 CONTINUATION

We now seek all families of the form

X4, +,X,q, P*n;q, Xxp+n,q

There are relations of the form

[Xx4» p+n;a] = Zs:cksxsq ,

(¥4, xp*nyq] = Zs:dksxsq

/SROUPS ACTING ON CURVES TN, 2~TBRM.WAY

Again, it is possiblo to replnco xl' «++»>X, by linesr .

combinations of then

Voo X Tyt ag X,

sa that in the transformed eéuatiqns(

‘[xidv P*"lq] - Ecks S ’

[X{a, xp*nyal = ”Zd{,X;q ;
[ s '

‘the. new coefficients Cler Qi; have very simple values.

As in 516 2, let A= det (uik) and let aik be

the subdeterminant corresponding to “1&’ so that .
SET ARLEENE (ST N N

and coﬁpﬁtatiohféivai

v

S P

i TR SRR R
1 -

%o " T 2;;‘: {;“kjdjgaoq_

Now in the linear infinitesimal transformation

(19.5:1)
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for which
[A,B] = A
by Theorem 15.6.1, make the'substitntioﬁ

1. o
Xo * & %;Bopx&
Then ‘
» .
x§ = %:uijxf
and ‘
3 Z 3
- a b o
5?; ¥ k&L |
so that
1
- EEZED
B = %‘ D3> {; 3 v a,.d, B x!
3 3% ki jeon o
Putting
= L
A Zk: § axy CkoXg
]
B =
% b 3% %ko%o
gives

2 6, .C, B '
L S R PAL TS

»
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‘dio‘"' % 3 p‘“ijdjé‘op ’

these formulas being the same as 17.3.1. But we have seen
(Tbeorel 15 4, 1] thlt two linear infinitesimal transforma-
tions A and B for which [A,B] = A can be simultan-
eously brought to canonical forms by introducing suitable
new variables. In this way we see that the constants LT
can be chosen so that cj =0 when o > k-1, and

al; = 0 when o > k. Thus we have the theorem:

Theorem 17.3.1. If r+2 infinitcsilal transfornations of
the form X;q,.. ..qu, P*n;d, Xp*n,q satinfy ‘the . fqgiliar
relations, then it is no essential restriction to assume

that these relations have the following form:

X2 P+ 3a] = cyXyq +ecce e, k-1%k-19 |

[xk'-'la xp#+ zq] - ’dk‘lxlq oees &kkxkq

Since Xl can be set equal to 1, one has first

3“1 ‘ .
Fy—— = 0, - ny - f(x) .
Replacing y by y+¢(x) shows that we can set n, = 0.

Hence setting k = 2 in the first of the equations

(17.3.2) gives
dxz
- - c
dx~ 21 ?

(17.3
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. : xw v Eysre™iq = x'p! ALKyt [ReL(r+1-0) " Maq
which implies that one can teke X, = x. Similarly, one I T 0
| obtains the values If K¢ rel, then L can be chosen so that
xS - XZ.“" xr - xrfl . | (R.+ L(?fl'l) - ' 0 . |

- oA :,,‘,',_:E‘ AEDEIN . ‘ 0
On the other hand, if one sets k = 1 in the second of Therefore the family sought has one of the following tw

the equations (17.3.2), one finds: forms:
’ (Fo formﬁla ie qiucn in the text (?.66).)' (*) ;d”f q
Hence the sought family of transformations has the x? x?
forﬂ: . x;q xrq
95 Xq,...,X q, p, xp+[Ky+f(x)]q » g P
But one has wexya | | +*[(f¥l)fiiir’qu'

(P, xpingal = p + (vgrvyxst-revxfiq

df(x - T
a_x_.(_l uo + ulx oo urx ,

and so one can take f(x) = er+1. We shall show that,

so that . - | ‘ . ( |
If R# 0 in the second case, then it.is no restriction to

v

BEER !

take R = 1. - o I

in general, it is no restriction to take R = 0. ‘ ,
17.4 CONTINUATION .. A e

Put C et
y' o= oy s 1l X' = x, It remains to determine all families of the form
' ' oy 4o
so that XIQy. . .',xrq‘,, Ya, ptMyd. szﬂ'zqﬁ '
Sy' = &y + L(r+1)xr6x, §x' = &x
There are 2r relations of the form
therefore L \ i

3“1‘ dxk“ B
X5y T & "}i:-‘nxi"k’ ,

Q' =q, xq = x'q",...,x"q = x'Tq" ,

P = p'+ L(r+1)xrq' , .
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3n2 ; ) .';’ -
"n;-'x;;x“- -_Zi.auxiwky ,

whence

e oy dxk i ;
OUPIILII 4 £ 3 chki 1) T4t 5,0

Forming the expressions [yq, p+n1q], [yq, xp+n2q] now

gives two equations of the form

an

1
By ™ * ;.Yixiﬁvy s

yeZ-m = ¥
y nz T 6ixi + 6y

y

Substituting into these equations the values justVfound
for n; and N, shows that all the x and dk are

zero, and likewise that y and & are zero.

Hence there are 2r+3 equations of the form

(X9, pmyal = ;ckixiq .

{Xza, xp*nyq] = Zl_‘dkixiq ,

'GROUPS. ACTING ON CURVES IN 2-TRRMWAY .

[iq- P"nlq] - ;4?‘111‘ »
{ya, xp*n,a} = ')i:,éixiq ,

[p+nga, xp+nyq]l = P+ myq * Ayq + ;”ixiq .

In the last equation one can attdin A = 0 by replacing

ny by ‘n1+Ay. Then the infinitesimal transformations

X,q, P*n;9, xp+n,q are in the same relation as in Section

17.3. And we see, as before, that it is no restr1ctxon

to set

Setting

[xk49 P‘"'f]_“] - ?k;xiq A ck’k.lxqu s A
[xkq;a W’nzq] - dklxlq AR dk,kxkq .

S 1 ’gives

@ -
=

=0, o = £,

~<

and forming [yq, p+n;q] shows that it is nho restriction

to set f£(x) = 0. Similarly, one finds that

n

~N

= K, n, = Ky¢ F(x)

al

where it is no restriction to set K =0 and F(x) = 0.

Finally,

one sees, as in Section 17.3, that one can set
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~1
X, = x, Xg -'x?,...,xr -l

Hence the sought family has the form:

q, xq,...,ern Yq, P, Xp .

The developments of this section give the theorem:

Theorem 17.4.1. If the infinitesimal transformations
nIQa---.nrq, P+h0ql Xp+nq

satisfy the familiar relations, them the transformations

can be put in the form

P

xp q q
yq xq
v’q :

P 1 P xrq
Xp+q xp P

xp+Kyq

q q
Xq xq

qu x;q
p q

xp + [(r+1)y+xr+1]q . p |-

p ‘ xp
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CONNENTS. ON BECTION 17.4 .

the method used in shia aHapter may be regarded ae
a ganoialiqation of the method used in Chapter 18, Our

problam.ia now ta determine prolongation homomorphiams

CR‘: 9 - gi ,
auch that;
dim g' = 2
Logteally, there are tvwo fantc to the problem, ane

¢lgebrats, the ather geomeirig.
The first ie to claseify all homomorphiems of this

type in a purely‘qlgebraia way, the Qoaond'ia'to find

whioh of theee pasaibilities fq regli:a@&giwith:

dimX = dim¥Y = 1 ,
and with the kcrpct.
H o« 3,3(0)c 6
determined by Thearam 14. 4. 1.
Thepe are then swo possibilitied for §':
Cal G'. ‘is abelian A
) ¢ {8 ‘solvable, but mot abslian
There are the three families of posstibilitias of H,
tisted in Theorem 14,4.1.
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Case 1: H £ egmiveimple
Then, uaing atandard praportiaa of semi-aimple Lie
algobraa (6.9., the oamplota reduaibtlity property and

tha Levi-Malesev thaqrcm), one gees that” )

G i8 a dtgcct sum of tha idcal H

’ and an ideal isomorphic to G*. - L
We denote this as follows:
¢ = Heg o
We have then:

tetH = 0

taee 2: H iz not aami-aimgle.

We see from Theorem 14.4.1 that in thie case H
dose not even contain a semi-simple subalgebra.

Now, apply the Levi-Malecev theorem. (Ses Samelaon (lz

VB, vol. II, Chapter 2.) Write:

G = vector space direct sum of a solvable

ideal R and a semi-eimple subalgebra S.

Now, the homomorphic image of a gemi~gimple Lie algebra iaif

semi-simple. Hence,
ﬂ.(§) i8 gemi-gimple

N
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Since we are assuming G' dia solvable, we have:
'.(g) = 0 ,

.64,

17
n
L}~

hence:

s=0 .
In partioutas,
G Ze golvable

Lie's theorem on the triangular form of A G ie now

avatlable,

Case 3: G is the semi-direct sum of H and G'.
This means that there ie a Lie subglgebra G" C G
oucb that, as g veotor space, .,
g - Heg
Ty maps G" igomorphically onto G', @0 that the Lie
algebra etructure of §" ie determined. In this case,
the triangular form of l '

Ad G" aatingioﬁ g,

i8 the tool to determine §.
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Case 4: G f8 not g semi-direot sum of .g "gnd G'.
In thie case, chooss
G"c G'
as a one-dimenstonal ideal of G'. Set:
Bo= wlem |
Then, (H',H,7,G") is determined by the work of
Chapter 18. One must then sce hov an element of G'

which is not in G' may be fitted into the canontieal

forms found in Theorem 16.3.1.

17.5 GROUPS GENERATED BY THE LIE ALGEBRAS

It is now easy to verify that each of these fagiliessﬁ

actually does provide a group of finite transformations.

For example, the fourth family gives the group

k r
y' = ay+ a; +oagx 4ot a X R

(- + .
X ax ar,z

The fifth family gives the group

e(r+1)a (r+1)aaxr+1

' - XK B i
y y + e + al + + ar+1*

a
x' = e°x +
8

with the parameters 8358,87,...,8 ’Finally, the last

T+l
family gives the group
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x' = bx+b, ,

re10P00; -

i

with the parameters 8y8y,004,8

i



Chapter 18 e
GROUPS FOR WHICH THE CURVES OF A FAMILY

) = a ARE TnANSFonunn IN
¢(x,y) 3 o L

We now determine all groups which transform the curves
of a family ¢(x,y) * a in a 3-term way. By Chapter 17
there are six different cases, which are quickly dealt with

as follows.

18.1 FIRST CASES

All groups of the form p, xp, xzp+nq are determined

by the equations
M . o 3
&% x5y
so that we obtain only the group p, xp, xzp.
All groups of the form

P, xp+yq, x’psnq

are determined by the equations

] - 3 - Yo
5& 2y, x'{n"')"a‘)n,' n n

from which it follows that n is of the form n = 2xy + B2,

Hence one finds .the three transformations
\ : “a
Ps Xp+yq, xzp+(2xy+Byz)q - .

O
If B# 0, then it is no essential restriction to take
B =1,

337




All groups of the forn “v “;'ﬂj o
R T
? Y4, Y 4, P, Xp, X p + nq
- are determined by the equations
,%n_v. Cal T 2
Y ‘ ‘o aly + ‘zy .“ )
an _ - ) 2
y 5% n by ¢+ by + by"

which show that one can set n = 0,

All groups of the form

a, xa, x%q,...,x%q, p, xp+kyq, xlpinq

N

satisfy the equations

an i 2 i B
oy " Lvyxt, 2 o7 Twx ¢ 2Ky
from which it follows that one can set

n o= Ly + ™1+ 2kay |

Moreover, ,
2 ’
[xp*kyq, x“pna] = x%p + nq + Z:Aixi
whence '
M(r-X) = o0, L=o0 |,
Moreover, N
r 2 i
[x"q, x"p*nq] = I p.xq ,
whence :

2k = r .

ks
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Hence if r # 0 one dbtains the family
Qs XGsre s X q; P, 2xprryq, x’prrxyq
while if r = 0 one obtains tke family
i q". », xp, xpHixq

and, since the hypothesis M = 0 gives nothing new, we can

set M= 1. Now replace y by e’, to obtain the infini-

tesimal transformations

Y4, P, Xp, XZP+XY4 ’

wﬁich ave all linear transformations.

18;2 NEXT CASES

'To determine all_families of the form
+1 2
Qs Xfoe-+XTq, Py xp+[(r+D)y+x" " “lq, x“p*nq
we first have the equations

an ves T
3; = “0“ VX + + vrx s

-

_ \ | .
'%% = 2(r+l)y + 271 . Tupxt

whence A .
T+
n.= 2(r+l)xy + ;%7 xT*2 4 Mx + Ny .
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Substituting this into the equation
[xptnga, x’penal = x%p ¢ nq + Tagxlq ,

shows that one must have r s -1; but this is absurd.

18.3 FINAL CASES
’

Finally, we seek the most general family of the form
r 2
q, Xq,,:-,X ¢, Y9, P, Xp, X"p*nq .

Since n satisfies three equations of the form

i
Bo.opertey

%2' = Zsixi + B}’ »

y%{}-n-):yixl+yy,
one has n = Byx. Applying the operation (xrq shows that
B = r. Therefore, the family sought is
r 2
Qy XQ,ys.0,X°q, YQ‘ P» XpP, X p*rxyq .,

The developments of this Section 18 give the theorem:

Theoyem 18.3.1. If the infinitesimal transformations

‘“IQp:OO»“qu g*‘agp,foQIQ. x?pfozq sa ;sf the familiar.
relations, then they can always be put into one of the

following forms
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P P . ya
xp xp*yq P
Ppl “‘ihp*tzxy*ayz)q xp

: x%pexyp

q q q
ya xq xq
yia : :

x'q xTq
p P P
p Zxprye P
x%perxyq ya

' x%perxyq

COMMENTS ON SECTION 18.3

Again,fthc Levi-Maloev theorem and J.H.C. Whitehead
thcbrumo on "the splitting of extension of semi-gimple
algebras” provide general insighte into the rssults of

this chapter. Let G be a Lis algebra

Tat G+ G'

-~ ~

a Lie algebra homomorphism. This chapter is concerned

with the caese where:
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dim ' = 3 .

Now, this ocase, togothcr‘wtth the assumption that G' is
a Lie algebra of vector fields on a l-dimensional manifold,

implies that:
G' 1is semi-simple.

The Whitehead theorems now imply that w, 18 a "split"
extension, i.e., there {8 a Lie subalgebra G' of G
such that:

G = He G (direct sum veotor epace)
where

H = kernel r,

-~

Eaoh poesible H 1 determined by Theorem 14.4.1,

Ad G' aoting in H s completely reducible. Again, the
conditéon

[¢',H] < H
serves to determine G'.

Here is one general pattern to this. First, olassify
one eort of Lie algebra action, then determinme in how many
ways this can be extended to a larger Lie algebra action.

I will develop eome general features of this problem at

the end of the paper.

4

Chapter 19

SOME GROUPS WHICH LEAVE INVARIANT NO
FAMILY OF CURYBQH QCX,Y) m g

By Chaﬁfer 13 the grouﬂs of the plane which leave
invariant no family of curves ¢(x,y) = a are character-
ized by the property that their first-order infinitesimal

transformations are either of the form

(x'xo)P*"" (Y'YO)P""n (x'xo)q+"'n (Y'YO)Q+"'
or ’

(x-xg)p - (¥-ygla+-++, (x-xglq+-++, (y-yglp+:-*
In this section we determine all those groups which, at an
arbitrary point (xo,yo), possess not only first- but

also higher-order transformations,

19.1 TRANSFORMATIONS OF MAXIMAL ORDER

The groups we seek have, in any casé, three first-'

order transformations of the form

‘ (x-xg)P - (y-ygda*"*, (x-xg)q+*", (i-yo)p+---l;
moreover, they contain transformations of higher prder.
Let s be the maximal order of such a transformation. We
shall show that s = 2.
If gp+nq 1is an infinitesimal transformation of order
s, then & or n 1is of order s; assume & is. Then we

can put
343
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tp+nqg = p 1; ai(x-xo)ity-XO)"i‘*‘dq*"'

where the coefficients Ggse-ey8y,08y are not all zero. By

Theorem 8.2f1,
[(x-%g)a++++, gponal = p Ta(s-1) (x-xp)+*  (y-y ) > 1%L

+* “1q YRR

is an infinitesimal transformation of our group of order s,
call it §p + nyq. Then
- [(x-xp)q%e++, Eip+n;q)

is again an infinitesimal traﬂsfornation of ordei s, and
so on. Continuing in this way one finally obtdins a trans-
formation of order s

((x-xp)%+ap (x-xg)* P (y-y )P+-+-)p + nq +:++ = 6
whose £-term contains (x-xo)s.

To continue we first simplify the notation by setting

t 0, Yo " 0, which amounts to moving our arbitrary
point to the origin. We then construct the infinitesimal
transformation

[xp-yq+:++, (x®+apx® PyPr--s)p 4 nq +:0v]
which is of the form

((s-1)x®+(s-2p-1)apx® PyP+ecc)p + ng +++* = H .
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Hence there is alwlys_g‘trlnsfqrnation of order s, namely
H - (s-2p-1)G, which is of thg form

(xs,ap+lxs-p-lyp+1§,_.)p +nq

In the same way we see that there is a transformation of

the form '
(cPsa, x* P 2yP 2y 4 g

and so on; finally we find an infinitesimal transformation

of order s in the group of the form
xsp +ng +eer
i.e., whose £-term contains only one term of order s,
namely <. \
In Section 13.1 we saw that the group we seek contains
two independent transformations of order zero:
ptetc, qrrtt
Therefore it also contains the transformation of order s-1
s
[p*-+-, x"ptnq+---] ,
which is of the form
xs-1p +ngq et
Moreover, it contains the transformation

- 2g-
[x*"Ips jq, x®penq] +oor = xP5Fpang s,
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whose order is 2s-2. Thus we see that 23-2 < s, i.e.,

s < 2; this gives the theorem:

Theorem 19:1.1. A 'fogg which leaves invariant no family

of curves ¢é(x,y) = a possesses no infgpitesiial trans-

formation whose order is >2 at a general point.

19.2 FPORM OF TRANSFORMATIONS OF ORDER 2

It is now not difficult to determine the number and
form of all infinitesimal transformations of order 2,
assuming, as we do, their exis?ence.

We have found that there is always a transformation

of the form

xzp + (ax2+8xy+vyz)q *eee = G,
and therefore we also have the transformation

cee 2 2 2
[xp-yq+ ', G] = x"p + (3ax"+Bxy-yy“)q +:*
= K .

as well as

(ax?-vy?)q ++or = %—(K-GJ = L.
One has

[xq+***, L] = -2yxyq +*-* ,

[xq+-..' -Zyxyq+...] = -zszq PR
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Moreover,
2 2.3
[nyq*.ﬂ s YX q+-.-l = .y“x"q ++-
which shows that y = 0., Thus, L = ax2q+--~ .
Now ‘
2 2
[ax"q+e-«, yp*---] = a(x"p-2xyq) *+--+ ,

[axzq+ RN u(xzp-\,zxyq)-"- . .] - -‘azxsq 4o .

so that o = 0. Hence the infinitesimal transformation
has the form

G = x2p + Bxyq +++- .
To determine B we form the transformations

[yp+-*+, 6] = (2-8)xyp + Byla ++er = H ,

and ' s

[G,H] = (B:1)(2-B)x%yp + (8-1)2BxyZq +:+- ,
which shows that

(8-1)(2-8) = 0,  (B-1)2B = 0 ,
so that B = 1.

This shows that the group sought contains two second-

order infinitesimal transformations of the forms
2 i 2 . es
x°p + xyq ++-+, Xyp * y'q+
If there are other second-order transformations

(axP+bxyscy?)p + (axPepxysyyl)q #+vc = U +eee
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then ,
[xzp*xyq. uy = o, vap+yzd; Ul = o .
But ‘ .
: ' 2 Y (o2 2
xyp + y'qa = g (x"pryq) ,
so that ' " '

(xpraya, U] = 0, [L, U] -0,

zp,* xyq and y/x.

- showing that U  is a function of x
Sinée U is a polynomial of degree 2 in x and y, it
is of the form '

A(xzpfxyq) + Blxyptyla) ‘
which means that the group contains only the two second-’?
order transformations found before. '

Therefore, the group contains the first-order trnnsj
formation | :

[pe+-+, xPpoxyqe:+] = 2xp + yq +oe-

and also the transformations
xp-yq +..-’ xq Q.-cu.yp+ono >
so that it contains four independent first-order trans-

formations. Thus:

Theorem 19.2.1. If the infinitesimal transformations of |

SOME PRIMITIVE ,GRQUPS ' LY R

*
p*-o-’ q*‘-f. z?’..t’ YP‘T". xq*oo-’ yQ*....

xPpexyqre e, xypeyZqre--

19.3 DBTERMINATION OF THE PRIMITIVE ALGEBRAS

~ We now determine the relations among the ‘eight
infinitesimal gfapsformations we have found. )
First, the following nine relations clearly hold:
[xpexyase -+, xyprylqeecc] = 0,
[xp+*-*, x2p+xyq+-'-] -

IXP*'"".xyp*y‘zlq“"]u' 0 N

[yqe#---, xzp+xyq*'°'] - 0 ,

[yq+:--, xyp+y2q+...] = 2

[xq+-o’. xzp+xyq+-.o] = o ,

2

[xqre-, xypoyPassc-]. = xPpexyq .-

2

[ypse-+, x’psxyqs-:-] = xyp + yZq «---

[yp+.--' xyp+yzq+..o] = 0 .

Moreover, there are relations of the form

[xpse++, yas++] = Ai(xzp+xyq*"') + Bltxrp*yzq+-")

x%p + xyq +- -

Xyp +yq *:¢- ,
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[xPQ..o. xq*;--] - (xq‘.-o) f Az( ) » Bz( )

[yq+-u~' xq#-o'] .l .-(xq0-oo) * As( ) + BJ( )

[xp*..-. yp*.oo] = -(ypﬁf") * A‘( )+ B‘( ’ )

[yq’.'oo’ yp*von] - (yp’ﬂ") +* As( ) * Bs( )

~

[xqe+=+y ypo+o+] = (xp-yas ') + Ag() + Byl

where the A, and B, are unknown constants.

To simplify these equations we put

X'p'aces m  (xphece) ¢ al(x2p+xyq+"') + 8, (xyp*y
YIqitees = (yqeccc) + azf | )+ By(
X'qieees = (xqeese) + agl )+ Byl
YIR'Heee = (ypeeee) + al( )+ 8,

and introduce these quantities as first-order infinifosinnl ﬂ

transformations. We make the abbreviations

xfp + xyqere-

xyp *+ YZQ*"'

s0 that

[x'p'*"', ylqteeer]

- Sl N

- Sz N

(Aj*a,)8, + (B,-8,)8,

[X'P'*"', X'qterce] = (x'q'*nf-) *»(Azwﬁl)sl

+ (Bz‘ss)sz

2

)

q*-cv)}‘
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[rfqresce, x'qlesc] = ~(x'q's1vs) + (Agrag-8,)5;
+ (Byr28g)S,

[X.P""-". y'p'q:o,-.] - -(y'p'#- '-) + (A2+264)81

+ (34‘0148‘)82 »

[y'@'+==s, y'p'++=r] = (y'p'* ") + (Ag-a,)S;
* (Bg-0,)S;

[x'q'+e--, y'p'+-ce] = (x'p'-y'q'+:-°) + (A6+8“01’02)81
+ (Bg-ag-By*8y)S,

In this, we can always assume that the o, and B8, have

been,cposen so that
Aj +ay, = 0, By -8 = 0,
Ag+ag-B; = 0, By -8 % 0,
Ag - a, = 0, B, ] @y *.By ™ 0

Hence it is no restriction to assume that we have equations

of the form
(xp+-e+, yq++--] = 0 ,
[qu.-oo'. xq+-oo] - (xq+°") + Azsl »

[yqe -+, xq+=++] = -(xq++++) + nssz s
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[Xpéres, ypee-] ® -(ypseeo+) + A‘sl .
[yase:, ypse=+] = (yp+o°) « BeS, ,
[xqéee+, ypreer] = (xp-yqeee+) + AgSy * BgS, .
We shall show that the remaining Ak,Bk must be 0.
For this, we form the gggggg identity
0 = [[¥p+-~-. Yqre«el, xq+e--]
+ [[Yq""', Xq*”"]. qu....]
+ [[xq#-++, xp++--], yq++++] ,
which gives, by substituting the values above,

“[xq#ee+, xpteee] - [xXqtece, yqreee] = 0
and finally
(xq++-2) + A)S; - (xq+e-) + B;S, = 0 ,
so that Az = B3 = 0. Similarly we find that Ay = BS =0
by applying the Jacobi identity to Xp+et', yqieec, ypteo-
We form the identity

0 = [[xq+-e+, yp+e+:], xptr--]
+ [[yp+--:, xp+---], xq+---]

+ [IXp+..-,xq+...]’ Yp*"‘] .

whence

0 = 'A6sl + [yp+---, Xq*"’] + [xq*-'~’ yp+...] ,
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so that  Ag = 0. Similarly, applying this identity to
xqteer, yprecs and yqéeec, we see that B, = 0. Ve

have thus proved that all the Ay and B, are 0.

It remains to put the relations among p+°°*, q+°°°

and the other transformations into their simplest fornm.

First, fhéib_a;e equations of the form
[p*: <, xzp*xyqf’f'] - z(xp+...) + (ygeeee) + AS; + A8,
[p+++, xyp*yzq*'-'] = (yp+-++) + BiS; + B,S,
We reﬁlace D x\l':y a transformation of the forﬁ
p+ u(xP+'f') + g(xq+...)'+ Y(YPf:“) + §(¥q,...) .
noting that we ;én‘choose’the constants, a,B,x,# /S0 that the
two edﬁgtion§ deée QsSnﬁe the éijple for- ‘
{p*.--, xlpexyqe- -] = 2xp+cc) + (yqreer)
[pte--, xYP*YZQ*"'] - >(YP*"'J: .

Similarly, it is possible to choose the transformation

q+-°+ so that .
[qteioey Xoprxyqeece] = xq +-0¢
fas+++s gyﬁ;y29+f..] = (xpree-) *+ 2(yqeee-)
Moreover, there is a relation of the form
[ptevs, Xprese] = (pe=+) * a(xps-+-) + B(yp+--*)

+ 'r(xq""') + 6(yq+"') + uSl + \)Sz H
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we have

s

0 .' [[p+:++, xp+---], 81] *’([‘P*"" slln proee]

+ Itsl,vp+"'], Xp+e-e]

whence - S Vi B :
' [lp+*+~, xpeee-1, §;) o_[sl; ptee-]. - 0

or

Sy *+ 8S, - 0 ,

so that o = 8 = 0. On the other hand, applying the Jacobi 4
identity to p+e-ee, xp+-++» and S, shows that y = § = 0‘

Therefore,
[p+e+, xpe...]) .(preee) + "1 1t pz 2

By completely analogous computations one finds oquations
of the form

[p*n-o, yp+..-] - \)lsl + \)252 ’
[p#e-:, yq+ees] = “181 + qzsz ,

[preces xqeece] = (q#e0) + 8)5, + 8,8,

Now replacing p+'** by a suitable quantity of the form

(p+:-+) + 9151 *+ C,5, shows that My ® uy = 0. Now
applying the Jacobi identity to p+::+, xpts++, ypee-:,
and to p+cc-, yq+**+, xp++-+ shows that v, = 92'- ay
a, = 0. Therefore:
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[p*"'. xp+ou-!’ - p+omo',} [’Q-..’ ypo...] - 0, o
[po...’ yq+.o{jl = 0 .

Completely analogous considerations show that the

infinitesimal y;fnsformntion q*'*+ can be chosen so that
gﬂ‘[q+..., yqteee] = qteee
'[q*'ff’ xq+e++}. = 0 ,
[q.y...’ Xp"‘"’] - 0 R

[q,..., yproee] = (pteer) + V18; * Y,5;
Finally, applying the Jacobi ldentlty to' p+'-', xq+-'-
yq+-+* shows that’ 61 - 62 =0 and ‘ : i
‘ [p+---; xq+-..] = q*... ;
an analogous.compﬁtntion shows that : o
[qte-v, ypree+] = pree. |
Now we must compute [p+-:*, q+-;-]. There is aﬂ
equation of theAfotn
[p+}{., q+-++]1 = A(p+--+) + B(q+-;~) ;;C(xp+--~)

+ D(xq#+++) + E(yps=-) + Flyqe:++)

+'GS1 + HS2 .



356 . SOME PRIMITIVE :GROUPS

Applying the Jacgbi identity first to pe:--, qt-+, Sy,
and then to p#--F, qéeee, s2 and finally to p#s:-,
q+*°*, xp+-++, shows that

'

[ptoc-, q‘--\] = 0 .

The results of this section (i9.3) are coiiected in

the following theorem:

Theorem 19.3.1.. The relations among the eight infinitesi

transformations

p+o-o’ q"".’ xp+--.’ }rp{-oc-, xq«f"" yq{-o--,’

xzp+xyq+o.c! xyp+yzq+o-.

have exactly the same form as the relations anghg the

eight linear infinitesimal transformations.

Ps 49, Xp, YP, Xq, Yq, xzp*x7q: xyp+yzq .

v

19.4 CANONICAL FORM

It is now extremely easy to bring the eight infini-
tesimal transformations we have found into a simple canon-

ical form‘by introducing sﬁitnble new independent variables

x',y'. Por this we need the following lemma:

Theorem 19.4.1. If three infinitesimal transformations

Al,Az,As where Ai = E;p+ n;4, satisfy the relations
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[Aj A =0 (L <ik<3) andiif A(f) =0 apd
A,(f) = 0 are independent linesr partial differential
equations, then Ay is s linear combination of A,
and A,. ‘ ‘

To prove this theorem introduce suitable new vari-
ables x',y' so that the A.k assume the form

Al -‘P" AZ - q', AS = glpl + nlql ;
then

3" 3E' an' . an'
S L S AL

y
so that actually
Ay = cqp' + €' = CA) *CAy
for some constants C15C3-
The infinitesimal transformations p+---, q+*°*, of

Section 19.3 satisfy [p+°*-, q+--+] = 0, and the linear

partial differential equations
p+--n = 0, q.’..-- - 0

are obviously independent since when x =0 and y = 0
they become p = 0 and q = 0, respectively. Hence we
can choose variables x' and y' so that p+-++ and

q+-+- assume the form .

pte-+ = p', q+e*c = q' .
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3

To determine the quantity
xqérce s Ep' ¢+ nq’
in terms of the n‘w'vdrinblos we use the relntioﬁs
[q¢t -, x§+..7] - 0, [peere, Xq#ees] = qiees p
or, equivalently,
L', Ep;+nq'] = 0, p', &p'*nq'] = q' .
Puttinﬁ
‘ Ep' + nq' = x'q' + E'p' + n'q’
gives
[q', €'p'+n'q'] = O, [p', &'p'+n'q'] = 0 ,
from which it follows by Theorem 19.4.1, that E'p' + n'qg!
is of the form clp' + czq'. Therefore, ' -
xq+**T = x'q' + clp' + czq' .
By completely analogous computations one finds thath
xpeecc = ox'pt o+ dpp' ¢ dpat
ypretr = y'p' + ep' ¢+ eyq' ,
yarers = y'q' s £p' + £0°
x’p ¢ xyarers = xt¥pt e xiytqt e gpt v gt

2 ,2

Xyp + y'qeers = x'y'p' + y'%q' ¢ kip' ¢ kyq'

In this it is not necessary to determine the constants

¢, d, e, £, g, k¥ more closely. For it is well-known thnt"
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the infinitesimal transfarmations q, P, Xq, Xp, YP, ¥q»
x2p+xyq, xyp+y2q are the infinitesimal transformations of
the general linear fractional group.

Thus we have the following fundamental theorem:

Theorem 19.4.2. If a group leaves invariant no family of

curves ¢(x,y) = a and if the group contains infinitesimal

transformations of order >1 at a general point (as well

as ones of orders 0 and 1), then a suitable change of

variables transforms this group to the general linear frac-

tional group of the plane.

COMMENTS ON CHAPTER 19

This chapter 18 a tour-de-forece of caleculations.
Lie's approach is powerful and stiraightforward. It ig
poesible to give a shortened treatment (but one involving
more algebraic machinery) using idead developed.by Cartan
in his extenaion of Lie's work in his "Infinite Lie Group”

papers.



Chapter 20

DETERMINATION OF ALL GROUPS WHICH LEAVE
INVARIANT NO FAMILY OF CURVES
o(x,y) = a

It remains to determine all groups whose infinites-

imal transformétiqnsxaré either of the form

PHevtvy QFevr, Xpheoo, YpHece, XQtees, Yqte--
or of the form

PHet, Qbece, XQEeee, ypeecc, Xpoyqt -

These groups have either six or five parameters.

20.1 THE SIX-PARAMETER CASE :

To abbreviate the formulas we put
p+... = P, q+-.-{\ = Q’ ) xp+.-oo = xP,
yq+-++ = YQ, xq+--+, = XQ, yp*---, = YP ,
noting that, for exémple, the symbol XP doesn't denote
the prbduct of two quantities X and P but is an irredu-
cible symbol. OQur first concern is to bring the relations
among these six infinitesimal transformations into their
simplest form.
Among the four first-order infinitesimal transforma-

tions it is obvious that there are the following relations:

361
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. . P,XP-YQ)},YP] - 2[YP,P] + >, T = 0
[XQ,YP} = Xp ~ Y , ‘ [[ ’ Ql., ] [ »P] z

' ives an equation of the form
(XQ,XP-YQ] = -2X¢ , # 4
: 3[(P,YP] + YT = O
[YP,XP-YQ] = 2YP , (p,YP] + 3 _ ,
so that v = 0. Similarly, a = O.

]
—
<
o
|
X
o
—t
.
_—
o -
-
'
[
L
-
>
-
M
0o
St
2

[XQ,XP+YQ]
We shall now show that in the two equations

To simplify these formulas denote XP + YQ by U [Q,XQ] = a;XQ + a,(XP-YQ) + a,YP ,

let T denote the three quantities XQ, YP and XP-YQ.
! [Q,XP-YQ] = -Q + leQ + BZ(XP-YQ) + 33YP

Then there are relations of the form:
' it is no restriction to take the ey and Bi to be zero.

[P.XQ] = Q+ LA T, + AU ,

[P,XP-YQ] = P + z:uka +ul |,

For this purpose we introduce the quantity

Q + AXQ + B(XP-YQ). + CYP .,

[P.YP] = FvT, + w0,
in which A,B,C denote unknown constants, in place of
[Q.xal = zuka M q+*-+-. In this way we can make
[Q,XP-YQ) = -Q + BT, +B8U , 4y =a, =8, =0 .

- Y =
[Q,YP] P+ zYka +yUu o Now the identity

Now replace q+-:- and p+::+ by transformations of the [[Q,XQ],XP-YQ] - 2[XQ,Q) + [[XP-YQ,Q],XQ} = ©

form Q+eU, P+SU., In this way we see that it is no restric-j implies

tion to take A = y = 0. Now the equation
, SagYP - 28,XQ + B3(XP-YQ) = 0 ,

[[P,XQ] XP-YQ] hd Z[XQ,P] - [P XQ] + T = 0
' ’ Z which shows that ag = 82 = 83 = 0. Therefore

implies .
[Q,XxQ] = o, [Q,XP-YQ] = -Q . .

[Q,XP-YQ] + [P,XQ] + 2T = o0 ,

We determine more of the constants as follows. There is a

so that B = 0. Similarly, u = 0. Finally, the equation relation of the form
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[Q.YP] = P+ aXQ+ 8,(XP-YQ) + aglP |,
and it is permissible to replace P by the right side of
this equation, which gives. B

[Q,YP] = P .

Now the identity

| [[Q,YP],XQ} + [YQ-XP,Q] = 0
implies ‘ '
[P,XQl =~ Q, ;

and the identity

[[Q,YP],XP-YQ} + 2[YP,Q] + [Q,YP] = O
implies
[P,XP-YQ] = P . o

To determine the constants in
[P,YP] = blxq + bZCXP-YQ) + bsYP

we use the identity

]
(]

[[P,YP]),XP-YQ] + 2[YP,P] - [P,YP]

which gives
(P,YP] = 0 .

Finalli. there is an equation of the form
[P,XP+¥Q] = P + c;XQ + c,(XP-YQ) + c4¥P + C,(XP+YQ) 3

using now the identity
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[[P,XP+YQ] ,XP-YQ] - [P,XP+YQ] = ©

we see that .

[P,XP+YQ] = P ;
Similarly, .

[Q,XBs¥Q] = Q
It now remains. only to compute

553 [P5Q) = "aP + BQ + YXQ + SYP + e(XP-YQ) + ¢ (XP+YQ)

The ‘identizies

[{P,Q],XP-YQ] = 0 ,

[[P,Q},XP] - [P,Q] = O
show that
| (P,Q] = 0

Thus we have shown that the six infinitesimal transformations

{ . W
P, Q, XQ, YP, XP, YQ satisfy the same relations as the

linear infiniteésimal transformations p, q, xq, Yp, Xp, Yq.

20.2 CANONICAL FORM FOR THE SIX-PARAMETER CASE

Since P and Q are independent infinitesimal trans- -
formations of order zero at the origin and ([P,Q] = 0, we
can always choose the variables x and y so that P = p,

Q = q. Then the remaining transformations assume the form



i

368 - " DETERMINATION OF PRINTYIVE GROUPS | PRTRRMIBATION, OF. PRIMITIVE. GhOURS e

X A
XP = xP"GIP""qu y [POQ] - Q#ﬁk‘l'k ’

XQ = xq + uzp + qu R [P‘XP'YQ] - P + Euk'l'k »

YP = yp+ o ¢ Byq , C ) = T
Q- oyae G‘p *B4q ! aodu i XQY - zuka s
and this proves the following theorem: R
R g8 B [QXP-YQ] = -Q+ X8T ,
Theorem 20.2.1. If a 6-parameter group leaves invariant LR
i ———— Ot ’YP - P+ Y T
@ - v T,

no family of curves ¢(x,y) = a, then a suitable change of
variables brings it to the linear form

x' = ax + by + c, y' = ax + By + vy .,

7]

and by Section 20.2 it is no restriction to assume that

these equations have the sjimpler form .

[P,XQ} = ‘G,  [P.xp-vql = B, " (p,¥P] = o0,

20.3 CONTINUATION [Q,XQ] = o0, - [Q,XP-YQ] = -Q, {Q,Yyr}] = P,

It is now easy to determine all groups whose infini- One has

tesimal transformations are of the form [P,Q] = aP + 8Q + yXQ + 8(XP-YQ) + cYP ,

$eve m P LRI 3 v = . -
P ' q Q xqee XQ,. and now the identities

-yq++++ = XP-YQ, cee w YP -
Xp-yq+ Q yp+ [[P,Q],XP-YQ] = o, [[P,Q],xQq}] = ©

The two first-order trensformations satisfy the equations
show that all the constants are zero, and hence that

XQ,YP] = XP - ,
[XQ,YP] YQ [r,Q) = 0 .

[¥Q,XP-¥Q} = -2XxQ , Therefore:

[YP,XP-YQ] = 2YP

Theorem 20.3.1. If a S-parameter group leaves invariant no

Denoting XQ, XP-YQ, YP by the common symbol T, one has family of curves ¢(x,y) = a, a suitable change of variables

six relations of the form
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brings it to the form

x' = ax + by + a, y* = cy+dx+ 8 ,

with ac-bd = 1.

Putting together the Tesults of this section and the

last, we obtain the following theorem:

Theorem 20.3.2. If a group of the plane leaves invariant no
family of curves ”¢(x.y) = 8, then it contains 8, 6, or5

A —————————

parameters. A suitable change of variables transforss it to

8 linear group, in fact to the general linear group or to
a 6- or 5-term subgroup of the general linear grogg..

B r—

This theorem extends to n dimensions. In my next paper on
transformation groups I hope to be ablo to giv. a rigorous
proof of this ;onorllizntion.

Chapter 21

ENUMERATION OF ALL GROUPS OF THE PLANE

‘There.is @ natural division of all the groups of
point transformations of & plane into five classes:

1. those leaving invariant no family of curves
¢(x,y) = a,

2. those leaving invariant exactly one family
¢ = a,

3. those leaving invariant exactly two families
$ = a, ' '

4. those leaving invariant an ! of families,

5. those leaving invariant an = of families.

21.1  FOLIATIONS ADMITTING VECTOR FIELDS

If a family ¢ = a admits an infinitesimgl_tranSp
formation, say q, then there are two possible cases.
Either each curve of.the family admits the transformation q,
or q permutes the curves of the family. In the first case
the family consists of the curves x = const.; in the

second case its defining equation is of the form
y + £(x) = A = const. , ..

where A denotes an arbitrary constant.

369
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1f a family admits the two transformations q andi
X(x)q, then its defining equstion 1s either of the form ]
& + £(x) = A :
or
. x = const. ,
and since

X(x) §5 r+£(x)) = X0

is not a function of y+£(x), we see that x = const.

the only family which adwits both the transformations q
and Xq.

If & family admits both the transformations q and

yq, then it likewise is of one of the forms
y + £(x) = 2 or x=2X ,

and since y is a function of y+f(x) only if £(x) = ¢

we see that x = const. and y = const. are the only

families which admit both the transformations q and yq.j

i

If a family admits the transformations q and p,
then again it is either of the form (x = const. or of th
form y+f(x) » A. And since in the latter case f'(x) i
not a function of y+f(x) unless it is a constant, we
conclude that thg fahilz ay+bx = ), depending on the
(grbgtfazz) parameter a/b, is_the most general family
whgch adnits fhe transformations p and q.
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21.2  CLASSIFICATION OF GROUPS IN THE PLANE

Applying these considerations to all the previously
determined groups, we obtain the following exhaustive classi-

fication of all groups of the plane.

A) Groups leaving invariant no family ¢(x,y) = a:
P P P
q q \ q
xp xp Xp-yq
ya ya | | xq
xq xq | - yP
yp yp
XZP*XYQ
XYP*YZQ

These groups are all linear groups.

B) Groups leaving invariant exactly one family:
q q q
X;a X,a X4
X.q X X.q
yq pteyq
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o a It is assumed that ?,? Q;w‘;nlykfo? the seventh group can .
AR ‘ SRR ) :

| q P one have T = o. . o .
X9 xq, o ’ xpfyq c) Grd&ﬁﬁéiéﬁ§iﬂ& iﬁv#?iiﬁtAJXaétly two families:
: v : : xzy+2xyq EERCER St W
T
Xt *e al  faf q q q
4 L va |  ya. ya yq ya
+K:
P B iind v P v’a P
‘ P xp
q q yq
xq ‘ xq P q
: : o xp 1va - e |
xrq xrq -xzpq.xyq y%q . ‘ yzq
P yq P
xp+[(r+1)y+x"*]q P xp xp
2
xp x“p
+
q q q p*q
xp+yq
X *a i zp 2
: : xp+Kyq xpty q
xrq‘ x'q
P p The last group is a‘new form of a group found earlier:
pr+ryq xp P, Xp+YQ, xzp + (2xy+y2)q. In the penultimate group
xzpﬂ-rxyg, . . yq .
x%perxyq
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one must have X # 1. All the groups occurring 83¥¢ are

subgroups of the 6-term group gq, yq, yzq, P, Xp, xzp wﬁos-

simplest geometric for-ris the group of a1l ﬁolut;transfo
tions which transfoinbcny circle iﬁio 8 ciréle. ‘

D) Groups leaving ;nvariggﬁ an ol of families:

‘ b

q- q
preyq P
xp+yq

E) Groups leaving invariant an " of families:

Such groups contain only one infinitesimil trans-

(-

formation, say

Vil Chapter 32
GENERAL ons;uVAfxous

22.1  TRANSPORMATION GROUPS AS A NEW CONCEPT
R ) R B

‘ As‘nlt.@dy !thpoaﬂin the introduction, I believe that
my theory of tggupfbmnqtion groups, whose first elements
have been ﬁnyg;nﬁ@d in this paper, is to be considered a
new theory, gﬁqn;though it has many points of contact with
several nntﬂoh@iﬁcal disciplines, especially with the
Galois theory of substitutions, with geometry and the
modern theory of manifolds, with the theory of differential
equations and, ffn£117,9ﬁlso with invariant theory.

I qha;;épctpi;‘nyself to make -quonﬁqptiqn pore
precisé:f For ;hiﬁ purpose I shall discuss all ;herldag -
inveséig#tions (pﬁblighedrbefOte 1874) I am aware of which: .
are ﬁpre or less relata@ to mine.f At the same time I th@;'
make some general remarks on the new thoughts uﬁderlxi#gggmm,

investigations. ‘ IRRRE A

22.2  ABEL'S RESULY

In his\f;rst paper in Cre}le's Journal, Abql deter-

mined the noét fanoral symmetric function F(x,y)\ satisfying

e , L
Since my knowledge of the mathematical literature is incom-
plete, I must feay thet the citations of the text are incom-
plete. I will receive with thanks any correction that I can
use in my later publications on transformation groups.

375



. nmm of the form

P(F(x.rl.z) . F(x.F(y.z))

e R
This problem: ia a spccinl case of the siuploqt prohlcl of

my theory. For the task of detarbiniuu th& uost\cdnaral
l1-term group of a 1~ dimensiuual aanifnld amounts to findi
the most genersl functions F and’ ) aa@tafyiug * fimes
tional equation - h

F(P(x,a),b) = F(x,¢(a,b)) . =~

22.3  GALOIS THEORY OF ALGEBRAIC EQUATIONS

My transformation theory is closely related to the
theory of substitutions." Both the analogy and the distin 7
tion between these two disciplines are based on the fact
that the substitution theory deals with discrete lanifolds
while the transformation theory deals with continuous lani
folds, and, on the other hand, that any two operations of
substitution group are finitely distinct, while the opera-

tions of a transformation
o group depend on-continuous pParan-

M . . v
ct. e Jordan's "Traité des substitutions".
9!!1LL——————————-—————-—-——Eﬁir-—-—-—
N

Here I must mention C. Jordan' d
of motions. He consider : ups to be oeien of all ro|
can be transformed to th: o:gegrggp:ntorbu equi?nlﬁnt 1f
i:e:yeinresfig:tigns on ‘the other’ hand, g
valen one can be tr
an nrb?urary analytic transformazgzg?rled fnto ¢
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22.4 . TOWARDS A GALOIS THEORY OF DIFFERENTIAL EQUATIONS

It is well knovn thstyin‘tha theory of algebraic
equations the theory of substitutions plays a fundamental
role. Sinilarly, tha theory of transformation groups will
play a not unimportant role in the theory of differential
equations.  And indeed, my theory has significance not only
for differential equations which admit a transformation
group,’but“aiso for arbitrary differential equations. This
is based essentially on the following remarks.

'Tho question df‘whethef;a given differential equation
G=0 - (or a system of such’ equntions) ¢can beé brought into
a certain form F = 0 by a suitable point trnnsformation
or contact transformation in each case requires for its
resolution only those operations which\oné is accustomed to
consider permissible in the integral calculus. Indeed, ifi{
both G =0 and F =0 admit a transformation group, it is
first of all ﬂeCessary‘thai one group caﬁ'be’iransfofncd
into.the other. If one has found that hgither F =0 nor
G = 0 adwits o transformation group, while G = 0 can be

brought into the form F = 0, then this transformation can

be_sccomplished by permissible operations.
If a differential equation or a system of differential

equstions adnits .a transformation group, then, as I have

already shown, or at least indicated, this situation lets

[EN
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us determine the general integral or at least céfiain dis-

R
tinguished classes of integrals.

22.5 RELATIONS TO INVARIANT THEORY

The relation between ny transformation theory and.
invariant theory.is based on the fact that the former: deals
with differen;ial equations which are invariant under arbit-
rary point transformations or gontact transformations. Here
1 am thinking not only of the invariant theory of Cayley
and Sylvester, but also of the (unfortunately almost unknown

to me) investigations of Lipschitz and Christoffel on the

transformation of differential expressions.

22.6 THE RIEMANN-HELMHOLTZ SPACE-FORM PROBLEM'

The Riemann-Helmholt:z investigations of the facts

which are at the basis of geometry stand in a direct connec-
tion with the theory of transformation groups. Helmholtz'
well-known note (Géttinger Nachrichten 1368, No. 9) deals,
in my terminology, with the determination of a certain.6-

*& '
term group of a 3-dimensional space. The Riemann-Helmholtz

—

The transformation group of a given differential equation
may contain infinitely Many parameters., On the other hand,
it is important to note that differential equations may admit
groups of infinitely-many-valued transformations.

L]
I thank Klein for pointing this out to me and for the
reference to Heimholtz' note.
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iniqsﬁigitioh;iiro,res;ribt&h:ip metrical geometry. : Thff:‘y(
theo;y;of ir%ﬁsforiapionngrdqps gives, among other thinES.w:'
a siuiiﬁrlysbcnétri&ingﬁdiséussion;of the projective geome-
triibf'ﬁn nlaihensianal sp#%e, as. I shall demonstrate on
ano;h&rfbcﬁag;on, e -

Lt .
: Ty

24,7  CONTACY, TRANSFORMATIONS

itﬂisfqell-known that geometry often deals with
transformation groups, for example, with the general linear
group,,th@,orthngonaligroup;xihe group. of all c§nformal
tr&ns{ormations, and so on. In my first geometric wonk?
I considered some new groups.. In the note "Uber dic‘ qi
Reiiprozititsverhaltnisse des ggxg§ﬁhén Ko@plexes” ("Onﬁ;\
thé reciprocitf of the Reye compiéx") I dealt with the group
of all éontacfitranSformations whiéh leave invariqnt a

i

certain second order partial differential equation closely

"connected with. the tetrahedral- line complex. I then investi-

gated,- together with Xlein, who had already §een occupied
with applications of the theory of substitutions to geametry,
th@,surfaceswigyariant under a doubiy-infinite,commntative
faiiiy 5%\1;55;; t;&nsformations.** Further, in a paper on

Gattinger ﬁuchiithten, Jahuary 1870 {Collected Papers,
vol. I, paper V.] .

** Comptes Rendus 1870, Math. Ann. IV [Collected Papers,
vol. I, papers VI, XIV.]
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complexes (Math. Amn., vol. V [Collected Papers, vol. IT;
paper I]) I determined, among other things, an important
new group, panely the group of all contact traﬁsforuutiohﬁ
whose curvature lines are invariant curves; 1 sﬁowed‘that
this group ¢an be transformed into the general projective -
. group of space by means of a remarkable contact transforma-
tion. Finally, in his program "Vergleichende Betrachtungen
iiber neuere geometrische Forschungen“* ("Comparative Obser-
vations on modern geometric researches"), Klein developed
the conception that the methods of mathematics, especially
of geometry, in many respects can be characterized by the
transformation group which they adjoin, i.e., by the group
of those changes which, in the sense of the givqh method,

are considered inessential.

22.8  INFINITESIMAL TRANSFORMATIONS

In investigations of first-order partial differential
equations I remarked that the formulas which occur in this

discipline can be given a remarkable iniuitive‘interpretition

through the use of the concept of an infinitesimal transforma-

tion. In particular, the so-called Poisson-Jacogi theorenm

and the well-known Jacobi identity are in the closest relation

r————-—u—-—-—-
Erlangen, 1872.
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with the theory of the compositipn of infinitesimal trans-
for-atlons.' Pursuing this remark, I reached the astound-
ing result that all transformation groups of a l-dimensional
manifold can ﬁe reduced :o*linaar»fbrm by introducing suit-

able variables, and also that all groups of an n-dimensional

manifold can be determined by integrating ordinary differen-
tial equations.’:This discovery, whose first traces go back
to Abel and Helmholtz, was the starting point of my many

years of investigations of transformation groups.

22.9 MY PREVIOUS WORK

'My first publication on this subject CGnyinger
Nachrichten 1874, No. 22 [Collected Papers, vol. V, paper I]
contains not only a resume of all the results of the present
paper but also the determination of all groups of contact

transformations of a plane, as well as ind;caqions of the

- applications of my theory to diffgrential‘cquations. 1 tﬁen

gave a full edition of my most important results in five

2
papers,* which were printed in the Norwegian "Archiv for

One sometimes encounters the idea that the famous Jacobi
identity has only a subordinate value. I should like to
remark here that this identity is the analytic foundation of
my transformation theory. :

3 N
Several inaccuracies in the proofs crept into these pre-

liminary works. Some of the mistakes in the first two works
printed in Christiania were pointed out to me by Mayer. It

is difficult to avoid inaccuracies in the proofs when one is
editing extensive theories, found by mixed methods, in the

language of pure analysis.
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S Tt R

‘Kurven" ("Classificntion of surfaces by tho tr;nsfornntion

Christiania, December 1879,

w o ;énmwon‘jmmmus |

Mutholntih og: Naturvidenskaeb", vql* I‘\!II and av nﬁollﬂc

Papers, vol. V, papers II-YIJ ) I 1ntomd tq devilop. in: the/
same p1a¢e the theory of an nﬁdimeusiohal space. in partic 4

lar, of ordinary space. and to uake some applicatluns of
;hqory to diffﬂrentzal pquations. 1 have nlrpady tivan 8.
first such lPPlzcution in, the p;por~“K1assi£ikatipn der ..
Fllchon nach der Transfo;nationagruppe 1hror geodltinchn;

groups of their geodesics™),. Universitntsprogrann. thistisﬂ

1879 [Collected Papers, vol. I, paper XXIV].

In clpsing. I cannot hold back the following remark. |
In my definition of the concept.of artransfdriniio; group R

I explicitly require that the group contain the inverse of S

each of its transformations., For the group of all trans-

formations leaving invariant a differential equation, this  §

requirement is unnecessary. ‘ g

" Chapter B

SOMB GENERAL TECHNIQUES FOR THE CLASSIFICATION
OF LIE' ALGEBRAS OF vacroﬁ PtnLns

s

1. INTRODUCTION

Lie's locdl classification (in this paper) of the
finite dimensiéndl ‘Lie algebras of vector fields in the
plane is i‘mﬁiierﬁiece of direct and forceful computation.
For better dr‘uoﬁse, the tendency in modern mathematic; is
to replace (if possible) such brute force calculations with
more subtle general arguments.

" In my comments in the text, I ha#e?sdggested certain
general features that appear when read1ng Lie' s work. In
this chapter, 1 want to develop some of Lie's results ‘in
greater generality, and with ‘moderh tools.

As I have already jndicated, there are (at least)
two genera1 topics interm;ngled‘in ‘Lie's proof of the
classification of Lie algebras 1n the plane--the general
structure theory of filtered Lie algebras and ideas of the
theory of deformations of Lie algebra structures and their
representations. Here is another general problem of great

interest:

Given a finite dimensional Lie algebra

H of vector fields on a manifold X,

383
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how many finite dimensional subalgebras

of V(X) are there containing H?

2. ABELIAN LIE ALGEBRAS OF VECTOR FIELDS

Lie's constant objective was to derive canonical .
ggz!i for classes of Lie algebras of vector fields. His
motivniion comes from his interest in applying transforma
tion group theory to the theory of differential equations

in the 19-th century sense. For, often, one finds differ-

ential equations carrying along certain Lie algebras of
vector fields, and it turns out ‘that the coordinate systems

in which these vector fields take their canonical form is

a useful coordinate system in which to solve the differen-
tial equations. (Note the 19-th century emphasis on the
practical aspects of a problem--some of the greatest theor- '
etical work was done with such a motivation!)

In particular, abelian Lie algebras of vector field
play a key role in Lie's work. Basically, this is because
they often determine the relevant canonical coordinate systéi
We have seen a good illustration of this in Part I, in the
classificdtion of Lie algebras of vector fields on one-
dimensional manifolds. The technique used there was to

choose a vector field A in the algebra which did not
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vanish at a point, and to choose the coordinate x so that

A took its canonical form, i.e., A = 3/3x. It turns out
that the whole Lie algebra takes its canonical form in this
coordinate system.

Cartan too made initial use of certain types of

abelian Lie algebras in his algebraic structure theory of

semi-simple Lie algebras. (We now call them Cartan sub-

algebras.)
Here is one result which Lie uses often.

Theorem 2.1. Let A be an abelian Lie algebra of vector

fields on a manifold X, and let x € X be a point such

that:
A) = X o, (2.1)
j.e., A acts locally transitively on X at x. Then,
dim A = dim X . (2.2)
Proof. Let Al,...,An be elements of A, whose

values at x form a basis for Xx. Then, by continuity,

AL(Y)se s A ()

forms a basis for Xy, for all y sufficiently close

to x. In particular, there is an open subset O 9f X

containing x such that Al,...,An form an F(0)-module

basis of V(0).
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Let A be another element of A. Then, there aré

functions f1 seee ,fn such that:

A - f1“1""""%:“11 :
Now, use the fact that A is abelian.

0 = [AI,A] - Al(fl)Al A ERRE ] Al(fn)An
hence:

MED) = 0 = e = A(E)

Repeating the process for AZ""’An' we' see (because of
formula 2.1) that

f1 = constant

.
.
.

fn = constant ,

i.e., A is linearly dependent on Al""’An’ This proves )

that:

dimA = n = dim §

Remark. Recall that Lie used this in the case "dim X = 1" |

in @ key way. If A,B are two vector fields, with [A,B] =

then they are linearly dependent.

Here is a more direct relation between abelian Lie

algebras,
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Theorem 2.2. Let A be an abelian Lie algebra of vector
fields on X. Let x be a point of X such that:
m = dim A = dim (A(x)) ,

i.e., no non-zero element of A leaves x fixed. Then,
there is a coordinate system for X,

1 n
b SR 4 ,

valid in a neighborhood of x, such that: The vector fields

3
sesey
ax™

a far
%

are a basis for A in that neighborhood.

Proof. For m = 1, the result is well-known. (See

DGCV.)

Proceed to prove the theorem by induction on n. Let

be a coordinate system about x such that:

A = E—T e A . (2.3)
Iy - ‘ ‘

Suppose that the vector fields

(2.4)
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together with Ay, form an R-basis for A, and also are

linearly independent at x. Use the relation:
[Al,Az] = 0 = [Al.A3] a e (2.5)
Since A1 - a/ayl. we see that the coefficients al,...

in 2.4 are independent of yl.

_Consider the vector fields

The relation [é,é] = 0 implies that
[Ai.Ai] ™ 0 = oo s

i.e., the Ai""’A3 define an abelian Lie algebra of

vector fields in R 1., The induction hypothesis may be

applied--there is a coordinate system for R*! in which
the vector fields are the partial derivatives with respect
to the coordinates. Putting this coordinate system for

Rn'1 together with y1 defines a coordinate system

1
(z ,...,zn)

in which the A's take the following form:

A1 =

@ o
nN
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and so forth.

The coefficients al,bl,... of a/az1 are independent of

zl. Thus, the relation

[A;,A4]

forces

L3

a

-8
-
4
o

4

Continuing in this way, we see that a; 1is independent of
Z 000y i.e., a, is_a constant. Similarly, bl"" are
constants. Now, a simple linear coordinate change deter-
mines a coordinate system }(xl,...,xn) such that

a_

3
A = T osee- A =
1 3x ’ *m axm

Remark. It is important to keep in mind that this canonical

coordinate system for the abelian Lie algebra A may be

found by solving a succession of ordinary differential
equations. Lie always had in mind developing a vast gener-

alization of the Galois theory of equations to cover differ-

ential equations. Such a generalization was developed,
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partially following Lie's ideas, by Picard, Veséiot and
Drach, but the whole circle of ideas is even today very
incomplete. What is now known as the "Galois theory of
differential equations", involves "differential algebra"
(see Kaplansky [1], Kelchin [1]), and is considerably
different in spirit, outlook, and results from what Lie had

in mind.

3. SEMI-SIMPLE LIE ALGEBRAS OF VECTOR FIELDS

The chief technical advance in Lie algebra theory

since Lie's time has been the théoryvof semi-simple Lie

algebras. We shall see that the way such algebras can act
in manifolds is relatively restricted. The chief tools

will be the Killing form (and Cartan's theorem that it is

non-degenerate if and only if the algebra is semi-simple).
Let G be a finite dimensional Lie algebra. (The
scalar field may be the real or complex numbers, or, in
fact, any field X of characteristic zero). Let
Bzgxg-b](
be the (symmetric, bilinear) Killing form. Then, for
A,B e G,

B(A,B) = trace (Ad A Ad B) .
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For the properties of the Killing form that we need, see
Chapter D.

Now suppose:

¢ = ¢®>¢log?o ..

~ ~ -~

is a filtration of G. Recall that this requires that:
[6?,6%1 c ¢7*1 (3.1)
for j >1,k >0

/‘l\

Theorem 3,1.

B(G®,6) = 0 (3.2)

Proof. Suppose A€ G, Be 93. Now, using 2.1,

(Ad B) (¢7) c ¢7*2
Hence, '
(Ad & Ad B) (67) c ¢3*!
Thus, if we compute the trace of (Ad A Ad B) with respect

to a basis of increasing filtration, we see that:
trace (Ad AAdB) = 0 ,

hence B(A,B) = 0, which forces 3.2, since A 1is an arbit-
rary element of G, B an arbitrary element of 9&.
Recall that the radical, denoted by R, "of the Lie

algebra G is the largest solvable Lie ideal of G.
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Theorem 3.2. §3

is contained in the radical R of G.

Proof. Formula 3.2 implies that G3 is contained
in the subset: :

H = {AcG: B(A,G) = 0}
(§ s0 defined is called the radical of B.) Now it is
readily seen that:
H is a Lie ideal of G.

The Killing form of H (as a Lie
algebra) is the restriction to H
of the Killing form of G,

Hence, the Killing form of H is zero. A theorenm

by Cartan (see Chapter D) now implies that:

H is a solvable Lie algebra.

Hence,

Gc HcR .

-~ -~

First Corollary to Theorem 3.2. If G is semi-simple and

finite dimensional, with a filtration

6 = ¢’>¢ls56%5 ...

-~ -~

then:
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second Corollary to Theorem 3.2. If G is a finite dimen-

sional semi-simple Lie algebra of vector fields on a mani-

fold X, end if A€ G, x € X is such that:

A vanishes to the third order at x,

then A = 0.

This is a remarkable geometric property of semi-

simple Lie algebras.

Theorem 3.3. Suppose that G is a finite dimensional Lie

algebra, with a filtration G = §0 D §1:D 92 D> «++, Then,

- 1

is contained in the radical of (.

(3.3)

Proof. Again, this follows formula 3.2 and the use

of the Killing form. For A e 6, B e 67,

(Ad A Ad B (V) c ¢*1

hence:

B'(A,B) = 0 ,
where "g'" is now the Killing form of 91. We deduce
that:

which implies statement 3.3.

Theorem 3.4. Let G be‘a finite dimensional filtered Lie

algebra, and let B be the Killing form of G. Then,
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seed,6F = o | (3.4)

for k22,321 .

Proof. The argument is the same as led to Theorem 3.

Formula 3.4 leads, in the case that G is real and
semi-simple, to considerable limitations on gz. For, it
says that Gz is an isotropic subspace of the Killing form. ;

From the theory of real orthogonal forms, we see that, if

8 has p plus signs and q minus signs in a canonical forn,k

then:
dim 6 < min (p,q) (3.5)
For example, suppose:
G = SL(2,R) .
Then,
p=~2, q=1 .,
Hence,
¢ <1,

which is a result found by Lie by direct calculation. Later
on.in this section we shall find a more powerful method for
finding the dimensions of 92.

Of course, if G 1is a compact Lie algebra, i.e.,
its Killing form is negative definite, then:

395
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Theorem 3.5. Let G be s finite dimensional, semi-simple,
Theorelm 9.3. . b .
filtered Lie algebra. Then

Proof. This is reslly a corollary to Theorem 3.3.
For, G semi-simple (i.e., no radical) implies that

3

g =0 .

But,

63,641 c ¢ .

Continue with

¢ = oo -

as a filtered Lie algebra such that:

-0 .

Set

@6t = (Aeg: B(A,G ) = 03
(Gz)* is (as the notation indicates) the orthogonal comgle-
ment of E in G.

The Killing form g8 is invariant under Ad G. This

means that:
B([A,B],C) + B(B,[A,C]) = o (3.6)

for A,B,Ce G .
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Now, G is a Lie subalgebra of G. Also,
te*,6%1 c g (3.7)
Relation 3.4 implies that:

¢ c (H* (3.8)

Theorem 3.6.
16h, 64*1 < ¢h* (3.9)
Proof. Using 3.6,
8is", (691,65 = 86H*, 161,62
ceeh 6h = o

Theorem 3,7. Suppose G is semi-simple. Then,

dim 6* < aim g/¢l (3.10)

Corollary to Theorem 3,7, If G is a semi-simple Lie
algebra of vector fields on a manifold X, and if the

filtration on G 1is that defined by a point x ¢ X, then

N, :
dim G < dim X (3.11)

Remark. For example, if X is two-dimensional, 3.11 is

the bound for 92 found by Lie by calculation.
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Proof of Theorem 3.7. Since B8 is non-degenerate,

we have (from linear algebra) that:

dim 6* = aim 6 - dim (6B . (3.12)
Now, -

CREEL
using 3.4. Hence,

dim (65" > dim ¢! (3.13)

Combine 3.12 and 3.13

dim 62 < dim G - dim ¢* = "dim (6/¢h)

Proof of Corollary. 91 consists of the vector

fields in G which vanish at x. Hence, G is the kernel
in the linear map
A+ A(X)

of G ~» Xx, which shows that

dim (6/6") < dim X
The argument given in the proof proves a bit more,

namely:

Theorem 3.8. If G is semi-simple, then dim (G) =

dim (6/Gl) if and only if
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Theorem 3.9. Suppose G is a semi-simple Lie algebra of

vector fields on a manifold X. Let x be a point of X
which is not a fixed point of G, but at which the linear
stability algebra acts irreducibly on Xpe Then, either
G = 0 ,
or '
dim 6% = dimx . (3.14)
Proof. If x is not a8 fixed point, G(x) C Xy .
is a linear subspace invariant under the linear stability

algebra, hence

§(X) = xx ’

since the linear stability subalgebra is assumed to act
irreducibly. Hence, X, 1is identified with G/Gl, and
the linear stability algebra is identified with Ad (Gl)

acting on (§/§1). Since

6h*s6,  aa el 6®*) c@d*,
the projection of (92); on (§/§1) is a linear subspace
inv?riant under the linear stability algebra. Hence, using
irreducibility again, it must equal all of (G/Gl) (which
would contradict semi-simplicity of G) or must be zero.

The latter possibility leads to 3.14,
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Remark. Again, this simple result may be used to replace
difficult calculations in Lie's work. For example, if G
acts on X = RZ, "irreddcibility of linear stability
algebra" is equivalent to "primitivity'", and 3.14 is indeed

the result found by Lie in this case.

Theorem 3.10. If G 1is a semi-simple Lie algebra of vector
fields on an n-dimensional manifold X, and if the filtra-
tion is determined by a point of Xx at which G acts

transitively, then:

dim G < 2n + n’ (3.15)

Proof. Since §3 = 0, we have:

dim G = dim G2 + dim (6'/6%) + dim (6/6hH
el g2
2 2n + dim (G7/G") , (3.16)

2 is an ideal in §1. The linear stability

Now G
algebra determines a Lie algebra homomorphism

91

+ (linear maps on Xx)

Since G acts transitively, 92 is the kernel of this
homomorphism. Now, the dimension of the linear maps on an
n-dimensional vector space is nz, the dimension of the

space of nxn matrices. Hence,
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din (GZ/GZJ < n? admit a one-dimensional invariant subspace, which would
T - ' define a G-invariant, one-dimensional vector field system,

This combined with 3.16, completes the proof. . X .
which would automatically be integrable, hence would define

Remark. If n = 2, then 3.15 implies that: an invariant foliation, which would contradict primitivity.)

.dim G <8 Now, the only irreducible Lie algebras of linear maps
) on a two-dimensional real vector space are the following:

Now, SL(3,R) has dimension eight. It follows from Lie's
SL(ng), the 2x2 real matrices

of trace zero. Its dimension is

three.
now show how these inequalities may be combined with simple

facts from the classification theory of Lie algebras to S0(2,R), the 2x2 skew-symmetric

prove Lie's results in the case the algebra is semi-simple. matrices. Its dimension is one.

§0(1,1), again its dimension is one.

4. SEMI-SIMPLE LIE ALGEBRAS WHICH ACT PRIMITIVELY ON

TWO-DIMENSIONAL MANIFOLDS The algebras obtained by adding to

these are the constant multiples of
Let G be a Lie algebra of vector fields on a two-
- the identity
dimensional manifold which acts primitively, i.e., leaves

invariant (locally) no foliation. Hence, using Theorem 3.9 we have:

Restrict attention to the non-singular points of dim 6 = 8,7,6, or 5 (4.1)
the action of §, i.e., the points where the dimension of if 92 #0
the orbits of G are maximal.
" dim 6 = 6,5, or 3 (4.2)
Now, the orbits themselves form an invariant folia- i Gz 0
1 =

tion, hence, G must act transitively. Further, the linear

isotropy algebra must be irreducible, (Otherwise, it would
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Let gc = G @®C be the complexification of G, i.e., the
Lie algebra obtained by extending the ground field from the

reals to the complexes.

The only possibilities for G. simple are:

G = SL(3,0) or SLZQ .

(These are the only complex simple Lie algebras of dimension

eight or less.) The only possibility for gc semi-simple is

S = SL(Z,0) @ SL(Z,O) = O(4,0) ..

_Now, dim G =3 1is incompatible wifh G2 # 0. Hence,

G. = SL(3,0) or 0(4,0) (4.3)

are the only possibilities of
e # 0.
These groups correspond geometrically to Qrojective and

conformal geometry.

In case

one can show that 91 is semi-simple and is the direct sum
of a semi-simple ideal and a one-dimensional center. The
results of Dynkin [1] on semi-simple subalgebras of the
simple Lie algebras enable one now to finish the classifica-

tion. I will not go into detail.
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In case gz ¥ 0, proceed as follows, Write

¢ - ReS ,
where R is the radical of gl, and S is a maximal semi-
simple subalgebra., It is clear that:

¢Zcr .
Ad S acts irreducibly on
1 1
9/9 or Ad S =0 on §/§ .
The only possibility is then:
dim S = 3 or 0 .
Hence,

If dim G = 8, dim R = 3

1f dim G = 6, s=0
i.e., G' is solvable.

In case dim G = 6, we can easily find 91 (hence
also G as a Lie algebra of vector fields on X) by using
Lie's theorem on solvable Lie algebras. Represent G by
4x4 complex orthogonal matrices, and use the fact that a
basis can be chosen with respect to which § is in tri-
angular form. In fact, §c is a maximal solvable subalgebra

of Gj, and Morosov's theorem (which is a generalization of

Lie's theorem) implies that § is uniquely determined.



404 . GENERAL TECHNIQUES

Therefore, possibly after cqu;exificatioﬂ of the variables,

G must be the Lie algebra of infinitesimal conformal
transformations on Rz.

In case dim G =8, i.e., G = SL(3,0), G is
also a maximal subalgebra, and Dynkin's classification might
be applied. (Of course, that is using a cannon to kill a
fly--it is easy to directly represent gc by 3x3 complex
matricés of trace zero, and calculate what

¢! - sLz,0) @R

might be.) The result is that G/G1 is just PS(Cs), the
two-dimensional complex projective space.

In summary, we see that Lie's classification of Lie
algebras G of vector fields acting in R2 may be readily
reproduced using modern Lie algebra techniques in case G

is semi-simple, and acts primitively.

5. TRANSITIVE ACTIONS OF SEMI-SIMPLE LIE GROUPS

One can approach the problems discussed in the pre-

éeding sections in the following general way:

Find the manifolds X which can be
exhibited as coset spaces G/Gl,

where G is a semi-simple Lie group

1

and G~ is a subgroup.
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Now, the work of Dynkin [1] on the Lie subalgebras
of semi-simple Lie algebras is, in a sense, & solution to
this problem. However, it is not easy in practice to apply
Dynkin's results in this way.- In this section, I will
present some general remarks about such transitive semi-
simple group actions in terms of the theory of filtered Lie
algebras.

For the sake of algebraic simplicity, I will work
only with the case that X is a complex-analytic manifold,
G 1is a complex semi-simple Lie group, and 61 is a complex
subgroup. G, its Lie algebra, is then & complex Lie alge-

1 is a complex subalgebra. (As I have indicated

bra, and G
in the preliminaries to Chapter D, a real transitive action
can always be "compleiified" in the natural way by letting
the real analytic functions defining the group action take
on complex values. Lie often, and implicitly, works:ih

this way.)

§1 defines a filtration of §:

¢ = ¢”>¢log

D oeee

Thus,
62 = {aegl: [A,6] € 61

¢ = {acgl: [a,[A,6] c 61

-~

and so forth.
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This, of courso.'coincides‘with the "geometric" filtration =

obtained by regarding G as a Lie algebra of vector fields
on the coset space G/Gl.
Since G is semi-simple we know from previous work
that: ' .
¢ - 0

ding < af+ 2 , (5.1)

with n = dim X.

of X as a complex analytic manifold, and the dimension of

G as a complex Lie algebra.

The elementary estimate 5.1 is surprisingiy powerful
in narrowing down the possibilities for G, at least in

the case of low values of n. For example,

If n=1,2,3, then
(5.2)
dim G < 3,8,15
In turn, one can look at the classification of complex semi-
simple Lie algebras and write down the possibilities for G:

If n=1, G = A

W

1 SL(2,C) = 80(3,C)

= Sp(1,0)

1)

If n=2, G = A SL(3,C) or
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G = 0, = SO(4,€) = S0(3,C) x SO(3,C)
If n=3, G = A, = SL(4,0)
6 = B, = S0(5,0)
G T Gz

plus the semi-simple possibilities.

(Here the equal sign between these groups means that they

are locally isomorphic, or, alternatively; that their Lie

algebras are isomorphic. Of course, the possibilities
listed for n = 1 are also possibilities for n = 2, and

so forth.) . L

Case 1. 91 is solvable.

By the Lie-Morosov theorem, 91 ‘may then be trans-
formed, within Ad G, to a subalgebra of a fixed maximal
solvable subalgebra H of G. Further,

dim (G/H) = 7 (dim G - rank G) (5.3)
Hence, we have:

n _ 7 (dim G - rank §) - N ()]
If n =1, we have equality in 5.4, i.e., §1 is maximal

solvable., If n =2, dim G = 8 or 6 or 3

4

rank = 2 or or 1 or 3
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If dim G = 8, identity 5.4 is impossible. If dim G = 6,

only equality is possible. Hence:

The only two-dimensional manifold
G/G', with G semi-simple, g
solvable is: G = S0(4,C), §1=

maximal solvable subalgebra.

As was already mentioned in the previoys section, this

possibility corresponds geometrically to conformal geometry.

If n=3 and G
dim G = 15 or 10,

is simple,

rank G = 3 or 2

Neither possibility is compatible with inequality 5.4, Hences

A three-dimensional manifold is never .
the quotient G/G1 of a simple group

and a solvable subgroup.

Finaily, the possibilities for & semisimple must

be examined. Say, that:

G = G,x+++xG ’
with' Gl”"’Gm simple. Let:
H, = maximal solvable subgroup of G

H2 = maximal solvable subgroup of G

_and so forth.
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Then,

H x...me

1

is a maximal solvable subgroup of G. Hence,

n > dim (Gy/Hy) +---+ dim (Gy/H))
Here are the possibilities for G semisimple:

If n=1, G is simple, G is

maximal solvable.

1

If n=2, G=0(4,C), G 1is

maximal solvable,

If n=3, G = Al x A, or Ale Al x A1

G = 0(4,C), 0(4,C) * A

Case 2. G is not solvable, but G° # 0,
Then,
(6%,6%1 < ¢
[¢?,61 =0 ,
i.e., G! is an sbelian ideal of G', Let R be the

: . 1
radical, i.e,, maximal solvable ideal, of S R

Then we have the Levi-

and § a

maximal semi-simple subalgebra.

decomposition, i.e.,

¢! = R@®S (as a vector space)
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Also,

¢cr .

~

Ad 8, acting in §/§1, is a faithful répresentation of 8.

In previous sections we have worked out the possibil-

ities for n = 1,2, (There are none for n=1. For n = 2, |

only X = two-dimensional complex projective space, G =
projective group.) Let us now do n = 3,
S is semi-simple and admits a faithful three-

dimensional representation. The only possibilities are:

§ = SL(2,C) or SL(3,C)

Now, we can work out what the dimension of the radical i

R must be, in the case where:

n=3 G is simple.

"
Case a. G = SL(4,C)
3 = 15 -dim S - dimn R
= 15-3-dimR or 15 -8 - dimR
Thus, dim R =9 or 4,
Now, Ad § acts in R, and preserves §z, which
is an abelian ideal of R which is invariant under Ad s.

I believe that all these facts can be put together readily .

to finally determine §1, but I will not carry out the

details here., (For example, the case dim R = 4 corresponds {
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to the case whoroﬁlglgl = three-dimensional projective
space.)
case b. G = sg(s.é) ‘
" 37 10 - dt S - dim R
.-  10 -3-dimR or 10 - 8 - dim R .
Only: oo
dimR =4, S =SL(Z,0C)
is possible.
Again;vL believe that working out these conditions
will lead to the unique possibility that:
| 6/Gt = space of conformal geometry in
- three variables.
“The Etriking fact lying in the background here is

the conneétibn between semi-simple Lie group theory and the

"classical™ geometries.

[ON OF THE
6. CLASSIFICATION OF THE INFINITESIMAL ACTION
ONE-VARIABLE AFFINE GROUP ON THE PLANE
It is important to notice that Lie put much more
effort into the classification of intransitive group actions
than into transitive ones. In the modern Iiterature, this

situation is reversed, probably because the intransitive
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situation is very messy and computational, while the claséi-f;
fication of transitive actions lends itself to general state*?

:
ments. However, the intransitive case is much more importanﬁ{

from the point of view of applications to the theory of

differential equations.

In this paper, Lie classified intransitive actions by/?
classifying foliations (i.e., differential equations) they ;
left invariant, Before examining this viewpoint in detail,
I_want to consider the classification problem directly. In
this section, we deal with the simplest non-abelian group,
the group of affine transformations on R. (It is a two-
dimensional solvable, but non-abelian group. All groups of
this type are locally isomorphic.) In the next §§ction ve
consider the simplest semi-simple group, namely SL(2,R).

Let G be the two-dimensional real Lie algebra,
spanned by two elements

Aphy
such that:
[Ay,A1] = A (6.1)

Let 'Gl be the subalgebra spanned by A;. It is the

derived ideal of G. Since
[91’91] = 0 ?
G is a solvable Lie algebra, and §1 is -the nilradical,

i.e., the maximal nilpotent Lie ideal.
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Suppose that G 1is a Lie algebra of vector fields

on & two-dimensional manifold’ X. If
Al =0 on X , (6.2)

then §/§1 acts on X, One;dimensional Lie algebras can
be classified locally (at the non-singular points), so the
classification of this situation can be considered as known.

Let us suppose then that 6.2 is not satisfied. Pick
a point at which Ay # 0, and a coordinate system (x,y)

valid in a neighborhood of that point such that:

A " 3 6.
1 ax ( 3)
Since
2 = .4
(Ad Al ) (Az) 0 ] [6 )

the coefficients of Az must, as functions of X, be

polynomials of degree at most one. Explicitly, A, must

be of the following form:

' ' ?
ay = (ag)+a X fg + (b NN 55

(6.5)

Hence, using 6.1,

3
[A Al = 8,00 35 * 1) 35
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hence:
8 = 1, b1 -0 ,
or: 4
Y ’ A
A v () 3+ b)) 3 (6.6) §

We have made one "generaticity" assumption, which led to
(6.3), namely that A1 did not vanish at the point of X
whose coordinates are (0,0). Let us make another one,

namely that

A ()(0,0) 4 0

i.e.,
bo(y) # 0

Then, we can suppose the coordinates (x,y) "are chosen

so that:

Ayt (a0 e B |
This completely determines the action of G. It depends
on "one arbitrary function ao(y) be of one variable".
Suppose now that we have two such actions, i.e.,
another pair (A',Ai) of vector fields which generate a
Lie algebra G' which is isomorphic to G, and which is
transformable into § by a local diffeomorphism. (This
is what Lie means by "similar", or "#hnlich" in German.

Precisely, we mean that there is an open subset U C X of

the point in question, and a diffeomorphism ¢: U + V such

(6.7)i
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¢.(§') - Q .
Thus, there are coordinates
(x',y")

such that AI’AZ take the following form:

|o:

A} -

x'

)

PERINCIEDE A 2

Further, we have real numbers AI’AZ’AS such that:

Ay = M
4

A, = MAL ¢ RAL
Now,

3 . '3 ay' 3

3% ax_ ax' ~ ax 3y’ °

3_ . ax'3 ay' 2

W 3y ax' 3y oy'
hence,

which forces: .
%Xl = 0
X

i.e., y' is a function y'(y) of y alone
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X " A or x' = ax o+ £(y)

3 daf 3 dy! 3
SR A A R ol Wz((ab**')srrf )
?
* s AT
Thus,
- df -
8, f(y) + & Azaa + ls - (6.8)
Az =1
d ]
R
or
y' = Azy . , 6.9)

When 6.9 is substituted into 6.8, we see that 6.8 is a

differential equation for £(y), which can be solved (using g

the classical terminology) "by quadratures". Hence, we have |

proved:

There is just one action (up to local
similarity) of G on R2 which is

"generic" in the sense described above.
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This example is interesting methodologically. From
the point of view of general Lie theory, it is somewhat
trivial. For our generaticity assumption implies that

6(x) = X,

at the chosen point x of X.

General Lie tﬁeory implies that there is but one action--

left translation on the group manifold,

7. LIE'S CLASSIFICATION PROBLEMS AND LIE ALGEBRA

COHOMOLOGY THEORY

There is an abstract, algebraic feature to Lie's work
in this paper which is worthwhile investigating for two
reasons: First, for the general insights it might give
into Lie's specific, computational work, and, second, as a
link to the modern theory of deformaf;ons éf algebraic and
geometric structures, and related Lie algebra cohomoloﬁical
ideas. (Some modern names here are Kodaira, Spencer,
Gerstenhaber, Nijhuis, Richardson, Guillemin ;nd Steinberg,
Gelfand and Fuks. See the treatise by Kumpera and Spencer
for full references. My papers "Analytic contiﬁuation of
group representation’” and "Linearization of Lie algebras of

vector fields near invariant submanifolds'" are also relevant.)
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.

The genersl deformation theory deals with differen-.
tiable families of a;geﬁraic and geometric’ structures and
their realizations. Usually, it attempts to classify them
up to some sort of "equivalence". Typically, "éoholology"
of fhe algebraic structure appears as one of the first

1;?;11.:!: describing the "equivalence". It should be

clear to the reader who has carried on this far that Lie's |

classification of various sorts of Lie algebras acting on
one and two dimensional manifolds involves examples of this
sort.

I will now attempt to explain some of these connec-
tions with deformation theory in a relatively simple-minded
way,

Let us first restate Lie's fundamental problem.

Definition. Let G be a Lie algebra of vector fields on a

manifold X, and let G' be a Lie algebra of vector fields i
on a manifold X'. Then, (G,X) and (G',X') are locally. .

egﬁivalent (or equivalent in the sense of Lie) if the follow- j

ing condition is satisfied: _
" There are points x e¢ X, x' € X', and open neigh-
borhoods
xebcCX

el cx ,

and a diffeomorphism

419
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$: U > U

such that:
$a(G) = G' .

This is, of course, nothing but a formalization of

the idea that the vector fields of G may be converted into

the vector fields in G' by a change of coordinates, i.e.,

that the two Lie algebras are ngimilar" ("dhnlich", in
German) .
There are now two distinct deformation

The first is:

problems

which are related to Lie's problem.
Deform a Lie algebra homomorphism
$: G+ v(X)
of a given Lie qlgcbrq G into
the Lie algebra of veator fields on
a manifold X.

The second is!

Deform Lie subalgebras of vV(X).
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The first problem is simpler conceptually and compu-
tationally, hence will be the one considered here.

Let G be a real Lie algebrs, X a manifold,
a: G+ V(X)
a Lie algebra homomorphism. Let A be a real paramet;r,
varying over
0<rc<1
A deformation of ¢ is a one-parameter family
X +a,: 6 G + V(X)

of Lie algebra homo-orphisus reducing to ¢ at A = 0.

For A ¢ G, set.
e(A) - F’{' GA(A)lA-O . (7.1)

The map
0: A+ 8(A) of G + V(X)

is R-linear. Let

p: G + L(V(X))

be the representation of G by linear maps in V(X) defineﬁ

as f0110w5'

P(AY(B) * [a(A),B] (7.2)

for Ae G, Be V(X)
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Then, ©, defined by 7.1, is a one-cochain of G, with
coefficients in the vector space (i.e., V(X)) in which the
representation p takes place.

Now, we are given that, for each A, ¢, is a Lie

algebra homomorphism. Thus,
a, ([A,B]) = [a,(A),a,(B)] (7.3)
for A,B e § .

Differentiate both sides of 7.3 with respect to A, and
set A = 0:

8([A,B]) = [e(A),a(B)] + [a(A),8(B)] ,
or

p(A)(e(B)) - p(B)(e(A)) - o([A,B]) = 0 (7.4)

This is- seen to be the condition that © defines a one-

cocycle of §, with coefficients in the representation o.

What is the meaning in terms of Lie theory, of the
condition that this one-cocycle be a coboundary? To see
this, suppose that each of the Lie algebras

a, (6)
of vector fields are mutdally Lie equivalent. Let us not
worry about the local aspects, but suppose this qquivalence
is realized by a one-parameter family

A by X+ X

%
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of diffeomorphisms of X, i.e., by & flow. Let A e V(X)
be the infinitesimsl transformation corresponding to this
flow.

We tﬂen have, as the definition of "Lie equivalence":
$e(3g(8)) = a () .
Then, for eaéh Ace G, each A, there is an element
By(A) € 6
such that:
9a(3g(B)) = a, (8, (B)) (7.5)

for all B e G .

Differentiating 7.5 with respect to A, and setting A = 0,
we have:

[ag(B),A] = o(B) + ay (v(B)) (7.6)
where V

Y(B) = g—A—BA(B)Iho (7.7)

Now, it is readily seen from 7.5 that BA is an

automorphism of the Lie algebra G. This implies that Y
is a derivation of the Lie algebra G. "A" determines

a zero-cocycle of the representation ps 1i.e., an element
of the vector space in which operates. Relation 7.6
then expresses the one-cocycle 6 as the cohomology of "A"

plus the one-cocycle
B+ ay(v(B)) .
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The existence of such an "A" and "y" is then a necessary
condition that the continuous family

A +a,(6)
of Lie algebras of vector fieids be mutually Lie equivalent.
In particular, the condition:
H'(G,0) = 0

is often indicative of the fact that G can only act in
essentially one Lie equivalent way on the manifold X.

_Rather than go into an inevitably lengthly and compli-
cated further discussion of tﬁe general deformation-cohomology
theory; I prefer to calculate some of these cohomology groups

in the typical examples considered by Lie in this paper.

8. COHOMOLOGY OF FINITE DIMENSIONAL LIE ALGEBRAS ACTING
ON R. :
Let G be a finite dimensional Lie algebra of vector
fields on a one-dimensional manifold X. Suppose the coor-
dinate variable on X is x.

Let
0: § + V(X)

be a one-cocycle of G. Then,

8(A) = £,(0 & (8.1
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Set:
The cocycle condition, 7.4, is then:

fl - fA’ fz - fAz .

d]. d - d
[A’fB HE] [B'fA !f] f[A’B] Hi Then 8.2 takes the following form:

for A,Be G . ;;& - x ;;l + fl = fl ’
Suppose: or
d af df
A = aA ax . Ez' = X a_x_]_', (8.4)

Then, 8.1 takes the following form:

: In summary, the vector space of one-cocycles of §
de 2 e . ici X) is isomorphic to the pairs
WX CBBITX T ;?‘ *thw - f[A,B] (8.2) with coefficients in V(

We know that there are only three possibilities of

; of functions f on real variable x satisfying condition 8.4.
one-dimensional abelian, two-dimensional solvable, and

We shall now defermine the subspace of one-cocycles
three-dimensional simple. Let us consider these possi-

which cobound. A zero-cochain is determined by a single
bilities: cobound

vector field
Case 1. G is two-dimensional.

c = hg -
G 1is then spanned by two vector fields Its coboundary © is the one-cochain ©: G » V(X) defined
A = g; . as follows ) .
8(A) = [A,C] .
A, = x gi R Thus,

satisfying the following commutation relation:

oW - (o)

[A1,A] = A, . (8.3) Suppose @ is defined by 8.1. Then, we have:
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8.5) |

fz'xH-s(-'h

Thus, the existence of h satisfying 8.5 is the
condition that the one-cocycle g also cobound.

We shall now prove that such an h exists, if
(fl,fz) satisfy condition 8.4. Suppose that h is chosen
so that:

as a consequence of the cocycle condition 8.4 Then, we
q 4. s

can adjust the choice of arbitrary constant in h to
satisfy both conditions 8.5, i.e., the one-cocycle 6 co-

bounds. Let us sum up this result as follows:
Theorem 8.1. Let § be a two-dimensional solvable sub-
algebra of V(R). Let

'Y E + V(R)

be defined by the following formulg,
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p(A)(B) = [A,B]
for A£G, BeV®R) .

Then, the first cohomology group of G, with coefficients

determined by p, is zero, in symbols,

W (G,0) = 0 (8.6)

Case 2. G 1is threo-dimensional and simple

In addition to AI'AZ’ as in Case 1, G contains
a third vector field

1,24
&

A3 -
satisfying the following commutation relations:

[Al'Asl - AZ

[AZ'AS] - AS

Let

8: § +» V(R)
be a one-cocycle, Then, © restricted to the two-dimensional
subalgebra spanned by AI,AZ‘ is also a cocycle. Hence,
there is a C € V(R) such that: A

G(Al) - [Altcl

8(A) = [A;.C] .
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We will now examine

8 (Ag)
Now,

[A;,D]

Hence, there is a constant ¢

D = cA

- [AsuC] = D

[Al'e(ASJJ = [Al’ [A39C]]

= using the condition that 0 4is a

one-cocycle on G,

[A5,0(A ] - 6[A;,A51) - [[A,AL},C] |

= [A3’[A1’C]]

= [A33[A1.IC]] - e(Az) - [AZDC]

- [AS; [Al ;CT]

such that:

1

By a'similar calculation,

[A5,D]
Since [A,,A1]1 # 0,
c=0

hence,
“ D=0

= 0 .

this forces
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hence,

8(Ay) = IAgC]

We have proved that & cobounds as a one-cocycle on G.

This proves:

Theorem 8.2, If G is the three-dimensional simple sub-

algebra of V(R),
G+ L(V(R)) defined above then,

and if p 1is the representation

Hl(G,p) = 0 .

Remark. Theorems 8.1 and 8.2 reflect the fact that there
is but one Lie equivalence class of G acting on R. In a
sense, they are the winfinitesimal" versions of the fact

that there is but one Lie equivalence class.
This example suggests a natural:

Conjecture. If G is a finite (or certain types of infin-
ite (?)) dimensional Lie algebra of vector fields on a
manifold X, and if

p: G+ L(V(X))

is the linear representation defined as follows:

p(A)(B) = [A,B] ,

and if

H (G,0) = O
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then the Lie equivalence classes of G aciing on X form
a discrete set.

In fact, in general deformation theory one is used
to the vanisﬁing of the "first obstruction cohomology group"
implying the "rigidity"” or ''triviality" of the deformation.
What makes this problem not of the standard type is that

the vector space V(X) is infinite dimensional. One can

use standard techniques to prove that Hl(g,p) = 0 implies

the discreteness of the formal power series Lie equivalence

classes. (See Chapter D.)

9. DEFORMATIONS OF LIE ALGEBRA HOMOMORPHISMS AND
CLASSIFICATION OF LIE ALGEBRAS OF VECTOR FIELDS
TANGENT TO FOLIATIONS ’

In my Comments to Section 7 I have briefly described
relations between Lie algebra deformation theory and some
of Lie's classification problems. 1In this section I plan
. to go into this in more detail.

Let X and Y be connected manifolds. Denote a
typical point of X by x, a typical point of Y by vy.
Let:

Z = XxY

For x e X, 1let Y(x) be the following submanifold of Z:

Y(x) = {(x,y)}
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Y(x) is diffeomorphic to Y. Let
n: 2 +X

be the Cartesian projection map, i.e.,
w((x,y)) = x .

Then, we have: :
Y = vl

i.e., Y(x) dis the fiber of = above the point Xx.

Y (x)

— X
X
r is a submersion mapping, and its fibers determine
a foliation Vv of Z. The vector fields A € V(Z) which
lie in V are those which are first order differential oper-
ators on the variables of Y, with the variables of X

appearing as parameters in the coefficients. For example,

if

then
v = ja(x,y) %;f
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Let G be a Lie algebra of vectof fields on 2

which is tangent to the fibers of this foliation. This

means that

Gcv .

For each x ¢ X, there is then a Lie algebra homomorphism
¢x: G~ V(Y)

such that:
Alx,y) = ¢,(A)(y) (9.1)

for AeG, xeX, ye¥

Remark. To interpret the right hand side of 9.1 as a tangent

vector to (x,y) € Z, identify’

ith
Z(x,y) wit Xx ® Yy

in the obvious way.

Now, the assignment

X > ¢y

defines a typical "deformation'" of an algebraic structure--
in this case a Lie algebfa homomorphism. We know that their
"cla;sification" involves certain algebraic techniques, such
as Lie algebra cohomology theory. Let us examine the rela-

tion to the classification in the sense of deformation theory

and in the sense of Lie.
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Let G' be another Lie algebra of vector fields on
7 which is tangent to the fibers of V. Here is the defini-
tion of "equivalence" that Lie always uses:
Definition. G is (globally) equivalent to G' (in the
sense of Lie) if there is a diffeomorphism
a: 2 + 2
and a Lie algebra isomorphism
g: G » G'

~ ~

such that:
ax(A) = B(A) - 9.2)

for all A e G .

Definition. A diffeomorphism
a: 2+ 12

is an automorphism of the foliation V if a preserves

~ the leaves of V.

We can determine such a's by analytical conditions.
Since the points of X parameterize the leaves of Y, there
is a diffeomorphism:
o X+ X
such that:

(9-3)
Y = Y
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For each x € X, there is then a diffeomorphism

a: Y->Y

such that:
a(x,y) = (0X(0),a, () (9.4)
We see that a is determined uniquely by the pair

(ax, X > ax)

X

of the diffeomorphism a": X + X and the mapping x + a

) X
of X
X + (DIFF (Y))

Remark. Physicists often give the name gauge transforma-

tions to objects like x =+ Qe

Suppose now that G,G' are two Lie algebras of

vector fields on Z which are tangent to the foliation V.
Suppose that G is determined by a map

x ¢x
of X + Hom (G,V(Y)) and G' 1is determined by a map

1

X ¢x

of X -+ Hom (g',V(Y)). Suppose also that G,G' are equiva-

lent, in Lie's sense, via a pair (a,8), with:

8: G+ &'
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a Lie algebra isomorphism

a: Z > Z
a diffeomorphism which is an isomorphism of the foliation,
described analytically by .

(ax,\x *‘ax)
as suggested in the preceding discussion. We shall work
out the conditions this implies on x = ¢x’ X - ¢§.

For A ¢ g. (x,}'J € 2,

Alx,y) = ¢x(A)(Y) .

Hence, ' .

as(Alx,7)) (o, Ya (32 (A (¥))

B(A) (& (%) 0, (1)

' (B(A)) (e ()
¢ax(x) x

-1 ,
(a ) alay ).(¢ax(x)(B(A))(y))

This relation implies the following one:
-1 .
A) = (a (¢' (8A)))
9, (A) (ax dalb'x
or

¢, = (a;l).¢;x 8 (9.5)

(x)

X

for all x e X
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This is the natural notion of equivalence, in terms of

deformation theory, for maps

X + Hom (G,V(Y))
All these steps are reversible, showing that:

For the class of vector fields which are tangent to

the fibers of the foliation V, Lie's notion of equivalence

coincides with the natural definition of deformation theory

when one restricts the diffeomorphism o« in Lie's definition i

to be those which preserve the foliation V.

In the "transitive case", one can supplement this by

theory one, without restriction on the diffeomorphism «a.

Definition. A Lie algebra G of vector fields on Z which
is tangent to the fibers of the foliation V is said to be

transitive on fibers of V if, for each (x,y) ¢ Z X xY,

the values
G(x,y)

of the vector fields of G at (x,y) fill up the tangent

space to the leaf Y(x), i.e., if the smallest F(X)-

submodule of V(Z) containing G is V jitself.

Theorem 9.1. Let G,G' be Lie algebras of vector fields

on Z which are transitive on the fibers of V. Suppose G
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and G' are equivalent, in the sense of Lie, via a diffeo-
morphism

a: Z+2 .

Then, o preserves the foliation V.

Proof. It should be geometrically obvious. a must
satisfy
ae(6(2)) = G'(a(z))
for all z e 2 .
By definition of "tramsitive'" G(z) and G'(a(z)) £ill up
the tangent spaces to the leaves of V at z and a(z).
Hence, o maps a leaf of V onto another leaf, which is

what one means by "a preserving the foliatien V."

Remark. Already, we have clues to why Lie obtained the

results listed in Theorem 14.4.1. In this case,

X=Y=R .
If H is a two- or three-dimensional Lie algebra of vector
fields on Y = R, we know that:

H,e) = 0,

where

p(A) (B) [A,B]

for Ae H, B e V(Y)
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Let

->
X ’x

be a mapping X + Hom (G,V(Y)). Assume that the situation

is "generic" in the sense that:

For all x ¢ X, ¢x(§) are

isomorphic to a Lie algebra H.

(Lie implicitly makes this assumption. If it is not satis-
fied, one must proceed to use a more general deformation-
of-Lie-subalgebra theory.)

Now, if H is semi-simple, the homomorphism

¢x: G~ ¢x(§) "splits", by the Levi-Malcev theorem.

(Basically, this involves the J. H. C. Whitehead theorems
on vanishing of the first and second cohomology groups of a«i

semi-simple Lie algebra.) 1In other words, there are Lie

subalgebras
Sx» K¢ G
such that:
6 = s, @K
Ex = kernel ¢x

Sx is isomorphic to H.

Now, the subalgebra systenm {§x} is "rigid", because
H 1is semi-simple. This means that we can arrange (by suit- §

able choice of the isomorphism 8) that
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, sx is independent of x.

In fact, we can suppose that:

 x
of G.

S. is a maximal semi-simple subalgebra

By the Levi-Malcev theorem,

Kx = Radical of G = maximal solvable ideal.

In particular,

'{Kx} is independent of x.
Now, we are given that the map
A (0,8,(A)

of G + V(Z) is one-one. (This is built into Lie's

problem--classify "r-term groups".) Hence,
4,(A) = 0

for all xe X, Aek .

[ ]
This forces:

K = 0o .

This is what is indicated in the third box of the results of
Theorem 14.4.1. When G is semi-simple, it can act (up to
Lie's equivalence) in only one way on Rz, in such a way
that it is tangent to (and transitive on the leaves of) a

. as 2
one-dimensional foliation of R".



440 o GENERAL TECHNIQUES GENERAL TECHNIQUES a1

In case G is not semi-simple, (but is finite Remark. I believe that the "unitary trick" developed by
dimensional) a decomposition can be made on the basis of H. Weyl enables one to prove that

the Levi-Malcev theorem. In the case HI(H Pp) = 0
o

dim X = dimy = 31 |,

fields on a general manifold Y. Alternately, this might

one sees readily that G must be solvable. K the kernel,j

~Xx?

of ¢,» is then an ideal such that: be provable purely algebraically by Invariant Theory, at

dim (g/gx) = 1or2 . least in qertain common situations.

Again, this situation may be analyzed and classified usin It might be interesting to develop an algebraic-
g g algebraic

Lie algebra cohomology. Presumably, the results obtained geometric setting for these ideas. X and Y could be
by Lie and listed in the first two boxes of Theorem 14.4.1 algebraic varieties (say, with the complex numbers as scalar
may be obtained in this way. field). V(Y) could be the vector fields with rational
It would be very interesting to consider generaliza- functions as coefficients. The "inner automorphisms" of

tions to higher dimensional situations. I have written V(Y) could be those defined by birational transformations

enough to show the reader that the techniques of deforma- of Y. This set-up leads to many interesting problems on

tion theory are available to develop these higher dimensionar? i the frontier between algebra, geometry and analysisl

generalizations of Lie's work. A key problem then is the

following: : ;
10. SOME GENERAL FACTS ABOUT NON-SEMI-SIMPLE LIE ALGEBRAS

Given a manifold Y, and a Lie algebra OF VECTOR FIELDS

H of vector fields on Y, 1let ,: H + L(Y) Here are some introductory remarks. We have seen

be the linear map such that P(AY(B) = [A,B]. that there are various general and modern techniques for

1
Compute H (H,p). studying semi-simple Lie algebras of vector fields. These
We have seen that Hl(ﬂ.p) =0 if dimH =1 or 2, | results reproduce--with much less computational effort and
and dim Y = 1. This plays a key qualitative role in greater geometrical and algebraic insight--a part of Lie's

Theorem 14.4.1.
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results. However, the greater parf of his list of possi-

bilities of Lie algebras in the plane is cdﬁcerned with the

non-semi-simple ones. Accordingly, I will now attempt to
develop general tools to deal with this possibility. First,
some Tesults which hold for arbitrary finite dimensional

Lie algebras of vector fields.

Theorem 10.1. Let G c V(X) be a finite dimensional Lfe
algebra of vector fields on a connected manifold X which
acts transitively at each point of X. Let x be a point

1

of X, and let G~ be the stability subalgebra of G at x

1

Then, g contains no non-zero ideal of G.

Proof. Suppose otherwise, i.e.

Heglcg
with
[GHI CH .
B& the definition of 91 as stability subalgebra,
g(x) = 0 .
“Let A be aﬁ arbitrary element of G, and let

t + x(t)

be the orbit curve of A which begins at x. Let t - g(t)
be the one-parameter group of diffeomorphisms generated

by A. Then,
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x(t) 8(t) (x)

Hence, .
g(t)g(exp (Ad(-At))(H) (x})

H(x(t))

= ()W (H) -tIAH] (x)+" ")

= 0 ’

since H is an ideal.

Since G acts tramsitively at x (i.e., G(x) = Xx),
we see that the orbits of elements of G £ill up an open
neighborhood of x, hence H vanishes in a neighborhood
of x.

Using the hypothesis that G acts tramsitively at

each point of X, we see that the set of all points of X

. at which H vanishes is open. It is also closed, by con-

tinuity. Since X is connected, it equals X, i.e., H £ 0.

This standard result relating transitivity and an

algebraic property of the stability subalgebra suggests the

following general:

Definition. Let G = 90 o] Gl D +++ be a filtered Lie

-~

algebra. It is said to be an effective filtered Lie algebra

if G1 contains no non-zero ideal of §.
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Here is a geometric property of Lie algebras of
vector fields that is often useful. (For example, it played
an important role in the classification of vector fields on

R.)

Theorem 10.2. Let G be a Lie algebra of vector fields on
a manifold X which has the property that no non-zero
element of G vanishes in an open subset of X. Let x

be a point of X and let A be an abelian Lie subalgebra

of g such that

A = X,

Then, A 1is a maximal abelian subalgebra of G.

Proof. This result is basically a continuation of
the development begun in Section 2.
Suppose A were not maximal abelian in G. Let B

be a non-zero element of G such that:

[B,A] = 0
By the argument given in Section 2, B is linearly depen-
dent on the elements of A in some neighborhood of x.

Our hypothesis that no non-zero element of G vanishes in

an open subset implies that B e A.

Theorem 10.3. Let G be a finite dimensional Lie algebra

of vector fields on a connected manifold X which acts
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transitively at each point of X, Then, X admits a real
analytic manifold structure such that the elements of G

are real-analytic vector fields. In particular, if an
element of G vanishes in an open subset of X it vanishes

identically.

Proof. To give a real analytic structure means that
one picks out a set of c® functions in a neighborhood of
each point of X which provide local coordinate systems and
which transform in a real-analytic way in the overlap of
two such neighborhoods.

In this situation, let us say that a function
f: U+ R
defined in an open set U CX is real analytic, if, for
each orbit curve
t + x(t)
of G, the function
t > f(x(t))
is real analytic.
The details are left to the reader, but it is routine
to show that this class provides a real-analytic structure

for X, such that the vector fields in G are themselves

real analytic.
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Theorem 10.4. Suppose that x is a point of X such that:
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With these simple, general results.at hand, let us
turn to the study of non-soli-sinpie Lie algebras of vector
fields. Leg X be a connected manifold, and let G be a
finite dimensional Lie algebra of vector fields on X such
that no non-zero element of G vanishes in an open subset
of X.

To say that G is non-semi-simple is to say that G

has a non-zero abelian Lie ideal A.

A) = X, . | (10.1)
2

Let 91 be the stability subalgebra of G, and let G be M

the set of vector fields which vanish to the secbnd order

at x. Then,

6 = clea (10.2)

and

¢“ = 0 (10.3)

- Proof. We know (see Section 2) that 10.1 implies

that the assignment

A + A(Xx)

linear algebra since 91 is the kernel of the evaluation map
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G *> Xx. (The @ sign in 10.2 means vector space direct sum,

not Lie algebra/direct sum. Of course, G is a semidirect
sum of the Lie ideal 91 and the Lie algebra A)
To prove 10.3, let
p: G » L(Xx)
2
be the linear stability representation. We know that 6

is the kernel of p.

2
Suppose Gz were non-zero. Let B e G be a non-

sero element. Then, p(B) = 0 means that:
[B,A] €6 .

But, é is an ideal, hence:
[B,Al CA .

This forces

[B,A] = O .

Theorem 10.2 implies that

hence,

which finishes the proof of relation 10.3.
‘ We can now polish off the classification of the

primitive non-semi-simple vector field Lie algebras.
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Theorem 10.5. Suppose that G acts primitively on X, in
the sense that G acting in each open subset of X 1leaves
invariant no non-singular foliation. Suppese that G is

not semisimple. Then, G is a semidirect sum:

[H:-ﬁ] C -é
[H,H] c H
[A,A] = 0O

of a subalgebra H and a abelian ideal A. H is the
isotropy subalgebra of G at a point of X. The linear
isotropy representation of it is equivalent to Ad H

acting in A, which is irreducible and faithful. In

particular, H is a reductive Lie algebra, and is either
semisimple or is the direct sum of a semisimple ideal and

a one-dimensional ideal.
Proof. Let X' be the following subset of X:
X' = {x'eX: dim (G(x')) > dim G(x) for all xeX}

In words, X' is the set of maximal points of G, where
the maximal number of the vector fields in G are linearly

independent) X' is an open subset of X.
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_ The vectof fields of G then define a non-singular
foliation of X'. Clearly, this foliation is invariant
under G itself. Since G is, by hypothesis, primitive,
the leaves of this foliation must be open subsets, i.e.,

G acts transitively on X',

Let A be any abelian ideal of G. Let X" be
the set of maximal points of A acting in X'. Again,
X" is an open subset of X, and the vector fields of A
define a foliation of X" which is invariant under G.
By primitivity again, A must be transitive on X". Choose
X to be a point of X". Theorem 10.4 applies and the

conclusions of Theorem 10.5 follow readily.

In case ‘
dimX =2 ,
we have seen that the cases G semi-simple, acting
primitively, are readily classified. These results,
together with Theorem 10.5, then complete the classifica-
tion of primitive Lie algebras acting in the plane.

Now, let us go to work on the imprimitive ones.

Let G be a non-semi-simple Lie algebra of vector fields

acting on a manifold X. Let 5 be a maximal abelain

ideal of G. Set:
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X' = set of maximal points of A.

X' 1is an open subset of X,

Theorem 10.6. . Suppose that there is a point x ¢ X' such

that:

A(x) = Xx .

Let 91 be the isotropy subalgebra of G at x. Then,

= 0 R

and G is the semidirect sum of G1

and A. In the
neighborhood of x, X and G acting on X are deter-
mined (up to Lie equivalence) by the Lie algebra Gl, and

the linear isotropy representation on the vector space A,

Proof. The methods are the same as those used to
prove Theorem 10.5. It is known from Section 2 that A
is a maximal abelian subalgebra of G, and that

angt = (@ ,

which implies G” = 0, and
6 = clea .

The only real complication in studying non semi-
simple Lie algebras of vector fields on the manifold X

comes when the orbits of A generate a foliation of X,
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In the next section we study this geometric situation in

more detail.

11. FOLIATIONS LEFT INVARIANT BY LIE ALGEBRAS OF VECTOR
FIELDS WHICH HAVE SUBALGEBRAS WHICH ACT TRANSITIVELY
ON THE FIBERS

Here is the geometric situation to be studied in

this section., Z and X are manifolds
m: 2 + X

is a submersion mapping, whose fibers are the leaves of a

foliation of 2.

G is a finite dimensional Lie algebra of vector
fields on Z which leaves invariant this foliation. This
is equivélent to requiring that each vector field A e G

is projectable under «, i.e.,
T4 (G)
is a Lie algebra of vector fieids on X.
Ty: G > “*(9)
is a Lie algebra homomorphism. Let H be its kernel, a

Lie ideal of G. H consists of the vector fields in g

which are tangent to the fibers of .

Let us now make the following assumptions:
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Theorem 11.1. Let G be a finite dimensional Lie algebra, A

and let S be a semi-simple Lie ideal. Then, there is

G acts transitively on 2 (11.1)}
H acts tramsitively on the fibers of (11.2};
w,(g) acts tramsitively on X (11.3)§

Here is a useful, purely algebraic fact.

another Lie ideal G'

i.e.,

G = g'es,

~

g' is the direct sum of G' and S.

Proof. Let R be the radical of G, i.e., the

of G such that:

maximal solvable ideal.

is a semi-simple Lie subalgebra S' such that:

Killing form, one can write S' as a direct sum of S

and an ideal s".

and

In particular,

[R,S] c

[R,S] ©

s

Since S and R are both ideals of G,

S

~

]

[6',8] = 0 ,

By the Levi-Malcev theorem there

is an ideal of §'. Using the
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These identities force:
J[R,8] = ©
Since §' is a direct sum of § and s",
(5,81 = o .

Hence,

G is the direct sum of R+ 8" and S.

R + 8" is an ideal of G. If we define G' to be R+ 8",

Theorem 11.1 is proved.

Now, return to the case where (G,H,7,(G)) satisfy

11.1-11.3.

Theorem 11.2. Suppose that H is semi-simple. Let G’

be the Lie ideal of G provided by Theorem 11:1, such that:

1

Let H™ be the Lie subalgebra of H consisting of the

elements of H which vanish at one point of Z. Suppose

the following condition is satisfied:

There is no non-zero element A ¢ H

such that
An] cnl (11.4)

i.e., H1 is its own normalizer in H
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Then, G acting on Z is Lie equivalent to the product z, Y the orbit of H through z. (See diagram.)
of m,(G') acting (transitively) on X and G' acting

transitively on a manifold Y.

Proof. Let 2z be a point of Z. We shall prove

that hypothesis 11.4 guarantees that:

G'(z) nH(z) = 0 : (11.5) Moving this orbit Y, parameterized by points of X' gives

If, in fact, 11.5 is not satisfied, there is an element the coordinate system required for Z, in which G' and

A e G' and an element B ¢ H such that: H act independently to make up the action of G.

1

A-BeG , but B(z) #0 Remark. From what we already know about actions of semi-

Now, simple Lie algebras on one-dimensional manifolds, condition

1 .1 1 '
[H°,67] c H° , 11.4 is automatically satisfied if the fibers of = are

since H is an ideal of G. Thus, one-dimensional. (In fact, I believe it is satisfied also

if they.are two-dimensional.) In particular, if:

(a-8,u'y < u!
But, since [B,H] =0, dimZ = 2 ,
[A'B:Ell = [Byﬁll , and if G is a transitive Lie algebra of vector fields

hence with a semi-simple ideal H, then this argument proves

’ ~ . .
1 1 that either H itself acts transitively, or the action of

G on Z is equivalent to the product of actions on one-

Condition 11.4 forces: =
dimensional manifolds, which we have already classified.

BeH, i.e., B(z)

L]
(=]
-

Having studied the case where the ideal H (which

contradiction.
is tangent to the foliation invariant under g) is semi-

To finish the proof of Theorem 11.2, pick a point i
simple, let us study the opposite extreme case where it

2 € 2. Let X' denote the orbit of G' passing through
§ is gbelian, i.e.,
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[H,H] = 0 . (11.6) §

Suppose that the fibers of the foliation are m-
dimensional. Since H acts transitively on the fibers,

we can find r elements

Al,...,Am e H

-~

which are linearly independent in an open set of Z. The

coordinates
yH s 0 1<ijen, l<abenm
can be chosen so that:
a o
A = — . 11.7) §
a aya ( ) )
Let
A A

m+17° AL
be the remaining linearly independent elements of H.

Then, there are relations of the following form:

A

a 3
m+1 fm+1(x) a

3y

(11.8)

- a 9
Ar fr(x) a
3y

Any other element B ¢ G can be written in these

coordinates in the following form:

1

B = n® 2 4t d (11.9) 4

ay? 3x
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Since H is an ideal,

(BHcH
Since H is abelian,

[H[H,B]] = 0 (11.10)
(This relation says that Ad H, acting in G, is nilpotent.)

In particular, since a/aya € H, we have:

3 9
= ''|TTF B = 0 ,
laya [ay ]]

or
2’ . , . 2%l
ay%ay" oty

In particular, h® and hi are polynomials of degree at
most ggé in the variables y, with coefficients which are
functions of x. In particular, B is of the following
form: ‘
B o= (8*m+ay™) g+ eleap oyt g
Yy X
(11.10)

We can then sum up these results as follows:

Theorem 11.3. Let G be a finite dimensional Lie algebra
of vector fieids on a manifold Z, with an abelian ideal

H. Suppose dim H(z) is constant as =z ranges over Z.
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(For example, this will be so if G act; transitively on

Z.) Then, each point of Z has a coordinate system
otLy®)

such that:

Each element B of G has the form 11.10.

I have now temporarily come to the end of my energy
to work out the general setting for Lie's classification of
finite dimensional Lie algebras of vector fields. I hope
I have given enough detail to convince the reader that this
is a very fruitful area for further research, ﬁtilizing to
the full ideas of Lie algebra theory, differential geometry,

differential topology, and so forth. In the next chapter

we deal more specifically and directly with the main problenms {

dealt with by Lie in this paper.

Chapter F

" CLASSIFICATION OF IMPRIMITIVE FINITE
DIMENSIONAL LIE ALGEBRAS ACTING
ON 2-DIMENSIONAL MANIFOLDS

1. INTRODUCTION

Let 7 be a two dimensional manifold, and let
G c V(Z) be a finite dimensional Lie algebra of vector
fields on Z. The cases where G acts Erimitifelz on Z
may be readily classified by the general techniques described
in Chapter E. Hence, one can regard the classification of
the imprimitive actions as the Main Result of this paper.
In this chapter, I will develop\this classification, adher-

ing more closely to Lie's methods.

Remark. The treatment of this topic in Volume III of
"Transformationsgruppen" by Lie and Engel is considerahi&

clearer and more concise than in the "Mathematische Annallen"

paper being translated here.

Here is the general setting. Let Z and X be
manifolds, with:
dimZ = 2
dimX = 1 .
Let
w2+ X

be a submersion mapping.
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Let G be a finite dimensional Lio algebra of
vector fields on 2. Let L be a finite dimensional Lie
algebra of vector fields on X. Suppose that:
T(G) = L

Set
H = {AeG: 7,(A) = 0} .

Then, algebraically, H is a Lie ideal of G, and
% = G/H .

~ o~

Geometricallz, H consists of the vector fields in g

which are tangent to the fibers of . One says that:

G is_an extension of L by H.

One knows (from the classification of Lie algebras acting

on one dimensional manifolds) that:
dim L = 0,1,2, or 3 (1.1)

In principle, one might think that Lie's classifica-
tion problem should be divided into an "algebraic" and a
""geometric" part. The "algebraic" one is to classify all
posgibilities for (g,g), with

dim (E/E) = 0,1,2, or 3 ,

and then to solve the problem of classifying the possible

ways these algebraic possibilities may be realized "geometri-;

cally". In fact, Lie's method mixes up the algebraic and
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geometric features of the problem in a very interesting
way!

Let x denote a coordinate for X. We do not make
any notational distinction between x and w*(x). Thus,

if y 1is a function on Z such that
(x,y) = (v*(x),y)

is a coordinate system for 2Z, y may be regarded as a

choice of coordinate system for the fibers of =#. x is

called the coordinate of the base.

One now has a natural preliminary classification by
two integers, .the dimension of H and the dimension of
G/H. Another classification possibility is provided by

the algebraic structure of the Lie algebra H. Our method

will be to examine each of these possibilities in turn.

2. H ABELIAN AND dim (G/H)} = 0
This is of course the simplest case. Another way of
stating the condition dim (g/g) = 0. is that:
G-H
i.e., each vector field in G is tangent to the fibers

of .
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Definition. A coordinate system (x,y) for 2 is said
to be adapted to H if each vector field A ¢ H is of

the form

A = a(x) g.), (2.1)

Theorem 2.1. Such adapted coordinate systems exist locally.’f

If H# 0, x is base-like, and y is a coordinate system

for the fibers of .

Proof. If H =0, everything is trivial. Suppose

then that H # 0, and picks a vector field

BeH .

-

which is non-zero. Pick a coordinate system (x,y) such

that:

@[ @
~
.

B is then tangent to the fibers of w. Since these fibers

are l-dimensional, each A ¢ H is of the form
A = a(x,y)B

But, the condition

[A,B] = 0
implies

which proves that A is of form 2.1.
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Thus, in terms of an adapted coordinate system, H

has the following canonical form:
There is an R-linear map
A+ a(x)
of H F(X) such that:
A = a(x) §7 » (2.2)
for all AeH

Let us examine the conditions that two Lie algebras
H,H' of the form 2.2 be Lie equivalent. Suppose H' is

given in terms of adapted coordinates

(x',y")
Then,
x 1is a function of x' alone
y is a function of (x,y').
Hence,
3 . 3x' 3 ay' @
32 3y ax' * ay ay'

. a2
0+3y 5')7 .

In order that this change of variable send H into

H', the formulas must take the following form:
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y' o= £y + g(x) 2.3 |

This immediately gives us the Lie equivalence classes. ]
Definition. Let us say that two R-linear maps
a: H + F(X)
a': H' + F(X)
are Lie equivalent if there is a non-zero function f e F(X)ﬂ
and an R-linear isomorphism ]
¢: H-»> H'

~ ~

such that:

a(A) = fa'($(A)) (2.4)
for all A € g

Here is the main result of this section.

Theorem 2.2. The Lie equivalence classes of n-dimensional
abelian Lie algebras of vector fields on Z which are

tangent to the fiéers of 7w are in one-one correspondence
with Lie equivalehce classes (as defined above) of one-one

R-linear maps

a: R® » F(X)

Remark. Again it is worth pointing out that this material-

and its various generalizations--is in close relation to
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what the physicists call gauge transformations.

Now, let us turn to more complicated algebraic

situations.

3. GENERAL ALGEBRAIC PROPERTIES OF LIE ALGEBRAS OF
VECTOR FIELDS WHICH ACT IMPRIMITIVELY

Since it is no extra work, we may temporarily consider
the general case. In this section Z and X are manifolds

of arbitrary dimension,
™ Z + X

is a submersion mapping. G is a finite dimensional Lie
algebra of vector fields on Z. L is a finite dimensional

Lie algébra of vector fields on X, such that:
w.(g) = L .
H is the kernel of w,, and consists of the vector fields
of G which aré tangent to the fibers of .
Definition. Let K be a Lie algebra. Set
Koe IGEL KK - K,

and so forth. K is said to be n-step solvable if

gn = 0 .

(For example, "abelian" is l1-step solvable, a non-abelian
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solvable Lie algebra of vector fields on a l-dimensional

manifold is 2-step solvable, etc.)

Theorem 3.1. Suppose H restricted to each fiber of =

is n-step solvable. Then H is n-step solvable.

Proof. Let x be a point of X, and let

1

Y(x) = 7 "(x)

be the fiber of =#. It is a submanifold of Z. Our defini
tion of H means that each vector field in H is tangent
to Y(x).

Let H(x) denote the set of vector fields on Y(x),
obtained by restricting the veétor fields in H to Y(x).

We then have:

(H,HI(x) = [H(x),H(x)] ,
i.e.,
Hy(x) = (H(x),
If g(x) is n-step solvable for each x ¢ X, we see that

vector fields in

H
are zero when restricted to each fiber of =. This implies

(since mwy4(H) = 0) that
En =0,

i.e., H is n-step solvable.
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Corollary to Theorem 3.1. If the fibers of =» are 1-

dimensional, and if H restricted to the fibers of = is

not simpie, then H is 2-step solvable.

Theorem 3.2. If H is n-step solvable, and if L is

m-step solvable, then G is

(n+m) -step solvable.

Proof. This is purely algebraic. Since Em =0,
we have:
ﬂ‘(gm) = 0 N

i.e., Gm C H. Hence,

§m+n ® (gm)n < En =0 .
Theorem 3.3. Suppose that H restricted to each fiber of

n is semisimple. Then, H is semisimple.

Proof. Suppose H is not semisimple. It has then
a non-zero abelian ideal A. But, for each x ¢ X, Q(x)
is an ideal of g(x), hence is zero because g(x) (the
vector fields in H restricted to the fiber above x) is

semisimple, This implies that

A=0 ,

~

contradiction,
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4.  CLASSIFICATION OF dim (G/H) = 1, H ABELIAN

Let (x,y} be a coordinate system which is adapted

to H, and let B be an element of G which is not in HJ

We can suppose the base coordinate (x) is chosen so that: 4

1

Ta(B) =
Hence, B is of the following form:
9 ]
B = x + b(x,y) 37
Each A e H is of the form:
9
A = a(x) 3y

Hence,

2
3y

<=

_ da 3
[A,B] = 3¢ 3y ¢
This must belong to H, which implies that:

is a function of x alone.

<le

Hence, B is of the following form:

B = %’Yif (b (x)y+b] (x)) 37 . (4.1)

Let us now make what the physicists would call a

gauge transformation:
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Xl = X

Yy * £(x) + fg(x)

2 . M1 . 2
2N Tl oy W,
Ay X
8. . ‘13 193
X x 3y, M T Xy
af d 3 3
= (a;"*a‘%)sy;*ﬁq
Substitute these values into 4.1:
. 3, (af d 2
B (Er+3- f(by+b1))ry1— 4.2)

We can now choose f and g so that the term in paren-
theses on the right hand side of 4.2 vanishes. (f and g
are then determined up to arbitrary constants.) Let us

sum up as follows:

Theorem 4.1. Let 9 such that dim (9/5) = 1, and H is
abelian. There then exists a coordinate system (x,y) for
Z such that:

a) x 1is base-like

b) Each A ¢ H is of the form

a(x) g; ,

for some base-like function a(x)
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da

a;i - ci aj

We can write this in terms of vectors and matrices

€) As a vector space, G is a direct sum of H

and 3/9x,

H is then determined by an R-linear, one-one map as follows:

a: H+ F(X) ,

8
namely: a = :
a(A) = a 2
H is an ideal of G. The condition that 1
~ -~ c . - c
1 1
] - .
5= » H] cw < H .
cn .o cn
determines an ordinary differential equation for a.
Specifically, let )
’ ;g . ca (4.6)
A = oa x & ¥
1 1 3y
E (4.3) Equation 4.6 is an ordinary, constant coefficient
= 3 .
S 3y differentjal equation for a, considered as a map
: s . o R+ R .
be a basis for H. Choose indices and summation convention §

as follows: It can be solved as follows:
1<i,j<n ax) = Kb (4.7)

Suppose that c] are constants such that

1 where:

' be R" .
3 ] '
[3; ’ Aj] i Ci Aj (4.4 This determines the canonical form for the Lie algebra

G. Each canonical form is parameterized by the nxn matrix
Conditions 4.4 require that: G

¢ and the column n-vector b.
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When are two such canonical forms Lie equivalent?

To answer this, let

(x',y")

be another coordinate system, {G',H') another Lie algebr?

of the same type which takes its canonical form in the

(x',y') coordinates.

o= (2@ g’—},—r)

(x)é' = eg'x b'

Lie equivalence requires that there be a Lie algebraiy

isomorphism
¢: G' > G
* which is realized by the change of variable. The purely

algebraic condition that ¢ be an isomorphism requires

that:

¢(H') = H (4.8)

3 3 i 3
¢(5§T) = A 3t Alai(x) 3y (4.9) 4

where (x,xlj are real constants,
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. These conditions are readily worked out. It is

readily seen that

X = AX' + vy (4.10)
where Y 1is another real coﬁstant.

y = fy'+g , (4.11)

where f(x),g(x) are arbitrary functions of the variable x.
Formulas 4.10, 4.11 determine what the physicists

would call the gauge transformations of the canonical form.

With them, the Lie equivalence qlasses can be readi 1y

described explicitly.

5. H SOLVABLE, NON-ABELIAN, G=H

By the general remarks of Section 3, H is Z-step
solvable. It can be readily shown that there is a coordin-
ate system (x,y) for 2, adapted to the foliation
defined by the fibers =, such that, for each A ¢ H,
there are base-like functions ‘

a(x), b(x)

such that:

A = (OB 5 (5.1)
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Thus, H as & Lie algebra of vector fields on Z which
is tangent to the fibers of the foliation w, is determined

by an n-dimensional R-linear subspace of

F(X) ® F(X) ,
where
n = dim H .
(To see this, assign (a,b) ¢ F(X) ® F(X) to each A ¢ g.)
However, not every such linear subspace can appear in§
this way. To determine what conditions it must satisfy, we?
follow Lie and Engel, "Transformationsgruppen', Vol. I1I, ]
page 40.
Suppose

A' = (a' + b'y) %7 (5’2)§

is another element of g, with (a',b') ¢ F(X) & F(X).
Then,
"= b - ba') o
[A,A'] (a'b ba') 3y

In particular, suppose

b' = 0
Then,

[A,A'] = ba' 27
Hence,

(ad A% = ota Lo (5.3) 1
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At this point we can use the hypothesis that G is

finite dimensional. The Cayley-Hamilton theorem then

asserts that Ad A acting in H satisfies a polynomial
equation. Then, there is a relation of the following form:

ba' + 2 b lar ¢ oo v xjat = 0 (5.4)

for some choice of real constants Agoeeeshy qe
A' can be chosen so that a' is not identically
zero, It can then be factored out of 5.4, resulting in a

polynomial equation for b, with constant coefficients.

This is only possible if:

b = constant .
Let us sum up as follows:

Theorem 5.1. Let H be a solvable, non-abelian, finite
dimensional Lie algebra of vector fields on Z, which is
tangent to the fibers of w. Then, there is a coordinate
system (x,y) for Z which is adapted to the foliation

defined by the fibers of =, and R-linear maps

a: g + F(X).
b: H~>R
such that:
A= (B + b (5.5)

for all AecH .
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a and b must satisfy the following cénditions:

b([H,HD) = o© (5.6}

a([A,B]) = a(A)b(B) - a(B)b(A) (5.7 8

for A,B e A

We can now use 5.6 and 5.7 to put fhe algebraic
structure of H in a more useful form, similar to that
given by Lie and Engel. Note that relation 5.6 means that
b is a Lie algebra homomorphism from H to the abelian

Lie algebra R. Set:
E = kernel b (5.8)

K is then an ideal of H. It is not equal to all of K,
because then H would be abelian, and would bé covered By

the work of Section 2.

We can then suppose that the adapted coordinate systen

(x,y) 1is chosen so that:

H is then a direct sum (as a vector space) of K and the
one dimensional subspace spanned by 3/3y. Hence, H has

a basis of the following form:
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) ) L)
bl(x) W ERRN] bl‘l(x) W Y '5')7 (5.9)

Conversely, it is readily seen that 5.9 defines, for
arbitrary choice of functions bl""’bn ¢ F(X), a solvable,
(n+l)-dimensional non-abelian Lie algebra of vector fields
on Z which are tangent to the fibers of w. Thus, we have

determined 'canonical forms' for the Lie equivalence classes.

Exercise. Complete this analysis by carrying out the

following tasks:

‘a) Determine when two Lie algebras of form 5.9 are

Lie equivalent under gauge transformations

X + X

y > £(x)y + g(x)

b) Solve for the orbits of the vector fields 5.9,
and write down a Lie group acting on R2 whose

Lie algebra is given by formula 5.9.

Remark. There are certain general algebraic features to
this argument that are of great interest to general Lie

algebra theory. Here is a brief descripfion of one such

problem.
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Let K be a field, and let
G
be a finite dimensional Lie algebra over K. Let F be
commutative associative algebra over K.

Consider the K-vector space

G ® F . (5.18

(The tensor product in 5.10 is understood to be taken

relative to the field K.) Make G ® F into a Lie algeb 4

using the following formula:

[A;@ £, A, 8 £,] =. [A,A,] @ £f, (5.4

for Al’AZ € g; fl,f2 e F

G @ F, with the Lie algebra structure defined by

5.11, is called the gauge Lie algebra based or G. (The

name ''gauge Lie algebra'" comes from physies. It is also

called a current Lie algebra. See LAQM, Vol. VI, and my

paper "Infinite dimensional Lie algebras and current
algebras".)

The general problem that obviously underlies the

situation treated in this section--and much of the rest of}

Lie's work--may be stated as follows:

Determine the finite dimensional

subalgebras H of G ®F.
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The key condition is finite dimensional. It enables

one to apply the Cayley-Hamilton theorem.
Let h be an element of H. It satisfies an algebraic

equation of the form:

(ad m™+ 2 ad )™ ey,
where:

m = dim H
The X are polynomial maps

H-R .

py

(They are invariant under the adjoint representation on g.

They play a key role in Cartan's structure theory of Lie
algebras;) What must be done is to examine the condition
relations 5.11 imposes,

We now return to the specific situvation considered by

Lie to study the case where H is semisimple.

6. H SEMISIMPLE, dim (G/H) = 0

Assuming H semisimple, it can be written as the

direct sum

H = t[lQ'-'Qtln

of simple ideals. Each of these ideals must obviously be
isomorphic to the Lie algebras of

SL(2,R) .
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Let A, be an element of Hy which is non-zero in

an open subset of Z, such that:

(ad AD® = 0o . (6.1)]
,,
(It is readily seen, given the algebraic structure of
SL(2,R), that such an element exists.) We can then choosfg

a coordinate system to

(x,y)
such that:

A - ’37 . (6.2}
Now by the meaning of "direct sum" the elements B

in gz,...,gn commute with Al' They are also tangent to

the fibers of w, hence are of the form

B o= b(xy) &
Hence,

3b

3y 0

This implies that the elements in gz,...,gn commute with :
each .other, which of course contradicts the assumption that%

they are semisimple. This proves:

4
Theorem 6.1. Let H be a semisimple Lie algebra of vector}
fields on Z which is tangent to the fibers of w. Then,

H is simple, and isomorphic to the Lie algebra of SL(Z,R);
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We can now find the canonical form for H. Suppose
that 6.1 and 6.2 are satisfied, H has a basis composed
of elements Al’ AZ' AS which satisfy the following
algebraic relations:

[Al lAzl = A

[A;.A5] = 24, (6.3)

In addition to 6.2, suppose that:

AZ’A3 take the following form in this
coordinate system:
9
Ay v (30 + by + e vh) &
2 (6.4)
Ay = (ag(x) + b0y v e50yY) &

A, must take this general form because of 6.1 which

3
forces the third partial derivative with respect to y of
their coefficients to be zero,)

We can now use the SL{2,R) structure relations 6.3

to determine the unknown functions of x in 6.4.
- 2.
= Al ay N

which forces:
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b2 =1,
[Ag+4;]
Hence,
cg = 1,

Now, substitute 6.5

A2 =
A3 =
[A;A5] =
hence:
2
a; =
A2 and A3
Az =
A3 =

then take the following form:
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=0 (6.
(by + 2c,y) =
3 3 Ay
= ZA2 = ysing 6.4 - 6.5,

3
(Za2 + 2y) v oc

b, = 2a . (6.6%

3 2
and 6.8 into 6.4:

)
(a + V) 35
(6.

e w2y B
(ag + 2a,y +v7) 35

((ay*y) (2ap+2y) - (age2aywy®)) &

2 2, 3
(2a; - ag *+ 2a,y +y") 3y
_ 2, d
A3 = (33 + Zazy ty ) 5; ’
a (6.8;

)
(a, +v) 3y
2 2, 9
(ag + 2a,y +v7) 3y
2 3
(32 +y) ¥
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We can now make a final gauge transformation

X; ® X
(6.8)
Yy 7 &ty .
Hence,
3 . My s
oy 3y 3y; %, (69
In the new coordinates the Lie algebra H takes its
canonical form:
. 3
A1 5;;
A, = 3 6.10
2 Y1 5;‘ (6.10)

Let us sum up:

Theorem 6.2. Let H be a semisimple Lie algebra of vector

fields which is tangent to the fibers of x. Then, there

is a unique canonical form 6.10 for H.

Remark. This "rigidity" seems to be typical of semisimple

Lie algebras. See the previous chapter for general comments

about the relation to the theory of deformation.
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7. H NON-ABELIAN SOLVABLE, dim (G/H) = 1

According to previous work, there is a coordinate
system .

(x,y)
for Z, adapted to the foliation determined by the fibers

of w, such that H has a basis of the form:

3_

y' Y

<

a, (x) %7-,..., a (x)

Let B be an element of G which is not in H.
G 1is the vector space direct sum of H and the one-
dimensional vector space spanned by B. We .can choose th

coordinate X so that:

. 3
B = 3% + b(x,y) 1% (7.
Now,
) _ 3b 3
b2l - 505 (7.3}

The vector field on the right hand side of 7.3 must be a
linear combination with real coefficients of the vector
fields listed in 7.1. In particular, it must be linear in’

This forces b to be linear in Yy» i.e.,

b = bo(x) + bl(x)y . (7.4
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Thus,
2] - )
[B, y ay] by 35 (7.5)
b0 is a linear combination with real
o (7.6)
coefficients of the function 8,008y
Now,
- ? )
B (bO + bly) 5y * s 7.7

We can now make a gauge transformation to reduce 7.6
to a canonical form. Of course, such gauge transformations

should only be chosen which leave invariant the canonical

form 7.1 of H. It is easy to see that such transformations

are of the following form:

X = X
! (7.7)
Y, = f(x)y
Thus,
. Yo . ofa
dy y 3y
3 = Eﬁa +ﬁa
x X 57; X 93Xy
df _ 3 3
= a;yry.f—l--a—i—;
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Hence,

- a__ ,4f ;3 3
B (b0+b1y)f a7 * Y ayl + 5%

We can choose f so that B contains no term of the

form:
A 2_
( )71 ayl
This proves:

Theorem 7.1. A coordinate system (x,y) adapted to the
foliation can be chosen so that H has the canonical form

7.1,
B = byx) &+ & (7.8)
0 3y 93x ° . :
and condition 7.6 is satisfied.
Now, condition 7.6 means that:
9
bO(X) W €

Hence, we can redefine B --modulo H--so that:

|
%1

We have yet to fully take into account that

[B,H] c H
To do this, choose indices and the summation convention

as follows:

(7.9)
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1'5 i,j£n .
Then,
da
) - 2
B 5] - &%
Hence, there are real constants xg such that

[Bay &1 - ey 5

The aj(x) are determined by the following differential

equations

dai
= - *i‘j (7.10)

These relations determine the canonical form for 9.
(It is left to the reader to settle the additional problem
of deciding when these canonical forms are Lie equivalent.)

Note that the canonical form depends on a finite number of

parameters, namely:

Xga ai(o)

This is in contrast to H, whose canonical form 7.6 depends

on "arbitrary functions."
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Exercise. Write down the formulas for the groups G
acting on R2 whose Lie algebra G consists of the vector

fields whose canonical form we have just found.

8. H SEMISIMPLE, G/H ARBITRARY

Consider Ad H acting in G. It is a linear, finite
dimensional representation of a semisimple Lie algebra.

Such representations are completely reducible (proved by .

Weyl, J. H. C. Whitehead). Hence, there is a subspace

Kcg
such that:

G = vector space direcf sum of g;g (8.1)

Ad H(K) c K (8.2)

But, H is a Lie ideal of G. Hence,

[H,Glc H . (8.3)
8;1-8.3 are only compatible if

[H,X] = 0 . ' (8.4)

Return to the case where G 1is a Lie algebra of
vector fields on Z = R2
H is tangent to the foliation and is semisimple. - By

Section 6, there is a coordinate system

which leaves invariant a foliation.{
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(x,y)

adapted to the foliation such that

%»Y%a)’

2 (8.5)

2

is a basis for g.
Let
A e K
It is of the form
A = a(x) %; + b(x,y) %7 .
This is only possible if
b(x,y) =0 .
We see that:

K is a Lie algebra of vector fields

involving x alone,

Thus, the possibilities for canonical form are:

}f’ax
}f'g'f’ ax
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3 3 '
L TR T

We can sum up as follows:

Theorem 8.1. - Suppose that H is semisimple. Then, there
is an ideal K c G such that G is a direct sum of KX

and H. Z can be written locally as a product
Z = XxY
so that G is the direct sum of the Lie algebra K of

vector fields on X and the Lie algebra H of vector

fields on Y.

9. H ABELIAN, dim (G/H) = 2

Set

g = G/H

~ o~

g is a 2-dimensional, non-abelian solvable Lie algebra
of véctor fields on X.

Let B,,B, be two elements in G such that Fi’FZ
form a basis of §. We can suppose the coordinate x for
X chosen so that:

Fz = x %; .

B1 =

[T
”
-
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From previous work, we know that coordinates (x,y)
can be chosen for X such that a basis for H has the

following canenical form:

83,00 55 s a0 & (9.1)

s

Further, Bl can be chosen as follows:

.

]
’1 - '5; (9-2)

We must now see what conditions this canonical form
imposes on Bz.

Suppose that:

9 3
BZ = x3*t b(x,y) v -

Then,

. 9 ,3b2 '
(B;.B,] R T (9.3)
In order that (5,31,32). forms a Lie algebra, it is
necessary that the right hand side of 9.3 be a linear

combination of the elements 9,1, 9.2. This forces:

%% is a function\of X alone,
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hence
or: ‘
. : : dai j
b(x,y) = by(x) + by(y) (9.4) R e LS (9.8)
Then, .
(c,c',Ai) are real constants.)
[a 3.8 ] - [a & xd v 34 3.]
13 "2 1% & o 3y 1% Substitute 9.8 into 9.6:
da db o, &, B,| = (-xada, +a.c) & (9.9)
= -x ail %7 + a; 3?1 %V (9.5) [ idy 2] i%; i 3

The right hand side of 9.9 must also be linear combinations

Supposing a, ¥ 0, we see that the condition that the left of the ai(a/ay), i.e., there must be constants yg such

hand side of 9.5 lie in G forces dblldy to be a constant;: that

say ¢. a;c - xajxg - yzaj (9.10)
Choose indices as follows, and the summation conven-

tion on these indices: Use vector-matrix notation:

lii’jin . 81
We can then rewrite 9.5 as follows: a = :
: da, a
3 - iy i 2 n
[ai 3y’ le ( X5t aic) 3y (9.6)
We also have: A = (Xi)
3 d
B, = x5z + (by(x)+cy+c') 35 9.7) and so fortp.
9.8 can be written as:
Also,
da a = XX a(0) (9.11)

Braf5] - &5
9.10 means that:

Ya + A(xa) = Aa
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or
Substitute 9.11:

| spdaco) + Ma = cinda
o2 a(0) + a(xe2* a(0)) = ce?* a(0) (9.12) .
1s(0)) - (c - %-) (x%a(0)) (9.14)

We shall now deduce from 9.12 the conditions that

the nxn matrices Y and A must satisfy. First, set Relation 9.14 says that:

x =0 in 9.12: 5?3(0) is an eigenvector of Yy with

. . . 1
ya(o) = ca(o) , (9.13} eigenvalue (c - T)'

i.e., Now, y has only a finite number of eigenvalues.
i such that:
a(0) is_an eigenvector of y, with Hence, there is an integer m suc
eigenvalue c. §P+1 (a(0)) = 0 (9.15)
Now, differentiate 9.12, and set x = 0: A" (a(0) ¥ 0 (9.16)
YAa(0) + Aa(0) = cra(0) Thus,
Hence, gIX) - e&x a(0)
x(Aa(0)) = (c-1)(2a(0))

. 200 + @) +ooe A MP@0) (9,17
In particular,

Now, recall that
Aa(0) is an eigenvector of y with

eigenvalue (c-1). a; (x)
. . . a(x) = .
The general relation of this type can be obtained -~ .
’ a_(x
by expanding 9.12 in a power series in x. Equating the n( )

j-th term (j=2,3,...)} gives the following relation:
where

1 .

. . a a
3T 1r’a(o) + UI_IT" Ma@) = -;—,— Aa(0) a;(x) 35 »eees a,(x) 35
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is a basis for H. In particular,
al(x),...,an(x)

are linearly independent over the real numbers.

From linear algebra, we know that:
a(0), _a(0),...,A"a(0y

are linearly independent as vectors of Rn. Hence,

m+l <n

Suppose
m+l <n . (9.18)

In case 9.18 is satisfied, it is clear from 9.17 that we
could construct a non-zero constant vector b e R" such
that

b-a(x) = 0 ,
i.e., the functions al(x),...,an(x) would not be linearly

independent. 9.18 cannot be true, and we must have:

m+1l = n (9.19)

We conclude that:

Theorem 9.1. a(0) is a cyclic vector for A, i.e., the
iterates of a(0) wunder A span R, A is a nilpotent

matrix, i.e.,

o, (9.20)

IMPRIMITIVE LIE ALGEBRAS 497

Remark. If the vector 3(0).55(0)....,53'13(0) are chosen
as a basis for Rn, then the matrix of ) with respect to

this basis is what is classically called a companion matrix.

A takes the diagonal form with respect to this basis, and

is determined by 1A, a(0) and the real number c.

Let us now work out the rest of the Lie algebra

structures for g. Return to relation 9.3.

[B,,B,] = 2—+ 9 2 (9.21)
1’72 ax = dx 9y .
Here, there must be constants ui such that:

db0 i

H— = Q ai(x) ’ (9-22)

or, in vector notation,
. dbo
x - <a,a(x)> (9.23)
where
a = (ul,...,an) R
and < , > is the duality relation between row and column
vectors of R.

Using 9.17, we have:

db
HEQ . <a,ed* a(0)> .

Hence, ‘ ¢
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AX : 1

bO(XJ = <x,(3‘x—'1-) 1(0)> + constant (9.24) j

Theorem 9.2. The Lie canonical form for G is parameter-
jzed by an nxn nilpotent matrix 1A, a column vector

a(0) ¢ R" which is cyclic for L,. a row vector a, and

a real constant c. The bases for G’ then take the

following form:

where:

a(x) = e a0 - : (9.26]%

a, (x)

Proof. These conditions were derived as necessary

conditions for the existence of a Lie algebra G with the
properties described in the title of this section. It
remains to show the converse, i.e., that there actually
exists a Lie algebra with these properties. To this end,

define vector fields by the formula 9.25. The argument

. IMPRIMITIVE LIE ALGEBRAS 499

given above is reversible to prove that the linear span
(with constant coefficients) of the vector fields 9.25

is closed under Jacobi bracket, hence defines a Lie algebra.
(The point to this remark is' that, using the formula
described above to define the "abstract" Lie algebra

structure, it was not a priori obvious that the Jacobi

-identity was satisfied. However, this is assured because

the abstract objects are realized as vector fields, and

the Jacobi bracket is true for vector fields.)

Remark. Given the nilpotent nxn matrix 1, the set of
vectors which are cyclic with respect to A forms an
open_subset of Rn. Thus, the structure of the Lie algebras
parameterized in this way may be expected to change as

a(o) tends to the boundary of this open subset. It would
be interesting to calculate what happens. Clearly, there
remains much to be done to elucidate the deformation-

theoretic framework for these concepts.

As was proved in Volume VIII, a necessary and suffic-
ient condition that an nxn matrix ) have a cyclic vector

is that the characteristic polynomial of A be equal to

its minimal polynomial. For the case of nilpotent matrices,

this means that:

A" = 0, but A"lyo .
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10. H NON-ABELIAN SOLVABLE, §/§ NON-ABELIAN SOLVABLE

In Section 5, we have determined a canonical form

for H, ramely:

We can then normalize the choice of the x-coordinates so

that the following vector fields

- 3 3_
1 5% * P1(xY) 37

. ) )
Bz X 5; + bz(x:y) 5;

together with the vector fields 10.1, span G. Then,

ab
3 = _1 . 3
{y 3y °* Bl] (y 3y bl) ay (1o0.
ab
3 = 2 . 3_
[y 3y ? BZ] (y 3y bz) 3y (10.4

This implies that bl(x,y) must be, as functions of x,y,

at.most linear functions in y.

a; (x) %; seees a (X) %;, y %; I (10.1)2
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'Now the canonical form 10.1 is unchanged by the

following gauge transformation:

X1

"1
Then,

3_
33

g

X

£(x)¥

)4 x

1 + =13

ax 3y, = ux 5‘:’:‘1'

df _ 2 )

&7 'a‘i; * a—fi'

ayl 3 + ax 3 = f .L—
3y 3y, % 8x) 3y,

1 1

501

(10.5)

Hence, after at most making a gauge transformation

of the form 10.5, we may suppose that:

The coefficient of

dc

2
dx~

a_

X *

3y

3
b, (x) 77

3 3
x 3x * (b (x)+c,y()y) 35

in the expansion of

This must be a constant, i.e.,

cz(x)

cx +c¢c' ,

(10.6)

is:
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with constant, c'. The constant ¢' can be absorbed into

by Hence, B, is of the following form:

- 3 a
Bz X3z * (bz(x)+cy) 3y

We can then substitute -cy %; (which is in 9, of course)ﬁﬁ

to write B, in the following form:

. .2 3 2
B, x 3%+ b0 & (10.7)
Now,
3 3
[Bl’ y W] b 5%
31 _ . 3
[,BZ’ y 57] b, 3%

Hence, b1 and b2 must be linear combinations of the

al(x),...,an(x).
In particular,
9 9
b1y P2y
beloqg to H, hence may be su?stituted from B,,B,. After
the subtraction, we have:

B1 =

2

(10.8);v

= .a—
B2 X 3%
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In particulsr, B, sand B, span a subalgebra. G is the
semidirect sum of H and this subalgebra. We may sum up

as follows:

Theorem 10.1. The Lie algeﬁta extension

G - G/H

splits, under the hypotheses of this section, i.e., the

Lie algebra G may be written as a vector space direct sum

of the ideal H and a subalgebra isomorphic to g/g.
This splitting property considerably simplifies the
canonical form. Introduce the indices
l<i,j<n ,

and the vector-matrix notations used in previous sections.

Then, there is an nxn constant matrix

- J
A (Xi)
such that:
3 e 2J. 2
[Bl,ai 5;] Ai‘j 3y
or '
da, .
i . 4]
r:C 3 Ajdy
or

a(x) = e a(0) . (10.9)
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There is also an nxn constant matrix

r = (Yi)

such that:

e 5] - iy &
Then,

o
or

xAa = ya
or

:Q_e:-):-x a(0) = xplx a(0)

. s . X
Using the power series expansion for eA , We have:

va(0) 0 (10.10%

Loda = gohr dao (10.11

for j = 1,2,...
Hence:
(Ajg(o)) is an eigenvector for vy,
with eigenvalue j.

As in Section 9, the finite dimensionality of H

means that y can have only a finite number of eigenvalues,
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hence that:

Ma) = o
_ _ (10.13)
for j sufficiently large

Agaip, repeating the argument given in Section 9, we see

that the linear independence of the functions
al(x),...,an(x)
forces a(0) to be a cyclic vector for A. In particular,

M=o, (10.4)

i.e., A 1is nilpotent.

- Also,
U

Y is determined by A and a(0)

satisfying these conditions.
Let us now sum up as follows:

Theorem 10,2, G has a canonical form parameterized by an

nxn nilpotent matrix A and a cyclic vector a(0) for .

(10.15)

Iu

X

[
fe
»w

.

Ax ) )
e~ ﬁ(o) ’s’i’ y W: x’
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11. H ABELIAN, dim (G/H) = 3

g/g is now semisimple., By the Levi-Malcev theorem,
there is a semisimple subalgebra 5 of G isomorphic to

§/§ such that:

G is a semidirect sum of- H and §
8 1is isomorphic to G/H
Of course, S is isomorphic to the Lie algebra of

SL(2,R), i.e., to the Lie algebra of the vector fields

Let S§' be the solvable subalgebra of S which is
isomorphic to the subalgebra generated by 23/5x, x(3/3x).
Set:

G o= Hes' .
G' then satisfies the hypotheses of Section 9. Look at
the canonical form 9.22 for G'. From the analyses given
ih Section 9, we see that the last two vector fields in

the list 9.22 may be chosen arbitrarily in G', so long as

they dre linearly independent and do not belong to H.

In particular, they may be chosen to generate the subalgebra

§'. This is possible only if
a=0 |,

which implies the following canonical form for G'.
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EAETOR A R e (11.1)

Again, A 1is a nilpotent nxn matrix, and a(0) is a cyclic
vector for A. ¢ is a real constant.
We must now be able to add to this canonical form an

element B3 € S, such that:

) 9 9

[§§, B3] = Z(X = + cy 3;) (11.2)
[x %; + cy %;, BS] = B3 (11.3)
[H,Bzl ¢ H . (11.4)

Suppose that B is of the following general form:

“

By, = a(x) 3=+ b(x,y) %y ans)

Using 11.2, we have:

%% = 2x (11.6)
3b . :
> 2cy (11.7)

These relations imply that:

a = XX+ (11.8)

b = 2cxy + bl(y) , (11.9)
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hence:

By = (xPrcy) 3z ¢ (Zexysb () &

Combine 11.3 and 11.10:

[x . cy %7, B3] = (sz-(x2+c1)) %; + 2cy %; + 2cxy g;

9xX

db
+cy ay—l %; - (2exy+b, (¥))c
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= 2- .a—
(x cl) ax

3

2
(x"+cy) 5%

+ (2cy+2xy(c-2c2)

- () &

+ (2exy+b, () %;

This identity forces the following relations:

Hence:

The canonical form for

3
ax

g

is then:

3
ay

+cy
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AX a_ 2 3 23
e a(0) 3y’ 3%’ X 375 X7 3= (11.14)

There are further restrictions on ) now in addition
to the requirement found earlier that it be nilpotent. In

fact, we have:

[ *a)] = ae**a(0)
[x ‘g_*_’ exxé(o)] = A—Zexx?_(o)
[ 23 AX AX
x" 5 e 2(0)] = 1z¢"7a(0)

The assignment

2

(11.15)

"
1
+
>

N

e:lo.:
®

i
(V]

now define matrix representations of the Lie algebra S,

which is of course just the Lie algebra of SL(2,R).
We know (theorem of Weyl and J. H. C. Whitehead) that

such a matrix representation is completely reducible. This
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implies that H is the direct sum

H = Elg'”e}-{-m

~

of linear subspaces, in each of which Ad § acts irreduc-

ibly. The dimensions of the real irreducible representations E

are:
1,2,3,...,28+1 ,

where 2 is an integer or a half integer. The matrices

A, Ay Az in these irreducible representations are given
by formulas that are well-known in the physics literature.
(See LMP, Vol. II, Miller [1]).

The canonical forms are.then determined by the
integers:

m, dim ﬂl,..., dim gm

In particular, notice that the canonical form now only
depends on discrete parameters. Again this is a reflection

of the relative "rigidity" with respect to deformations of

semisimple Lie algebras. (If one allowed H to be infinite '

dimensional, the possibility of continuous parameters would

reappear.)

12. H SOLVABLE, NON-ABELIAN, dim (G/H) = 3

G/H 1is again semisimple, and there is a semisimple

subalgebra S € G such that:
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v

[{~]

is a semidirect sum of s and H
Set:
51 = [g,g] = first derived algebra of H,

We know from previous "canonical form" work in this chapter

that:

dim (g/gl) = 1
Set:

gl is abelian, and 91 is a Lie algebra to which the work

of Section 11 applies. 91 has the following canonical

form:

3 ] ] 9 23
al(x) 'ry PRI an(x) W’ 'a-’f’ X ‘5}" x 'a';

By the complete reducibility property of semisimple
Lie algebra representations, H can be written as a vector

space direct sum

H = H'+H
such that '

[S.H] c H'
Now, g' is one-dimensional. A semisimple Lie algebra

has no non-zero one-dimensional representations. This fact

forces:
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[S,H'] = 0 . ' (12.1)

Suppose the vector field A 1is a generator of H'.
It must be. tangent to the fiber of =, i.e., if the adapted

coordinate system has the form
]
A = a(x,y) 3y . (12.2)

5 is spanned by

9 9 29
X X3 X o3

Hence, 12.1 forces:
a is a function a(y) of y above (12.3)

Now,

) o da 3 '
[al & A] - a5 (12.4)

The right hand side of 12.4 must be a vector field in Hl’

whose coefficients then are functions of x above. Hence,

aly) = cy + ¢! (12.5)

where c,c' are constants.

Case 1. c # 0

Changing variables y =+ cy + c', we have the following

canonical form:
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3 3 9 ) 3 2 3
al(x) :'y‘ perey an(x) 3y’ b4 -3_)7’ X’ X 3%’ X 3% (12.6)
Case 2. ¢ = 0.
The canonical form is:
) ] 3 3 3 2 3
al(x) 3? secey an(x) '3'70 5;, ’a_i, X -a—x, X 5-; (12.7)

In each case, the al(x),...,an(x) are determined
as before by means of a nilpotent nxn matrix A, which

forms part of a matrix representation of SL(2,R).

13. SUMMARY OF CANONICAL FORMS AND FINAL REMARKS

Here are the canonical forms for G collected

together:

H abelian, G = H.

al(x) %; yesesy an(x) %7 (13.1)
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@yseeesdy

functions of x.

H abelian, dim G/H =1

a0 3, 5 (13.2)

where )\ 1is an arbitrary nxn real matrix, a(0) an
arbitrary n-column vector of R® which is cyclic for 3,
i.e., such that a(0), ra(0),..., 59-11(0) are linearly

independent.

H solvable, non-abelian, G=H

3

The a;5...,2, are linearly independent, but otherwise

arbitrary functions of x.

H semisimple, - G = g

Y’

are linearly independent, but otherwise arbitrary °

3 3 ‘%
al(x) 3y 2o an(x) 3y? y 3y (13.3)

ey (3.4) '
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H non-abelian, solvable,

dim (G/H) = 1

AX

e=" a(0) %;, b4 %;. x %;

A an nxn matrix,

a(0) a cyclic column vector for

characteristic polynomial for )
nomial.
H semisimple, g/g arbitrary
3 ] 23 3
5-5:,)'5;;,)' W’ﬁ
or
9 3,23 3 3
AR TR A T T x
or
3,23 .23 3,3 .23
' Y 3y Y 3y o ax ax

515

(13.5)

A, the

equals its minimal poly-

(13.6)

13.7)

(13.8)
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H abelian, dim G/H = 2

IMPRIMITIVE LIE ALGEBRAS

XX a(0) %;,

3
ax’

)
*

where:

|>

AX
+ (<<g, el 3(0):> + cy) %;

is an nxn nilpotent matrix, 5?’1

a(0) is a cyclic vector for A.

o

c

is a column vector of R".

is a real constant.

H non-abelian solvable,A dim (g/g) = 2

A is a nxn nilpotent matrix,

An-l 4 0.

Ax 2 3_ 3 3_
e~'a(0) 75 ¥ 35 x> ¥ ax
a(0) a cyclic

¥ 0.

(13.9)
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H abelian,

dim (G/H) = 3

Ax 93_ 2 ] 29
e E_(O)Ws's‘x'axﬁ,x 7

517

(13.11)

A is & nxn nilpotent matrix, AP'I # 0, a(0) is cyclic

for A. Further, there are two additional matrices

such that

satisfy:

Apsdgeds

H non-abelian, solvable dim (G/H) = 3

or

LYTRY

(13.12)

(13.13)
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In either case, ) and a(0) satisfy the same conditions

as for 13.11.

Final Remarks

‘ There is a more elegant proof available of the fact
that ) is nilpotent if G/H is non-abelian. In fact,
consider the abstract 2-dimensional, non-abelian, solvable
Lie algebra spanned by elements

ALA

1
such that
[A’AI] = A .
Let
A
ATy

be representations of this Lie algebra by (nxn) matrices.

Then,

A= {L!l]_] ﬁ]_ - 2‘.12‘.
Hence, .

trace (A) = 0 ,

since the trace of a commutator is zero. Now,

A2 syl = L)
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Hence,

trace (Lz) = 0 .
Continuing in this way, we see that:
trace (l?) - ‘0

for all integers j. This forces A to be a nilpotent
matrix. (See VB, vol. II, Chapter 3 for elaboration of
this argument.)

Several tasks remain before the classification of
the Lie equivalence classes can be considered as really
complete. First, one must decide when two of the canonical
forms listed above are really Lie equivalent. In each case,
there is a group acting on the canonical form of a certain
type,.and what is desired is to construct a fundamental
domain for this group, i.e., a subset which meets each
orbit precisely once. I believe that in each of the cases
listed above it is not too difficult to do this, but I have
not carried it out completely,

Another interesting and (perhaps) important problem
is to see canonical forms of various types fit in and
deform into each other.A Here is one simple problem of
this sort.

Suppose G,G' are Lie algebras of vector fields

with

11+
n
e
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Can one choose the canonical forms listéd above so that
canonical coordinate systems agree?

Is ghere some "master' Lie algebra of vector fields
so that all others are obtained by taking its subalgebras
or deformations?

There are clearly many problems of this sort, which
could keep an army of mathematicians busy for many years,
studying Lie algebras of vector fields (perhaps only in
the '"formal power series sense"), their subalgebras, and
deformations.

Gelfand and his coworkers have developed methods
for calculating Lie algebra cohomology of Lie algebras of
vector fields whose coefficients are "formal" (i.e.,
possibly non-convérgent) power series in the underlying
variables XysXpseo. Notice that a good deal of Lie's

work may be interpreted in this framework. Here is one

such problem.

Let X = R™®, and let

| V,y (0
be the Lie algebra of vector fields whose coefficients are
formal power series in the variables of x. Develop the
notion of "Lie equivalence' in terms of changes of vari-

ables that are given by formal power series. It would then

be interesting to see which Lie subalgebras of Vw(X) are
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Lie equivalent to Lie subalgebras of V(X), i,e., to vector
fields with convergent power series expansions for the
coefficients,

It is clear from the work in this paper that this is
so if n = 1 and the Lie algebra is finite dimensional.
I have not done so, but I would think that the analogous
problem is readily accessible for n = 2 by the methods
developed in this paper. n = 3 or 4 might be challenging.

In general, it seems feasible to study the higher
dimensional and global analogs of the problems treated here
in the case of one and two dimensional manifolds. The
generilization of the basic classification problem itself
is probably too complicated to be interesting, but it
would be very interesting to study, say, the ways finite
dimensional Lie algebras of vector fields can act on mani-
folds to preserve a foliation, for example. There are many
problems in physics, control and system theory, etc., which
await treatment by Lie's methods.

As I stated in the beginning to Vol, IX, it is to
my view one of the great mysteries of the history of science
why only the most trivial parts of Lie's thought survived
into the twentieth century. Clearly, Lie thought in terms
of a very grandiose generalization of Galois theory, to

cover the whole area of differential equations. The only
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one to pick up Lie's ideas in a s;rong way was another
genius, E. Cartan, who developed his own mysticism and
was equally incomprehensible to his contemporaries. My
opinion is that there are many scientific problems of the
highest importance which await the Lie touch. Certainly,
one would think that elementary particle physicists trying
to understand the role that groups like SU(3) play in
their discipline would be proclaiming (and studying) Lie
as their Prophet, but it seems that it will take a new

Einstein for that to happen!

Chapter G

RELATIONS WITH SYSTEMS-CONTROL THEORY

1. INTRODUCTION

One of my main reasons for tranmslating and interpret-
ing Lie's work in this way is that I believe there are
important and fruitful interelations between Lie's work on
groups and differential equations and the modern disciplines
of systems and control theory. In this chapter I will
briefly indicate some of these interconnections. For more
detail, see the other volumes in th€. Interdisciplinary
series; particularly III, VIII, and IX. The further volumes
concerned with Lie's work will also deal with these applica-

tions in more detail. -

2. INPUT-OUTPUT SYSTEMS MODELLED BY DIFFERENTIAL
EQUATIONS AND LIE ALGEBRAS OF VECTOR FIELDS
As explained in Volume VIII one aim of "sysiems
theory'" is to study the mathematical properties of devices
which connect a set of "inputs" into a set of 'outputs'.
Such a system is typically denoted--at least in the engin-

eering literature--by a block diagram of the form:

__——)—‘-——)
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Many of the systems of greatest interest in engineer-
ing involve inputs and outputs which are scalar or vector

valued functions of a time variable t, with the relation

between input and output described by differential equations.

From the mathematical point of view this viewpoint is also
very convenient, since it enables one to begin work with a
minimum of distraction and generalized nonsense. (Notice
that the best texts and treatises on systems-control theory,
e.g., Anderson-Moore [1], Brockett [1], Rosembrock [1],
usually take this point of view.)

Here is one basic framework. X, U, Y are real,
finite dimensional vector spaces, called the state inpu;,

and output spaces. An input-output system is defined by a

system of ordinary differential equations of the following

form:
dx
a? = f(x’u’t)
(2.1)

y = g(x,u,t)

x denotes a point of X; u denotes a point of U; vy

denotes a point of Y. t denotes a point of a one-dimensio

time interval, T. f and g are maps with the following
domains and ranges:
f: X x U xT~+X

g: X xUxT=+Y ,
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We shall introduce a set of vector fields on X x T,
parameterized by elements of U, Symbolically, to each

u e U we associate the vector field:

Ay = Eout) g B (2.2)

To understand what 2.2 means in terms of manifold
theory, let
(x")
be a set of linear coordinates for the vector space X.
(Choose indices, and the summation convention, as follows:
izi,j<n = dimXx,)
Then, the first of Equations 2.1 takes the following form:

dxi

5 - fi(x,u,t) : (2.3)

The vector field A, has the form:
. gl 2 3
Au £ (x,u,t) ;—;{ + T (2.4)

There are three useful and significant meanings that
can be given to the symbol "u" in 2.4.

Ei!él.&iéﬂl&&: u ‘does not depend an x or t,
but is an arbitrary element of the input (or "control")
space U. Thus, an orbit curve of Au’ in this case, is
a curve t + x(t) which is a solution of 2.1 with constant

input or constant control.
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Second meaning: u is a function of t. It is
called the control. There is then'a curve
t -+ (x(t),y(t))
in X x Y, a solution of 2.1, determined by u, and an
initial vector Xy € X. The curve t + x(t) in X is
called the state curve. The curve t -+ y(t) 1is called the
output curve. The "systemﬁ as a whole may be thought of as

determining a map:

(control curves) x (initial state vector) + (output curves

Third meaning: Let u be a map

X xT=1U

We can then solve the differential Equations 2.1, which take ’

the form:
X - flux(t),n),n)
(2.5)
y = g(x,u(x(t),t),t)

We call such a map a control law or a control strategy.

From either point a view, a "system" is a map

(control strategies) x (initial state vector) + (input curv

(Such a function is also sometimes called a feedback control’

law.)
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3, SYSTEMS ASSOCIATED WITH LIE ALGEBRAS

Let X, U, Y, T be as in Section 2, Let G be a

Lie algebra of vector fields on X. Consider a system,

with U as inputs, X as stétgs, Y as gutputs, of the
form:

E - £x,u,t)

(3.1)
Yy = h(x,u,t)
For each (u,t) e U x T, 1let:
Ag,ey = £6u,t) 3= € V(X) (3.2)

Definition. Let G be a Lie algebra of vector fields on

the st?te space X. G is said to be associated to the
system 2.1 if

Atu,t) ¢ §

for each (u,t) e U x T ,

To see the meaning of this condition, suppose that
G is a Lie group acting on X, whose infinitesimal action
is G. In particular, we suppose that G is finite dimen-
sional as a real vector space. Let By,...,By be vector
fields on X that form a basis for G, Then, there are

relations of the form
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A(u,t) = al(u,t)Bl+---fam(u,t)Bm

Let t + u(t) be a control curve, i.e., a

curve in the input space U. Consider the curve

t = A,t
in G. It generates a flow on X. ‘The curve t + u(t),
together with the initial state vector xgs generates a
curve t -+ x(t) which is a solution of 3.1, Let t + g(t)
be the curve in G such that the infinitesimal generator
of the flow

x > g(t)

is t = Au(t),t‘ We see that:

x(t) = gt)(xy)

x(t) is the orbit of g(t)

We can then sum up this discussion as follows:

Theorem 3.1. Suppose the Lie algebra G is associated to
the system 3.1, and G arises from the action of a Lie
group é on X. Given a control curve u(t) and an
initial state vector Xg» there is a curve t + g(t) in
G such that the solution of the Equations 3.1 may be

written in the following form:
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x(t) = g(t)(x)
(3.3)

y(t) = h(g(t)(xy),u(t),t)

In other words, the Lie group G can be used to write

down an explicit formula for the solution of the system. As

we shall see later on, the systems associated with Lie groups
in this way form a very natural class of systems, generalizing
the linear systems about which so much is known, and which

are so important for applications. One may hope (and expect)
that this larger class of systems will also be useful and

important.

Example. G = group of linéar fractional transformations
| .Sdppose
| X=R ,
with the system 3.1 of the following form:

g% = a(u,t)x? + B(u,t)x + y(u,t) (3.4)

Then, we know that the solution of 3.4 is of the form of a

linear fractional transformation, i.e., the relations

between input-state-output take the following form:



530 : SYSTEMS-CONTROL THEORY

a(t)xo + b(t)

x(t) = ¢ X, * d(t
(3.5)

y(t) = h(x(t),u(t}),t)

(0f course, the coefficients a,b,c,d 'in 3.5 depend also
on u(t); in fact, in a rather complicated way. Unless
the control is constant, the explicit formulas cannot be
written down, since they depend on a solution of a Riccatti

@ifferential equation.)

Remark. A possibly useful terminology for these systems is
Lie systems. The only trouble with it is that there is a
possibility of confusion with a similar use of the term in

the classical literature. (See Volume IX.)

4. STATE EQUIVALENCE AND HOMOMORPHISMS OF SYSTZMS:
APPLICATION OF LIE'S CLASSIFICATION THEOREMS

As we have seen, the basic work in this paper by Lie

involves the enumeration of (local) equivalence classes of

actions of local Lie groups acting on manifolds. Unfortun-
ately, Lie never pushed his methods beyona the case of 2
dimensions (there are partial results on 3-dimensions in
"Transformationsgruppen’) and the subject has not really

been worked on since with more modern tools. However, the
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basic idea of "equivalence" inherent in Lie's work provides

an interssting systems-theoretic concept.

Let

3% = f(x,u,t)

(4.1)
y = h(x,u,t)
§§L = f'(x',u',t)
4.2)
y' = h'(x',u’,t)

be two systems., A map
$: x + x' = 4(x)

from X + X' is sajd to be a state homomorphism of one

system to the other if the follawing condition is satisfied:
Far each solution
t > (x(t),u(t),y(t))
of 4.1, the curve
t + ($(x(t)),u(t),y(t)
is a solution of 4.2.

If, in addition, ¢ is a diffeomorphism, it is said to

define a state equivalence.
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Remarks. More general sorts of equivalence are possible and’

important. For example, feedback equivalence is a diffeo-

morphism map
x + x'(x)
u -+ u'(x,u)
which takes solutions of one system into solutions of the

other.

Similarly, one can define local state equivalence of

two systems, as a diffeomorphism of an open subset of X
with an open subset of X' which takes solutions into
solutions. This is an appropriate notion to tie in with

Lie's work.

Consider the system 4.1. Let G be a Lie algebra

of vector fields on X-space. For each (u,t) ¢ U x T, set:"

A(u,t) f(x,u,t) %; . (4.3)

Suﬁpose that the system 4.1 is associated with G, in the
sense that, for each pair (u,t), the vector field 4.3
belongs’ to G.

Following Lie's ideas, we can now seek (local) canon-
"ical forms for G. This can eithe; be thought of as a new
coordinate system for .X in which the formulas for G take

an especially simple form, or representatives of Lie
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subalgebras of V(X) which are equivalent in the sense of

Lie, Such 8 new coordinate system can be thought of as

defining a lchl equivalence of the system with another.
Here is a typical result:

Theorem 4.1. Suppose dim X = 1, and that G is a finite
dimensional Lie algebra of vector fields. Then, the system

4,1 is locally equivalent to a system of the following form:

- a,t)x)? ¢ b t)x' + c(u,t)

4.4
Yy = h(x',y,t)

Here is an alternate way of stating the result.

Theorem 4.2. Keep the hypothesis of Theorem 4.1. Then,
there is a function x + ¢(x) such that the input-output

relations of the system 4.1 take the following form:

. -1 au(t)Q(xo) * Bu(t)
x(®) = e (vu(tmxo) 7 éu(t))
(4.5)

y(t) = h(x(t),u(t),t)

Remark. The coefficients aee-+28, in 4.5 depend on the

u
input control curve t -+ u(t) in a relatively complicated

way. However, there is an evident interest for applications
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%%l - f'(X’.u‘tt)

y' = h'(x',u',t)
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involving the computer that a representation of this form
exists. The success of applications of the theory of linear - (5.2)
systems often depends on the possibility of such explicit

solution, with "unknown" coefficients which can be estimated System 5.1 is said to be feedback equivalent to system 5.2

in terms of the observed data. Thus, the systems associated if there is a change of variable of the form:

with finite dimensional Lie algebras form a natural class

x = x'
eneralizing the linear systems. :
g g y u=u' + a(x,t) (5.3)
The results proved in this paper concerning the -

canonical forms for Lie algebras of vector fields on 2-

] . which takes 5.1 into 5.2.
dimensional manifolds then can be interpreted as proving
One can illustrate this concept by a block diagram.

local state-equivalence results for systems associated with

Suppose, for simplic
Lie algebras of vector fields with 2-dimensional state spaces. i ! P ity, that

X =y
x' = y!

5. FEEDBACK EQUIVALENCE FOR SYSTEMS ASSOCIATED WITH

FINITE DIMENSIONAL LIE ALGEBRAS System 5.1 can be taken of the form:

In the last section we have briefly discussed state u x
~— (5.4)

equivalence of systems, and its relation to Lie theory in

general, and the results of this péper in particular. Now Attach a feedback loop to this systenm:

we consider the other natural system concept, feedback

equivalence. u I i
Consider two systems: (5.5)
a

g% = f(x,u,t)

(5.1)
y = h(x,u,t)
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Here is the meaning of this: An input u(t) comes £f'(x*,u',t) = f£(x',u'-a(x',t),t) (5.7)

in, goes through the box, with initial state vector set at We shall now show that the system resulting from

x and comes out as modification of the system 5.4 by the feedback loop as indi-
0° .

x(t) ,
uniquely defined by the following differential equation and

cated in 5.5 is precisely the system 5.2, with f' defined
by 5.7.

initial condition As we have calculated above in deriving Equation 5.6,
we see ‘that the response of the system 5.5 to the input
dx

I - flx,u(r),t); x(0) = x, t +u'(t) is the curve t + x'(t) satisfying:

th ignal x(t is passed through the filter « '
Then, e sig (t) P 4 riite ’ g%_ - f(x'(t),u'(t)-a(x'(t),t),t) (5.8)
resulting in the signal

Insert 5.7 into the right hand side of 5.8:
a(x(t),t)

dx'
This signal is then fed back and subtracted from the initial I = P'(x'(t),u'(t),t) .

s s s . s u s nal ’ .
input signal u, resulting in a mew input sig This shows that the diagram 5.5 is the correct one to repres-

u'(t) = u(t) - a(x(t),t) . ent the system 5.2,

This input is then fed into the system, resulting in an In this way, we have motivated the terminology "feed-

output back equivalent” in saying that two systems modelled by
' t =+ x'(t) Equations 5.1, 5.2 are related via a change of variable of
. . . form 5.3. Let us now turn to the study of the Lie-theoretic
satisfying the following differential equation:

. ‘ aspects of this correspondence. Suppose that G is a finite

g%L f(x'(t),u(t)-alx'(t),t),t) dimensional Lie algebra of vector fields on the state mani-

(5.6) fold X which is associated to the system 5.1. Recall that

- x'(0) x

0 this means that, for each (u,t) ¢ U x T, the vector field

Define f£'(x',u',t) by the following formula: on X:
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A(u,t) = f(x,u,t) 'g? (5.9)

belongs to G.

We then set:
3
Aku,t) =  f(x,ura(x,t),t) = (5.10)

A basic question is then:

What are the conditions the 'feedback filter" «
. must satisfy in order that the vector fields 5.10 belong to
a finite dimensional Lie algebra of vector fields G' on
X? What possibilities are allowed for G'? These ideas
might suggest a new area of study of Lie algebras of vector

fields, the feedback equivalence of two such Lie algebras.

The most important property of "feedback" from the point of
view of applications is the possibility of stabilization of
an unstable system by means of feedback. For example, this

is how we drive a car or fly an airplane.

Example. Feedback equivalence of bilinear Lie systems with

one-dimensional state spaces:

suppose that the system is of the form:

g% = (alu+ao)x2 + (b1u+b0)x + (c1u+c0)

(5.11)

Let us change variables as follows:
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X' = x

u' = uta(x) .

After this change, 5.11 becomes the following system:
g% - (alpfao)xz + (b1u+bo)x + (c1u+c0)

+ (a,d(x)x%+b d(x) e 0)
We must look for the conditions that this system be associ-
ated wifh a finite dimensional Lie algebra. Given Lie's
results, in this paper, on finite dimensional Lie algebras

acting on a l-dimensional manifold, it is evident that the

condition is that:
2
ala(x)x + bla(x) + cla(x)
is a polynomial of degree at most two

0f course, this restriction on the feedback is evident
in this simple case. The interest in the remark mainly lies
in the possibility for its gemeralization to higher dimen-
sioéal state spaces. An important property of linear systems
is the possibility of changing an unstable system by feed-
back into a stable one. '(See'Wonham [1]). This sort of

problem then has a natural generalization to Lie systems.
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6. REMARKS ABOUT STABILITY OF SYSTEM§ ASSOCIATED WITH

LIE ALGEBRAS .

"Stability" is obviously a topic of prime importance
for the appiication of differential equations. For ordinary
differential equations in their traditional “dynamic system”
form, there is an extensive classical and modern literature.
The key work was done by Poincaré and Liapounov, in the
19-th century; and only relatively minor details have been
added since.

The introduction in recent times of input-output
systems as interesting objects to study has suggested new
formulations and methods for consideration of "stability".
For exampie, from the practical point of view, what is often
important is not "stability'" in the way considered by the
classical authors, but the possibility of "stabilization"
by means of "feedback". For example, this is how we drive
a car. Biological systems probably work in this way. (The
eminent mathematician René Thom has attempted to provide an
underlying mathematical metaphysics for biological systems--
besides  its fault of pomposity, it probably is too tied to
classical mathematical stability ideas, and does not take
into account--in its underlying intuition--these more recent
ideas interrelating "stability" and "feedback".)

Unfortunately, very little is known about '"input-

output stability" for systems that go much beyond the linear '
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time-invariant case. I hope that Lie theory may provide
some useful ideas. This is the motivation for the brief

remarks of this section.

Start with a "dynamical system", in its traditional

form associated with physics:

g% = f(x,t) (6.1)

xe X = Rn; teT=R

The initial data x

0 x(0) defines a map

X + (solutions of 6.1) c (curves in X) (6.2)

The system is thought of as "stable'" if the map 6.2 is
"continuous"”, with respect to some sort of natural topology
on X and the space of curves in X. (Physically, ''stabil-
ity" means that "small changes in initial conditions" propo-
gate into "small changes in the system at large times".)

Suppose the differential equation 6.1 generates a
flow

t » ¢t

on X, i.e., the solutions of 6.1 are the orbits of the
flow. "Stability" is often associated with the existence

of a limit ¢,: X + X,

lim ¢, = ¢, (6.3)

10
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Now, in what precise sense this limit 6.3 is to be
considered is not at all obvious. b, need not be a diffeo—x
morphism of X. What is important (from the point of view
of Lie theory) is that the naive physical ideas’of "stabil-
ity" and the naive geometric ideas of Lie's theory have

some interconnection.

To see what might be involved here, consider the only

situation which is really well understood, a linear, time

invariant system:

dx
i3 Ax , (6.4)
x e R®, A e L(R",RM)
Thus,
x() = My (6.5)
and the flow it generates is given by:
At
L e (6.6)
If xd is another initial vector,
() = My,
then
At Alt
[x(t) - x'(t)] = |e (xo-xb)l < eI | xo-x6|
(| | denotes an appropriate norm on vectors and matrices.)

We see that if the norm |A| on matrices can be chosen so

that:
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Al <0, (6.7)
then the system is stable in the usual sense. If
Al <0 , (6.8)

it is asymptotically stable, in the sense that:

Ix(t) - c' ()} + 0 6.9)

as t -+ o

For the usual sort of norms that can be chosen for

matrices, 6.7 will be satisfied if:

All eigenvalues of A have non-

(6.10)
positive real parts
6.8 will be satisfied if:
All eigenvalues of A have
(6.11)

negative real parts

(The Routh-Hurwitz criterion (see Volume II of IM) describes
polynomial inequality conditions on the matrix A wﬁich are
equivalent to 6.11.)
These conditions have a Lie-theoretic interpretation.
6.11 means that: ]
lim ¢, = 0 (6.12) .

Tt
Here, the 1imit is pointwise, and "0" on the right hand side
means the map 0:R® + Rn‘ which takes each element into the

zero element of R,
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In case condition 6.10 is satisfied,
lim (¢t = eAt)
tro
may not exist pointwise. However, the limit can be consid-
ered to exist in a generalized, and/or ergodic, sense.

Return to the general system 6.1. Here is another

Lie-theoretic situation which is associated with "stability'

Suppose G is a Lie group acting on X, and that the flow
by generated by the Equation 6.1 has the property that:

¢t e G for each t.

Suppose that K is a compact subgroup of G, and
that:
by € K for all t, - (6.13)

Then, we have stability in a weaker sense that:
[x(t)-x'(t)] remains bounded as t + =
For, if
xq = x(0), x'(0) = x* ,
then for all t
x(t), x'(t) € K(xo) V] K(xé) ,

which is a compact subset of X.
Although this condition is completely trivial mathe-

matically, it is often useful in practice, particularly if
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supplemented with Cartan's theorem that maximal compact

connected subgroups of semi-simple connected Lie groups

are conjugate.

Here is a typical simple application. Suppose:

X = R2m

G = group of linear symplectic automorphisms

of R°M

The maximal compact subgroup of G 1is then
u(m ,

the group of mxm wunitary matrices considered as a group

of 2m x 2m real matrices. Suppose the system 6.1 is
autonomous (i.e., t does not appear explicitly on the
right hand side of 6.1) and the flow by it generates be-

longs to G. (It is then a one-parameter subgroup of G.

Physically, it represents the motion of a conservative,

time-independent, linear mechanical system of a finite

number of degrees of freedom.) Then if

by = oAt

Ae LR R
we see (using Cartan's theorem) that {¢t} lies in a
compact subset of G if and only if the infinitesimal

generator A satisfies the following property:

All eigenvalues of A are pure imaginary

and A has simple elementary divisors.
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Turn now to input-output systems. For simplicity,

we suppose that:
output = state vectors.
Such a system then takes the following form:

& . £0x,u,0) ‘ (6.14)

It defines a map:
X x (curves in U) + curves in X. (6.15)

As a natural generalization of the classical notion of

stability for classical systems 6.1 (with no controls) one

may think of '"'stability" of 6.12 as expressing some contin
uity and/or boundedness property of the map 6.13.
For example, the simplest such notion is suggested

by the obvious engineering condition that:

bounded inputs give bounded outputs (6.16)

This is called input-output stability. An excellent treat

ment of the relations between the classical and modern
stability ideas is to be found in the book "Stability
Theory of Dynamical Systems" by J. L. Willems.

Let us begin to think about the Lie-theoretic meanin,

of these ideas by consideration of a linear time invariant
;

system, of the form:
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%% = Ax + Bu

(6.17)
A e L(R,KY, B e L(R",RY

Then, the map 6.13 is determined by the following formula:
t
x(t) = £ eA(t73) pu(sy ds + eAtx(0) (6.18)

s + u(s) is the input curve, x(0) 1is the initial state
vector. t -+ x(t), given by formula 6.18, is the output
curve, associated to the map 6.13. To investigate stability
properties, let {u'(s)} and {x'(0)} be another input

curve, x'(t) the corresponding solution. Then
x(t)-x'(t) |
t
< j elAI(t's)|B|lu(s)-u'(s)| ds + eIAItlx(O)-x'(O)l
0

It is readily seen that & sufficient condition for

]x(t)-x"(t)| to remain bounded as t + » is that
Al <0 , (6.19)

i.e., that A is a stability matrix.

Let us examine this from the Lie point of view. We

4 7
can write the solution 6.16 of the system 6.15 in the form:
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x(t) = g()(x(0)) ,
where t + g(t) 1is a curve in the group of affine auto-
morphisms eof the vector space X. We can read off from
6.16 the formula for g(t):

g(t)(x) = M) +ze) (6.20)
with:
t
z(t) = I eA(t's) Bu(s) ds (6.21)
0
For example, suppose:
u(s) = constant = u,
Then,
2(¢) = Al(-e*Mypug (6.22)
We see that:

If A is a stability matrix, i.e.,
if all its eigenvalues have negative

real parts, then

lim z(t) = A7'B(up)

t+o
In particular, the response of the
system to a constant input is bounded.

In case the input is more general, time-varying,

the argument cah be refined to show that:
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lim z(t) exists,
Lo

so long as A 1is a stability matrix. In particular, the

system 6.18 is input-output stable. In terms of Lie theory,

this translates into the following condition:

1im g(t)(x) = z(=) (6.23)
troo

for all x e X

In particular, notice that the limiting map

g(=) = 1im g(t)
T

is no longer a diffeomorphism of X, but rather a constant
mab. It is interesting, however, that "stability" means,
in this'case, that the curve in the Lie group determining
the time-evaluation of the system approaches a limit which
is a map of the state space onto itself. I believe (and
conjecture) that this phenomenon generalizes to more

complicated, nonlinear systems!

7. STABILITY OF A CONSTANT-COEFFICIENT, ONE-STATE,
VARIABLE BILINEAR SYSTEM

The next-simplest examples of systems after the

linear systems are the bilinear systems. Since their

theory is considerably more complicated than for the linear
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case (and, in fact, requires Lie group theory in an essen-
tial way) I will restrict attention to the following very

simple example.. ,

g% = uy(t)x + u,(t) (7.1)

Here, "x" is a one-dimensional variable; ul(t), uz(t) are :

the control functions. The solution of 7.1 can, of course,

be written down explicitly, but in a rather complicated
formula.  Let us first consider the simplest case, where
the inputs u;,u, are constant. The solution is then a
special case of formulas 6.16 and 6.12:

u,t

' _ t
x(t) = el x(0) + ull(l-e “1)u? (7.2)

g(t) (x(0)) ,

where:

u,t t
g(t) (x) el x4 uil(l-e ul)uz (7.3)

Hence, constant inputs go into bounded outputs if and only

if:

uy < 0 . (7.4)
In this case,

lim g(t) = g(=) ,

T+
where:

g=)(x) = uj'u, (7.5)

if uy < 0
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g(=)(x) = x+ujly, (7.6)

if u - o .
Again, we see that "stability" is associated with a natural
Lie group theoretic condition.
g(t) 1is a one parameter subgroup of the group of

affine automorphisms of the real line R. Notice that

condition 7.4 defines a sub-semigroup of this group. Again,
I believe that this is typical of a more general situation!
Let us now consider the case of time-varying controls.

Here is the formula for the solution to 7.1:

-5 uy(s) ds

x(t) x(0)

v t
) (f RUENORS .y ) dv) Jom e
0

Again, we see that:
ul(t) <0

is essentially the condition for input-output stability.

8. STABILITY FOR SYSTEMS WHICH CAN BE SOLVED ITERATIVELY -
IN TERMS OF ONE-STATE DIMENSION SYSTEMS

Anyone who reads Lie's work will find it evident that

one of his major aims was to systematize the study of the

solutions of differential equations by quasi-algebraic methods.
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A typical question was: How may a ""complicated" system be
solved as an iteration of "simple" ones? Of course, what
one means by "simpler" is relative. In Lie's day, the
nsimplest" differential equations were those which could be"
solved "by quadratures™, i.e., by an iteration of the
operations of integral calculus, In this section I present
a brief discussion of certain systems-theoretic material
which is relevant to Lie's program. To give it a modern
flavor, I show how it can be used, in a very crude way, to

study "input-output stability".

Consider a system of the following form:

dx1
& " hlpwt
(8.1)
dx,
T T HLpxpwt)
Xy is an element of a vector space Xl’ X, "an element of
Xp. U is an element of a vector space U. The state space

of the system 8.1 is:
X = Xy % X,
The ‘input space is U.
Also, consider the following system:

dx
Hfl = £,(x;,u,t) (8.2)

Its state space is Xl, control space is U.
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There is obviously a state-homomorphism of system 8.1

onto system 8.2. Namely, map

X = xl x Xz - Xl
via the Cartesian product projection. It should be clear
from 8.1 that this has the required systems-theoretic
"homoyorphism" property, i.e., that the projection of a
solution
t + (x;(8),x(t),u(t))

of 8.1 is a solution of system 8,2.

We can construct from 8.1 another input-output

system, whose state space is X5 and whose input space is

X, xU = U

1 2

Namely,; if
uz - (xl u)
consider the system:

dx,
I~ = hixpuy,t) (8.3)

where

h(xz,uz,t)- = fz(xl,xz,ul,t)

Definition. The system 8.1 is said to result from the

iteration of systems 8.2 and 8.3,
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This definition is merely s_formilization of how one
would, in practice, solve the system 8.1. First choose an
input

t - u(;) .

Find t - xl(t) as a solution of .

axy
a‘t—' ‘- fl(xl,u(t),t) s

then use this curve, together with u, as input into the
system:

dx2
a‘t—' - fz (xl(t) Dx2’u(t)nt) (8-4)

Here is a typical application of these ideas:

Theorem 8.1. Suppose the systems 8.2. and 8.3 are input-
output stable. Then, the system 8.1--which results from

the iteration of 8.1 and 8.2--is also input-output stable.

Proof. Suppose t + u(t) is bounded infut to
system 8.1. Each output t - xl(t) to 8.2, with given
input y, is, by hypothesis, bounded. Note that this
property is inherited under iteration.

One can, in a similar way, iterate more systems.

Systems built up in this way take the following form:
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I - fl(xl,ul,t)

dx
a‘t—z" = fz(xlvxzyu:t) (8.5)

T = f3 (xl’xz ,xs,u,t)

-
.

Feed t - (xl(t),u(t)) = uz(t) as input into the system 8.3.
Its output t -+ xz(t) is, by hypothesis, bounded. Hence,
the total output

t > (Xl () 1 Xy (t))

of system 8.1 is bounded.

Remark. Another variant of the stability property is to
say that:

The output t + x(t) has a limit as

t + o if the input t - u(t) has a

limit as t =+ =,

How can one tell whether a system given a priori
is equivalent to one in form 8.5? Lie's methods give a
partial answer to this type of question. In the next sec-

tion we consider a case that is important for applications,

the bilinear case.
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9. LIE ALGEBRAS ASSOCIATED WITH BILINEAR SYSTEMS

Consider an input-output system of the form:

%% = f(x,u,t) . (9.1)

x is a point of a vector space X. We suppose X is a

finite dimensional complex vector space.

Definition. We say that the system 9.1 is a bilinear

(stationary) system if it is of the following form:

%% = Ax + Bu + C(u,x) (9.2)

Here,

L}

A e L(X) = space of linear maps X -+ X

B e L(U,X) = space of linear maps U -+ X

Ce L(U®X,X) = space of bilinear maps U x X +» X

We suppose (for simplicity), that all such linear maps areg

linear with respect to multiplication by complex scalars.
L(X) is then a Lie algebra, with the complex numbers as
field of scalars. The Lie bracket operation [ , ] is

then the commutator of linear maps.

Definition. Let G be a Lie subalgebra of L(X). The
system 9.2 is said to be associated to G if the followin& :

condition is satisfied:
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For each u € U, the linear maps A (5.3)
and x + C(u,x) belong to G. )

Remark. Suppose G is the connected Lie group of linear
maps on X whose Lie algebra is G. Let
AFF(G)

be the group of diffeomorphisms of X consisting of the
elements of G, composed with the abelian group of transla-

tions. Algebraically, AFF(G) is the semidirect product of

G and the invariant abelian subgroup consisting of the

additive group of the vector space X. It is called the

affine group generated by G.

Consider now the system 9.2. It is a Lie group system

associated with AFF(G), in the sense that there is a curve

t + g(t)
in AFF(G) such that each solution of 9.2 can be written in

the following form:

x(t) = g(t)(xp), (9.3)
Now, we turn to thé study of the algebraic structure
of the system 9.2.

Definition. Consider a biiinear’system of form 9.2, and one

of the following form:
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dx! )

- = A'X' + B'u + C'(u,x") (9.4)
(x' is an element of a vector space X'.} A linear map

¢: X' » X

is said to be a state homomorphism of the system 9.4 into

the system 9.2 if the following condition is satisfied:

For each solution t -+ (x' (t),u(t))

of 9.4, the curve

t > (¢(x'(t)) = x(t),u(t))

is a solution of 9.2.

Let us work out the conditions this relation imposes

on ¢.

T = o(§E

$(A'X"+X'u+X" (u,x')

A$x' + Bu + C(u,¢x")

Hence, the conditions are:

A = A (9.4)
$B' = B (9.5)
oC'(w) = C(w) , (9.6)
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where C(u), C'(u) are the maps X + X, X' + X' defined
as:
C(u)(x) = C(u,x) 9.7
C'(u),(x') = C'(u,x') (9.8)
‘Suppose now that the system 9.2 is associated with

the Lié algebra G of linear maps X + X.

‘Let X' be a linear subspace of X which is invari-
ant under G. If, in addition,
B(U) c X* , . (9.9)
j.e., that the system 9.2 "restricts" to X, to define a

subsxsfem with X' as state space. In other words, if

A' = A restricted to X',
B* = B
C'(u) = C(u) restricted to X' ,
then the inclusion map
X' + X
defines a homomorphism of the system 9.4 into the system 9.2,
We can now also define a quotient system, by setting:

X" = X/X'.

(A",B",X"(u)) the maps
(A,B,C{u)) acting in the quotient
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The system 9.2 is then obviously a compoéite, as described
in Section 8, of the primed and double-primed systems.

If B =0, we see that the reducibility of the
system 9.2.into subsystems is determined by the reducibility

of G acting on X. In particular, if G is a semi-simple

Lie algebra, then the system is a direct sum of subsystems.
If G is solvable, then the system is a composite of systems :
with one-dimensional state spéce.

The algebraic study of bilinear systems with non-zero
B has ndt really been carried out in adequate generality,
even in the case where G is semi-simple. What is probably
needed is a generalization of the Kronecker "pencil'" theory.
(See Volume IX of IM. For further information about the
algebraic and geometric properties of bilinear systems, see

the articles on this subject in Brockett and Wayne [1].
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