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Abstract. For a closed Riemannian manifold of dimension n ≥ 3
and a subgroup G of the isometry group, we define and study the
G−equivariant second Yamabe constant and we obtain some results on
the existence of G−invariant nodal solutions of the Yamabe equation.

1. Introduction

Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
[g] be the conformal class of g. Consider G a compact subgroup of the
isometry group I(M, g). The G−invariant conformal class [g]G is the subset
of G-invariant Riemannian metrics of [g], i.e.,

[g]G := {fg : f ∈ C∞>0(M), σ∗(f) = f ∀ σ ∈ G}.
The Yamabe functional J : [g] −→ R is defined by:

h ∈ [g] −→ J(h) :=

∫
M shdvh

vol(M,h)
n−2
n

,

where sh denotes the scalar curvature fo h. The infimum of J over [g] is the
conformal invariant Y (M, [g]) called the Yamabe constant of (M, [g]). If we
take the infimum of J over [g]G instead of [g], we obtain the G−equivariant
Yamabe constant:

YG(M, [g]G) := inf
h∈[g]G

J(h).

If G is the trivial group, YG(M, [g]G) and Y (M, [g]) are equal. In case when
the constant YG(M, [g]G) is attained by a Riemannian metric h, then h is
G−invariant and has constant scalar curvature.

For a point P ∈ M , we denote by OG(P ) the orbit of P induced by the
action of the group G. It is well known that OG(P ) is a compact submanifold
of M . Throughout this article, we use ΛG to denote the infimum of the
cardinality of all the orbits induced by the action of the group G:

ΛG := inf
P∈M

card OG(P ).
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The G−equivariant Yamabe constant of (M, g) is bounded from above by

YG(M, [g]G) ≤ Y (Sn)Λ
2
n
G,

where Y (Sn) is the Yamabe constant of Sn endowed with the round metric
gn0 (see [9]).

Hebey and Vaugon proved in [9] that the G−equivariant Yamabe constant
is attained if the above inequality is strict. Moreover, they conjectured that
if (M, g) is not conformal to the round sphere or if the action of G has no
fixed point, then

(1) YG(M, [g]G) < Y (Sn)Λ
2
n
G.

This assertion is known in literature as the Hebey-Vaugon conjecture, and
it is trivially satisfied when ΛG =∞ or Y (M, [g]) ≤ 0.

Note that if the Yamabe constant is non-positive, then there exists only
one metric (of a given volume) of constant scalar curvature in the conformal
class [g]. This metric is invariant by the whole isometry group, and in par-
ticular it is invariant for any subgroup. Therefore, YG(M, [g]G) = Y (M, [g])
for any G ⊆ I(M, g), and Inequality (1) holds.

Assuming the Positive Mass Theorem (PMT) for higher dimensions, He-
bey and Vaugon proved in [9] the conjecture for some cases, i.e., the action
of the group G is free; 3 ≤ dim (M) ≤ 11; there exists P ∈M , with minimal
finite orbit, such that ω(P ) ≥ (n−6)/2 or ω(P ) ∈ {0, 1, 2} (see the definition
of ω(P ) below). In [17], the second author proved (without using the PMT)
that (1) holds, if there exists P ∈M , with a minimal finite orbit, such that
ω(P ) ≤ (n− 6)/2. Therefore, combining these results we conclude that the
Hebey-Vaugon conjecture is true, if we assume the PMT.

We say that u is a solution of the Yamabe equation if for some constant
c, the function u satisfies

(2) Lg(u) = c|u|pn−2u,

where Lg := an∆g + sg is the conformal Laplacian of (M, g), an := 4(n−1)
n−2 ,

and pn := 2n
n−2 . A nodal solution of the Yamabe equation of (M, g) is a

solution of (2) that changes sign. Recall that positive solutions of Yamabe
equation are related with Riemannian metrics of constant scalar curvature in
the conformal class of [g]. More precisely, if u is a smooth positive solution
of (2), then upn−2g has constant scalar curvature c. By the resolution of
the Yamabe problem, due to Yamabe [22], Trüdinger [21], Aubin [3], and
Schoen [20], we know that there exists a positive solution of (2) if and
only if both Y (M, [g]) and the constant c have the same sign. However, it
seems important to study the set of nodal solutions in order to understand
the whole set of solutions of the Yamabe equation. Several authors have
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studied nodal solutions of Yamabe type equations: Hebey and Vaugon [10],
Holcman [13], Jourdain [14], Djadli and Jourdain [5], Ammann and Humbert
[2], Petean [19], and El Sayed [6], just to mention some of them.

In [2], Ammann and Humbert introduced and studied the second Yamabe
constant, which is defined by

Y 2(M, [g]) := inf
h∈[g]

λ2(h)vol(M,h)
2
n ,

where λ2(h) is the second eigenvalue of Lh.
This constant is related with nodal solutions of the Yamabe equation.

They proved that for a closed connected Riemannian manifold (M, [g]),
with non-negative Yamabe constant, the second Yamabe constant in never
realized by a Riemmannian metric. However, there is a chance to attain
Y 2(M, [g]), if we enlarge the conformal class [g], by adding symmetric ten-
sors of the form upn−2g, where u 6= 0 is a non-negative function which belongs
to Lpn(M). These tensors are called generalized metrics. When Y 2(M, [g])
is positive and is attained by a generalized metric upn−2g, Ammann and
Humbert, in [2], proved that u = |w|, where w is a nodal solution of the
Yamabe equation on (M, g).

In this article we are concerned by the G−equivariant version of the second
Yamabe constant. We assume that the action of G on M is not transitive.
Otherwise, the constant functions would be the only G−invariant functions,
and therefore sg will be the only one eigenvalue of Lg restricted to the set of
G−invariant functions. We denote by λ2,G(h) the second eigenvalue of the
conformal Laplacian Lh restricted to the Sobolev space H2

1,G(M) (i.e., the

set of G−invariant functions in L2(M), whose differential is also in L2(M)).
We define the G−equivariant second Yamabe constant as

Y 2
G(M, [g]G) := inf

h∈[g]G
λ2,G(h)vol(M,h)

2
n .

Note that when G = {IdM}, Y 2
G(M, [g]G) = Y 2(M, [g]).

Let W be the Weyl tensor of (M, g). We define ω : M −→ N0 ∪ {+∞} as
follows: If there exists l0 ∈ N0 such that |∇l0W (P )| 6= 0, then

ω(P ) := inf{l ∈ N0 : |∇lW (P )| 6= 0}.
If |∇lW |(P ) = 0, ∀ l ∈ N0, then we set

ω(P ) := +∞.
For instance, if (M, g) is locally conformally flat (dim (M) ≥ 3), then

ω(P ) = +∞ for any P ∈ M . If M is not locally conformally flat, there
exists P ∈M such that ω(P ) = 0.

Our first result is the following theorem
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Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 3 and G be a closed subgroup of I(M, g). Assume YG(M, [g]G) ≥ 0. The
following strict inequality holds

(3) Y 2
G(M, [g]G) <

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n

if one of the following items is satisfied:

i) ΛG =∞.
ii) There exists a point P ∈ M that belongs to a minimal finite orbit,

such that ω(P ) ≤ n−2
6 and

• dim (M) ≥ 11 if YG(M, [g]G) > 0.
• dim (M) ≥ 9 if YG(M, [g]G) = 0.

Remark 1.2. Actually, when G = {IdM} and (M, g) is not locally confor-
mally flat, Theorem 1.1 was proved by Ammann and Humbert (Theorem 1.5
of [2]).

If we do not assume any conditions on the orbits induced by the action
of G, we have the following lower and upper bounds for the G−equivariant
second Yamabe constant:

Proposition 1.3. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 3 and G be a closed subgroup of I(M, g). We assume that YG(M, [g]G)
is attained and non-negative. Then, we have

(4) 2
2
nYG(M, [g]G) ≤ Y 2

G(M, [g]G) ≤
(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n
.

Remark 1.4. The assumption “YG(M, [g]G) is attained”in Proposition 1.3
can be removed, if we assume the Positive Mass Theorem for higher dimen-
sions. Namely, under this assumption, the results proven in [9] and [16, 17]
imply that the Hebey-Vaugon conjecture is true and therefore, YG(M, [g]G)
is attained. This is the case for instance, when M admits a spin structure.

With LpnG,≥0(M) we denote the non-negative G−invariant functions that

belong to Lpn(M)− {0}. We define the G−invariant generalized conformal
class [g]G,gen by

[g]G,gen := {upn−2g : u ∈ LpnG,≥0(M)},
and any element of [g]G,gen is called a G-generalized metric.

Using the variational characterization of the eigenvalues of the conformal
Laplacian, we enlarge the definition of λ2,G(h) to the set of G-generalized
metrics. We do the the same extension for vol(M,h). Therefore, as well as
for the second Yamabe constant (see [2]), we have

(5) Y 2
G(M, [g]G) = inf

h∈[g]G,gen
λ2,G(h)vol(M,h)

2
n .
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The relationship between the G−equivariant second Yamabe constant and
the nodal solutions of the Yamabe equation is given by the following result:

Theorem 1.5. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 3 and G be a closed subgroup of I(M, g). Assume that YG(M, [g]G) > 0
and Y 2

G(M, [g]G) is attained by a G−generalized metric h = upn−2g. Then,
u = |w|, where w ∈ C3,α(M) ∩ C∞(M − {w = 0}), with 0 < α ≤ 4/(n− 2),
is a G−invariant nodal solution of the Yamabe equation. In particular, if
‖u‖pn = 1, then

Lg(w) = Y 2
G(M, [g]G)|w|pn−2w.

Remark 1.6. Theorem 1.5 implies that the G−equivariant second Yamabe
constant of a connected closed Riemannian manifold with Y 2

G(M, [g]G) >
0 is never attained by a Riemannian metric. Indeed, if we assume that
Y 2
G(M, [g]G) is attained by h, then by Theorem 1.5, we have that h = |w|pn−2g,

with w a changing sign function. Since M is connected, w must be zero
somewhere, and therefore h is not a Riemannian metric.

Now, we give a sufficient condition, in order that the G−equivariant se-
cond Yamabe constant to be attained by a generalized metric

Theorem 1.7. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 3 and G ⊂ I(M, g) be a compact subgroup. Assume that YG(M, [g]G) is
non-negative. The G−equivariant second Yamabe constant is attained by a
generalized metric if

Y 2
G(M, [g]G) <

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n
.

As a consequence of Theorem 1.7 and Proposition 4.2 (see Section 4), we
have

Corollary 1.8. Let (M, g) be a closed Riemannian manifold that satisfy
the assumptions of Theorem 1.1. Then, there exists a G−invariant nodal
solution of the Yamabe equation on (M, g).

1.1. Riemannian products.

For a non-compact Riemannian manifold (Wn, h), we define the G−equi-
variant Yamabe constant by taking the infimum of the Yamabe functional
over the space ofG−invariant smooth functions compactly supported C∞0,G(W ),
i.e.,

YG(W, [h]G) := inf
u∈C∞0,G(W )−{0}

∫
W an|∇u|2h + shu

2dvh

‖u‖2pn
.

Note that for closed Riemannian manifolds (Mn, g), (N l, h) and for G1,
G2 two closed subgroups of I(M, g) and I(N,h), respectively, the group
G := G1 ×G2 is a closed subgroup of I(M ×N, g + th) for any t ∈ R>0.
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Theorem 1.9. Let (Mn, g) be a closed Riemannian manifold of dimension
n ≥ 2 with positive scalar curvature, and (N l, h) be any closed Riemannian
manifold of dimension l. Let G be a closed subgroup of I(M, g), where its
action is trivially extended to M ×N and M × Rl.

Then,

lim
t→+∞

YG(M ×N, [g + th]G) = YG(M × Rl, [g + gle]G),(6)

lim
t→+∞

Y 2
G(M ×N, [g + th]G) = 2

2
n+lYG(M × Rl, [g + gle]G),(7)

where (Rl, gle) is the n−dimensional Euclidean space.

Theorem 1.10. Let (Mn, g) be a closed Riemannian manifold of dimension
n ≥ 2 with positive scalar curvature. If G = G1 × IdRl, with G1 a compact
subgroup of I(M, g) and l ≥ 2, then

(8) YG(Mn × Rl, [g + gle]G) < Y (Sn+l)Λ
2
n+l

G .

One mentions here that using Equality (6) and Inequality (8), we obtain

YG(M ×N, [g + th]G) < Y (Sn+l)Λ
2
n+l

G ,

for t large enough. This means that the Hebey-Vaugon conjecture holds for
(M ×N, [g + th]G) and YG(M ×N, [g + th]G) is attained.

The following corollary is an immediate consequence of the theorem above
and Theorem 1.9:

Corollary 1.11. Assume the same assumptions as in Theorem 1.9. If in
addition dim (N) = l ≥ 2, then for t large enough, we have

Y 2
G(Mn ×N l, [g + th]G) <

(
YG(M, [g]G)

n+l
2 + Y (Sn+l)

n+l
2 ΛG

) 2
n+l

.

Hence, assuming the same hypotheses as Corollary 1.11, by Theorem 1.5
and Theorem 1.7, we obtain

Corollary 1.12. For t large enough there exists a G−invariant nodal solu-
tion of the Yamabe equation on (M ×N, g + th).

1.2. The subcritical case.

Let (Mn, g) and (N l, h) be closed Riemannian manifolds with n + l ≥
3. Assume that (N,h) has constant scalar curvature. Let G = G1 × G2

be a compact subgroup of I(M × N, g + h) where G1 and G2 are closed
subgroups of I(M, g) and I(N,h), respectively. If the action of G1 on M is
not transitive, we define the G1−equivariant M−second Yamabe constant
as

Y 2
M,G1

(M ×N, g + h) := inf
ḡ∈[g+h]M,G1

λM2,G1
(ḡ)vol(M ×N, ḡ)

2
n+l .
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where [g + h]M,G1 is the (M,G1)− conformal class of (g + h) defined by

[g + h]M,G1 := {upn+l−2(g + h) : u ∈ C∞G1,>0(M)}

and λM2,G1
(ḡ) is the second eigenvalue of the operator Lḡ restricted to func-

tions of H2
1,G(M ×N) that are constant on N . By definition, this eigenvalue

does not depends on the group G2.
As above, we can define the generalized (M,G1)− conformal class of (g+

h), named [g + h]M,G1,gen, by adding to [g + h]M,G1 the symmetric tensors

of the form upn+l−2(g + h) with u ∈ L
pn+l−2
G1,≥0 (M). We call a generalized

(M,G1)−metric to any tensor that belongs to [g + h]M,G1,gen. In this case
we have a similar equality as in (5).

Proposition 1.13. Let (Mn, g) and (N l, h) be closed Riemannian manifolds
with n + l ≥ 3. Assume that g has constant scalar curvature and sg + sh
is positive. Let G = G1 × G2 be a closed subgroup of I(M × N, g + h)
where G1 and G2 are closed subgroups of I(M, g) and I(N,h), respectively.
Then, the G1−equivariant M−second Yamabe constant is always achieved
by a generalized (M,G1)−metric.

As a consequence, we obtain the following result.

Corollary 1.14. Let (Mn, g), (N l, h) and G1 ⊆ I(M, g) as in Proposition
1.13. There exists a G1 × {IdN}-invariant nodal solution of the Yamabe
equation on (M ×N, g + h) that depends only on the M−variable.

2. Preliminaries

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. If
h = upn−2g, then

J(h) =

∫
M an|∇u|2g + sgu

2dvg

‖u‖2pn
.

We define Jg : C∞>0(M) −→ R by

Jg(u) =

∫
M an|∇u|2g + sgu

2dvg

‖u‖2pn
.

We can extend the functional Jg to H2
1 (M)− {0} and we obtain that

Y (M, [g]) = inf
u∈H2

1 (M)−{0}
Jg(u)

From now on, we skip the subscript of the background metric g in Jg, and
we call this functional as the Yamabe functional as well.

Let G be a compact subgroup of I(M, g). The G-equivariant Yamabe
constant of (M, g) is
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YG(M, [g]G) = inf
u∈H2

1,G(M)−{0}

∫
M an|∇u|2g + sgu

2dvg

‖u‖2pn

When the G−equivariant Yamabe constant is attained, it is realized by a
positive smooth G−invariant function u, that induces a G−invariant metric
gu := upn−2g of constant scalar curvature.

Let h be a G−invariant metric in the conformal class [g]. We assume
that the action of the group G is not transitive, hence the spectrum of Lh
restricted to H2

1,G(M) is a sequence of non-decreasing eigenvalues

λ1,G(h) < λ2,G(h) ≤ λ3,G(h) ≤ · · · ≤ λk,G(h) ≤ . . .

We obtain the following variational characterizations:

(9) λ1,G(h) = inf
v∈H2

1,G(M)−{0}

∫
M an|∇v|2h + shv

2dvh

‖v‖22
,

and

(10) λ2,G(h) = inf
V ∈Gr2(H2

1,G(M))
supv∈V−{0}

∫
M an|∇v|2h + shv

2dvh

‖v‖22
,

whereGrk(H2
1,G(M)) denotes the space of k−dimensional subspaces ofH2

1,G(M).

The signs of YG(M, [g]G) and λ1,G(g) coincide. If YG(M, [g]G) ≥ 0, using (9),
(11), and the Hölder inequality, it can be proven that

YG(M, [g]G) = inf
h∈[g]G

λ1,G(h)vol(M,h)
2
n .

Let u ∈ LpnG,≥0(M) − {0}. With Grku(H2
1,G(M)), we denote the space of

k−dimensional subspace of H2
1,G(M) which are also k-dimensional subspaces

in H2
1,G(M)− {u = 0}, respectively.

We have the following variational characterization for the G−equivariant
second Yamabe constant and the G−equivariant M−second Yamabe cons-
tant:

Proposition 2.1. Let (Mn, g) and (N l, h) be closed Riemannian manifolds.
Let G = G1 ×G2 be a closed subgroup of I(M ×N, g + h) where G1 and G2

are closed subgroups of I(M, g) and I(N,h), respectively. Then
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Y 2
G(M, [g]G) = inf

u∈C∞G,>0(M)

V ∈Gr2(H2
1,G(M))

sup
v∈V−{0}

∫
M an|∇v|2g + sgv

2dvg∫
M upn−2v2dvg

(

∫
M
upndvg)

2
n ,

Y 2
M,G(Mn ×N l, g + h) = inf

u∈C∞G,>0(M)

V ∈Gr2(H2
1,G1

(M))

sup
v∈V−{0}

∫
M an+l|∇v|2g + sgv

2dvg∫
M upn+l−2v2dvg

×
( ∫

M
upn+ldvg

) 2
n+l vol(N,h)

2
n+l .

Proof. If g′ ∈ [g]G, we write g′ = upn−2g for some u ∈ C∞G,>0(M). The

volume of (M, g′) is

(11) vol(M, g′) =

∫
M
upndvg.

Using the conformal invariance property of Lg′ (i.e., Lg′(v) = u1−pnLg(uv))
we obtain for any v ∈ C∞(M)− {0} that∫

M Lg′(v)vdvg′∫
M v2dvg′

=

∫
M Lg(uv)uvdvg∫
M (uv)2upn−2dvg

.

Therefore, from (10) it follows that

(12) λ2,G(g′)vol(M, g′)
2
n =

= inf
V ∈Gr2(H2

1,G(M))
sup

v∈V−{0}

∫
M an|∇v|2g + sgv

2dvg∫
M upn−2v2dvg

(

∫
M
upndvg)

2
n .

Then, taking the infimum over C∞>0,G(M) we get the proposition. In a
similar way we prove the variational characterization for the G−equivariant
M−second Yamabe constant of the product manifold M ×N . �

If YG(M, [g]G) ≥ 0 we can extend naturally the definition of λ2,G and
vol(M) to G−invariant generalized metrics conformal to g (when G is the
trivial group see for instance [2]). More precisely, if g′ = upn−2g, with
u ∈ LpnG,≥0 − {0}, we define λ2,G(g′) and vol(M, g′) as

(13) λ2,G(g′) := inf
V ∈Gr2u(H2

1,G(M))
sup

v∈V−{0}

∫
M an|∇v|2g + sgv

2dvg∫
M upn−2v2dvg

,

and

vol(M, g′) =

∫
M
upndvg.
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By Proposition 2.1 we have that

Y 2
G(M, [g]G) = inf

u∈LpnG,≥0(M)

V ∈Gr2u(H2
1,G(M))

sup
v∈V−{0}

∫
M an|∇v|2g + sgv

2dvg∫
M upn−2v2dvg

(

∫
M
upndvg)

2
n .

Then, using the definitions of λ2,G(g′) and vol(M, g′) we get that

Y 2
G(M, [g]G) = inf

g′∈[g]G,gen
λ2,G(g′)vol(M, g′)

2
n .

3. Bounds for the second equivariant Yamabe constant

The proof of Theorem 1.1 and Proposition 1.3 require some test functions
that we will introduce in the next subsections.

3.1. The test functions.

3.1.1. The case ω = 0.

In this subsection we recall the classical Aubin’s test functions and their
equivariant version. These are the test functions that we use to prove Propo-
sition 1.3. They also work to prove Theorem 1.1, when the Weyl tensor does
not vanish at a minimal finite orbit.

For P ∈M and δ > 0 small, let us consider the following function:

(14) φP,ε(Q) = Cεη(Q)
( ε

ε2 + r2(Q)

)n−2
2
,

where η is a non-negative radial cut-off function centered at P , such that
|η| ≤ 1, η(Q) = 1 for Q ∈ Bδ(P ), η(Q) = 0 for Q ∈ M − B2δ(P ), and
|∇η| ≤ 2/δ; Cε is the unique positive constant such that ‖φP,ε‖pn = 1; here
r denote the distance to P . It is well known that

(15) J(φP,ε) −→ε→0 Y (Sn).

Assume the orbit of P induced by the action of G is finite and its cardi-
nality is k. Let us write it as OG(P ) = {P1, P2, . . . , Pk}, where P1 = P . For
δ small enough, we set

(16) φε(Q) := C
k∑
i=1

φPi,ε(Q),

where C is a chosen constant such that ‖φε‖pn = 1. The function φε is
G−invariant, and by (15) we have that

(17) J(φε) −→ε→0 Y (Sn)k
2
n .
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Standard computations shows that

(18) cf(ε) ≤
∫
M
φqP,εdvg ≤ Cf(ε),

where

(19) f(ε) :=


ε

2n−(n−2)q
2 if q > n

n−2 ,

ln(δε−1)ε
n
2 if q = n

n−2 ,

ε
(n−2)q

2 if q < n
n−2 .

If ω(P ) = 0, we use the classical estimations for the Aubin’s test functions
when (M, g) non-locally conformally flat (see [3]) to conclude that

(20) J(φε) :=

Y (Sn)Λ
2
n
G −A(M)ε4 + o(ε4) if n > 6,

Y (Sn)Λ
2
n
G −A(M)ε4|ln(ε2)|+ o(ε4|ln(ε2)|) if n = 6,

where A(M) is a positive constant. Therefore, for ω(P ) = 0 and ε small
enough, we obtain that

J(φε) < Y (Sn)Λ
2
n
G.

The test functions φε do not work to prove Theorem 1.1 when the Weyl
tensor of (M, g) vanishes at any minimal finite orbit. Within the cases
covered by the Theorem, this means that 1 ≤ ω(P ) ≤ n−6

2 for any P in a
minimal finite orbit. In order to prove Theorem 1.1, we need to consider
other kind of test functions that we introduce in the next subsection.

3.1.2. The case ω ≤ n−6
2 .

We now start by some preliminaries, in order to introduce the test func-
tion. We assume that there exists a point P ∈ M with finite minimal
orbit, such that ω(P ) ≤ n−6

2 . For simplicity, we drop the letter P on ω(P ).

Consider the geodesic normal coordinate system {xj} around P , such that
det g = 1 +O(|x|N ), for some N ∈ N sufficiently large. We define the polar
coordinates as r := |x|, ξ := x

r . Hebey and Vaugon, proved that there exists

a G-invariant metric g′ conformal to g, such that |∇jRiemg′(P )| = 0, for
any j < ω and ∆jsg′(P ) = 0, ∇∆jsg′(P ) = 0, for any j < ω + 1 (see [9,
Lemma 12 and Lemma 8 bis]). The last two equalities imply that

r1−n
∫
∂Br(P )

sg′dvg′ = O(r2ω+2).

From now on, without loss of generality, we assume the |∇jRiemg(P )| = 0,
for any j < ω.
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We denote by µ the degree of the leading part in the Taylor expansion of
the scalar curvature sg. Namely,

sg = rµ
∑
|α|=µ

∇αsg(P )ξα +O(rµ+1).

Set s̄ := rµ
∑
|α|=µ∇αsg(P )ξα. Since all derivatives of sg at P vanish up to

the order ω − 1, it follows that µ ≥ ω. Moreover, if µ > ω, Aubin, in [4],
proved that

∫
∂Br(P ) sgdv < 0 (see also [18]). The last inequality is sufficient

to have the estimate (20), using the same test function φε, introduced above
(see for instance in [16]).

Now, we consider the case µ = ω. Thus, s̄ is a homogeneous polynomial of
degree ω, with zero average over the unit sphere, since r1−n ∫

∂Br(P ) sgdvg =

O(r2ω+2).

We claim that ∆[ω
2

]s̄ ≡ 0, where [ω2 ] is the integer part of ω
2 . Indeed, if

ω is even, then ∆[ω
2

]s̄ is a constant, which vanishes at P . If ω is odd, then
∆[ω

2
]s̄ is linear form, with ∇∆[ω

2
]s̄(P ) = 0.

On the other hand, for any homogeneous polynomial f of degree k, r2∆f =
∆Sf − k(n + k − 2)f , where ∆S is the spherical Laplacian. Applying this

identity for f := ∆[ω
2

]−1s̄, we obtain

0 = ∆[ω
2

]s̄ = r−2(∆S − ν[ω
2

]id)∆[ω
2

]−1s̄ = r−2[ω
2

]

[ω
2

]∏
k=1

(∆S − νkid)s̄,

where νk := (ω − 2k + 2)(n+ ω − 2k). It follows that

s̄|Sn−1 ∈
[ω
2

]⊕
k=1

Ek,

where Ek is the eigenspace associated to the positive eigenvalues νk of the
Laplacian ∆S on the sphere Sn−1. Hence, there exists ϕk ∈ Ek, such that

s̄ = rω
[ω
2

]∑
k=1

νkϕk = rω∆S

[ω
2

]∑
k=1

ϕk.

Now, we introduce the test function that we use to prove the estimate
(20):

(21) ψP,ε(Q) = (1 + rω+2

[ω
2

]∑
k=1

ckϕk(ξ))φP,ε(Q),
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where ck are some real constants. In the computation of Yamabe functional
of ψP,ε, the integrals∫

M
|∇ψP,ε|2dvg and

∫
M
ψpnP,εdvg

are computed, by a straightforward computation, in terms of the L2-norm
of the ϕk’s. However, the integral∫

M
sgψ

2
P,εdvg

has to be computed carefully. Indeed, using a tricky decomposition of the
metric g, we estimate the following integral in terms of the L2(Sn−1)-norm
of the ϕk’s:

r1−n
∫
∂Br(P )

sgdvg ≤ r2ω+2

[ω
2

]∑
k=1

ek‖ϕk‖2L2 + o(r2ω+2),

where ek :=
(

n−3
4(n−2) −

(n−1)2+(n−1)(ω+2)2

4(n−2)(νk−n+1)

)
νk (see in [16, Lemma 2.3]). It

yields that for 2ω < n− 6∫
M
sgψ

2
P,εdvg =

∫
Bδ(P )
sgφ

2
P,εdvg + 2

∫ δ

0
φ2
P,εr

ω+2

[ω
2

]∑
k=1

ck

∫
∂Br(P )

ϕks̄dσdr +O(εn−2)

≤ ε2ω+4c(n, ω)

[ω
2

]∑
k=1

(ek + 2ckνk)‖ϕk‖2L2 +O(εn−2),

where c(n, ω) is a positive constants, which depends on n and ω. Note that
for 2ω = n − 6, we have a similar estimate, as above, of order ε2ω+4 ln ε−1.
For 2ω < n− 6, we obtain that

(22)

J(ψP,ε) ≤ Y (Sn)+c(n, ω)

[ω
2

]∑
k=1

(ek(n−2)2+dkc
2
k+2(n−2)2ckνk)‖ϕk‖2L2ε

2ω+4

+O(εn−2),

where dk := 4
[
(n− 1)(n− 2)νk − n(n− 2)2 + (ω + 2)2(n2 + n+ 2)

]
. In-

equality (22) holds, when 2ω = n − 6, with ε2ω+4 ln ε−1 instead of ε2ω+4.

In [16, Lemme 3.1], it was proven that for ck := − (n−2)2

dk
νk, the real number

ek(n− 2)2 + dkc
2
k + 2(n− 2)2ckνk = (n− 2)2

(
ek −

(n− 2)2

dk
ν2
k

)
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is negative, for any k ≤ [ω2 ]. Hence, for ε sufficiently small J(ψP,ε) < Y (Sn).
Finally, let H ⊂ G be the stabilizer of P . We claim that the function

(23) ψε :=
∑

σ∈G/H

ψP,ε ◦ σ−1

is G-invariant. Indeed s̄ is H-invariant, since the scalar curvature is invariant
under the action of the isometry group. On the other hands, for any σ ∈
H, σ∗(P ) : (TPM, gP ) → (TPM, gP ) is a linear isometry, where gP is the
Euclidean metric. Thus, σ∗(P ) preserves the spheres, the Laplacian and its
eigenfunctions ϕk. Therefore, ψP,ε is H-invariant and ψε is G-invariant. We
conclude that there exists some positive constant A(n, ω,G) such that

(24) J(ψε) ≤

Y (Sn)Λ
2
n
G −A(n, ω,G)ε2ω+4, if 2ω < n− 6;

Y (Sn)Λ
2
n
G −A(n, ω,G)εn−2 ln(ε−1), if 2ω = n− 6,

which implies that (20) holds for ψε.

3.2. Proof of Theorem 1.1.

By assumption, we assume that either the orbits of G are not finite or
there exists a finite minimal orbit OG(P ) such that ω(P ) ≤ n−6

2 . If the
orbits are not finite, Hebey and Vaugon proved in [11] that the inclusion map
of H2

1,G(M) in LpnG (M) is a compact operator. Therefore, by the classical

variational method, YG(M, [g]G) is attained and the Yamabe equation admits
a smooth positive G−invariant solution (see for instance [9]). On the other
hand, if there exists a point P that belongs to a minimal finite orbit such that
ω(P ) ≤ n−6

2 , then by (24) the G−equivariant Yamabe constant is attained
too.

Let u ∈ H2
1 (M) − {0} and V ∈ Gr2(H2

1 (M)). In order to simplify the
notation in the proof of Theorem 1.1, we define the following functional

Hu : V − {0} −→ R, Hu(v) :=

∫
M an|∇v|2g + sgv

2dvg∫
M upn−2v2dvg

.

In order to prove the theorem, using Proposition 2.1, it is sufficient to find
u ∈ C∞>0,G(M) and V ∈ Gr2(H2

1,G(M)) such that

sup
v∈V−{0}

Hu(v)(

∫
M
upndvg)

2
n <

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n
.

If ΛG = +∞, then (3) is trivially satisfied. Hence, we can assume that
G has a finite orbit on M . Let OG(P ) = {P1, . . . , Pk} be a finite minimal
orbit, with P1 := P . Let ϕ ∈ C∞>0,G(M) be a minimizing function of the
Yamabe functional, which realizes the G−equivariant Yamabe constant. We
normalize ϕ, such that ‖ϕ‖pn = 1.



15

Let us consider the following G−invariant function:

(25) uε :=

{
J(ψε)

n−2
4 ψε + YG(M, [g]G)

n−2
4 ϕ, if YG(M, [g]G) > 0,

ψε, if YG(M, [g]G) = 0,

where ψε is the test function defined in (23), that we normalize, in order to
have ‖ψε‖pn = 1.

Let Vε ∈ Gr2(C∞G (M)) be a 2−dimensional subspace of C∞G (M), defined
by

(26) Vε := span
(
ψε, ϕ

)
.

The case YG(M, [g]G) > 0. Assume that YG(M, [g]G) > 0 and for v =
αψε + βϕ ∈ Vε, with (α, β) ∈ R2 − {(0, 0)}, we have that

Huε(v) =
α2J(ψε) + β2YG(M, [g]G) + 2αβYG(M, [g]G)

∫
M |ϕ|

pn−2ϕψεdvg

α2
∫
M |uε|pn−2ψ2

εdvg + β2
∫
M |uε|pn−2ϕ2dvg + 2αβ

∫
M |uε|pn−2ψεϕdvg

.

Therefore,
(27)

Huε(v) ≤
α2J(ψε) + β2YG(M, [g]G) + 2αβYG(M, [g]G)

∫
M |ϕ|

pn−2ϕψεdvg

α2J(ψε) + β2YG(M, [g]G) + 2αβ
∫
M |uε|pn−2ψεϕdvg

.

Following closely the proof of Theorem 5.4 in [2], for n > 6, we can see
that for any v ∈ Vε − {0}, we have:

Huε(v) ≤ 1 +O(ε
n−2
2 ).

It is known, see for instance Lemma 5.7 in [2], that if q > 2 then, there
exists C > 0 such that (a+b)q ≤ aq+bq+C(aq−1b+abq−1), for any a, b ≥ 0.
Hence,∫

M
upnε dvg ≤ J(ψε)

n
2

∫
M
ψpnε dvg + YG(M, [g]G)

n
2

∫
M
ϕpndvg

+ C(

∫
M
ϕpn−1ψεdvg +

∫
M
ψpn−1
ε ϕdvg)

= J(ψε)
n
2 + YG(M, [g]G)

n
2 + C(

∫
M
ϕpn−1ψεdvg +

∫
M
ψpn−1
ε ϕdvg).

By (19), we have that

(28)

∫
M
upnε dvg ≤ J(ψε)

n
2 + YG(M, [g]G)

n
2 +O(ε

n−2
2 ).

On the other hand, by the estimation (20), we have that

J(ψε) = Y (Sn)Λ
2
n
G −Aε

4 + o(ε4),
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with A > 0. Therefore,

J(ψε)
n
2 ≤ Y (Sn)

2
nΛG −Aε4 + o(ε4).

and ∫
M
upnε dvg ≤ Y (Sn)

2
nΛG + YG(M, [g]G)

n
2 −Aε4 + o(ε4) +O(ε

n−2
2 ).

Finally, we get that(∫
M
upnε dvg

) 2
n ≤

(
Y (Sn)

n
2 ΛG + YG(M, [g]G)

n
2

) 2
n − C̃ε4 +O(ε

n−2
2 ) + o(ε4),

with C̃ > 0. If n ≥ 11 and ε is small enough, we obtain that

sup
v∈Vε−{0}

Huε(v)(

∫
M
upnε dvg)

2
n ≤

(
1+O(ε

n−2
2 )
)[(

Y (Sn)
2
nΛG+YG(M, [g]G)

n
2

) 2
n

− C̃ε4 +O(ε
n−2
2 )
]
<
(
Y (Sn)

2
nΛG + YG(M, [g]G)

n
2

) 2
n
.

The case YG(M, [g]G) = 0. For n > 4, let αε and βε be such that α2
ε+β

2
ε =

1 and supv∈Vε−{0}Huε(v) = Huε(αεψε + βεϕ). If αε = 0, then

sup
v∈Vε−{0}

Huε(v) = 0.

If αε 6= 0, then applying (19) we get that

sup
v∈Vε−{0}

Huε(v) =
J(ψε)

1 + 2
( βε
αε

)
O(ε

n−2
2 ) +

( βε
αε

)2
O(ε2)

.

Since ‖uε‖pn = ‖ψε‖pn = 1, by (20) (for n > 6) it follows that

sup
v∈Vε−{0}

Huε(v)
( ∫

M
upnε dvg

) 2
n =

Y (Sn)Λ
2
n
G −Aε4 + o(ε4)

1−O(εn−4)
,

with A > 0. Therefore, if n− 4 > 4, for ε small enough, we have

sup
v∈Vε−{0}

Huε(v)
( ∫

M
upnε dvg

) 2
n < Y (Sn)Λ

2
n
G

and the theorem follows �

Proof of Proposition 1.3. The right hand side inequality is trivially satisfies
if ΛG = +∞. So, we assume that ΛG <∞. Let us consider the test function
defined by

wε := J(φε)
n−2
4 φε + YG(M, [g]G)

n−2
4 ϕ,
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where φε is as in (17), ϕ is a G-invariant function that realizes YG(M, [g]G)
with ‖ϕ‖pn = 1, and Vε := span(φε, ϕ). By (28) we have that

(29) lim
ε→0

( ∫
M
wpnε dvg

) 2
n =

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n
.

Therefore, it follows by (27) that

lim sup
ε→0

sup
v∈Vε−{0}

Hwε(v)
( ∫

M
wpnε dvg

) 2
n ≤

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n
,

which implies that

Y 2
G(M, [g]G) ≤

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n
.

In order to prove the lower bound

2
2
nYG(M, [g]G) ≤ Y 2

G(M, [g]G),

it is sufficient to show that

(30) 2
2
nYG(M, [g]G) ≤ sup

v∈V−{0}
Hu(v),

for any u ∈ C∞>0,G(M), ‖u‖pn = 1, and V any 2-dimensional subspace of

H2
1,G(M). The arguments used in [2, Proposition 5.6] to prove the same

estimate work without any significant changes to prove (30). �

4. Nodal solutions with symmetry

In [2], it was proved that if Y 2(M, [g]) is positive and attained, then there
exists a nodal solution of the Yamabe equation. In this section, we will prove
Theorem 1.5 that asserts a similar fact, in the equivariant setting. In the
following, we briefly comment what remains true, without any significant
changes, in the G−equivariant second Yamabe context from [2].

Assume that Y (M, [g]) > 0. Then, the first eigenvalue λ1(g) of Lg is
positive and this implies that the conformal Laplacian is a coercive operator.
In, particular Lg is invertible. Let G be a closed subgroup of I(M, g). For
u ∈ Lpn≥0,G(M), we consider the generalized G−invariant metric gu = upn−2g.

By the standard variational method, we claim that there exist v1 and v2

that belong to H2
1,G(M), which satisfy, in a weak sense, the following linear

equations

Lg(v1) = λ1,G(gu)upn−2v1,(31)

Lg(v2) = λ2,G(gu)upn−2v2,(32)
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and also satisfy

(33)

∫
M
upn−2vivjdvg = δij .

Actually, the subspace V = span(v1, v2) realizes the infimum in the va-
riational characterization of λ2,G(gu). More precisely, we have that

λ2,G(gu) =

∫
M an|∇v2|2g + sgv

2
2dvg∫

M upn−2v2
2dvg

.

Suppose that Y 2
G(M, [g]G) > 0 is attained by the generalized metric gu.

Since we can assume that ‖u‖pn = 1, then Y 2
G(M, [g]G) = λ2,G(gu). Let v2 as

in (32). Following closely the proof of Theorem 3.4 in [2], it can be proven
that v2 is a function that changes sign. Indeed, this is a consequence of the
inequality λ1,G(gu) < λ2,G(gu) = Y 2

G(M, [g]G).
The key argument to prove the above facts is the following: if w1, w2 ∈

H2
1,G(M)−{0} are non-negative functions such that the set {w1 6= 0}∩{w2 6=

0} has measure 0 and satisfy the following inequalities∫
M
an|∇w1|2 + sgw1dvg ≤ Y 2

G(M, [g]G)

∫
M
upn−2w2

1dvg,(34) ∫
M
an|∇w2|2 + sgw2dvg ≤ Y 2

G(M, [g]G)

∫
M
upn−2w2

2dvg,(35)

then, u ∈ span(w1, w2) and the equalities hold in (34) and (35) (see the
details in [2, Lemma 3.3]). Since w1 = sup(0, v2) and w2 = sup(0,−v2)
satisfy (34) and (35), it follows that there exist a, b > 0, such that

(36) u = a sup(0, v2) + b sup(0,−v2)

Then, v2 ∈ Lpn+γ
G (M) for some γ > 0 (see [2, Lemma 3.1]). Using a

standard bootstrap argument it can be proved that v2 ∈ C2,α
G (M) for all

α ∈ (0, 1). Therefore, by Equality (36) we have that u ∈ C0,α
G (M).

The same arguments used in the proof of Theorem 3.4 in [2] can be used
to prove that for any h ∈ C∞G (M) with supp(h) ⊂ supp(u) the following
equality holds

(37)

∫
M
upn−3v2

2hdvg =

∫
M
upn−1hdvg.

Proof of Theorem 1.5. It is sufficient to show that u = |v2|. Suppose that
there exists P0 ∈M , such that

(38) upn−3(P0)v2
2(P0) > upn−1(P0).

Assume that the orbit OG(P0) is finite. For δ small enough, let us consider
the G−equivariant function φε defined as in (16), centered on the orbit of
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P0, such that supp(φε) ⊂ supp(u). Since u is a continuous function, for δ
small enough, we have that

upn−3(Q)v2
2(Q)φε(Q) > upn−1(Q)φε(Q)

for any Q that belongs to the interior of supp(φε). Therefore, we have that∫
M
upn−3v2

2φεdvg >

∫
M
upn−1φεdvg

which, by (37), is a contradiction.
Now, let us assume that the orbit of P0 is not finite. We know, since G is

a compact subgroup, that OG(P0) is an embedded submanifold of M , with
dimOG(P0) ≥ 1. By the slice Theorem, given ε > 0 small enough, for any
P ∈ OG(P0) there exists a slice

ΣP := expP ({z ∈ ν(OG(P0)) : |z| ≤ ε}),

such that for any σ ∈ G
σ.ΣP = Σσ.P .

Then, we can define ζε a G−invariant function, with support in a tubular
neighborhood Tε of OG(P0) such that

upn−3(Q)v2
2(Q)ζε(Q) > upn−1(Q)ζε(Q)

for any Q ∈ Tε. Hence,∫
M
upn−3v2

2ζεdvg >

∫
M
upn−1ζεdvg,

which is again a contradiction. Of course, the same happens if we assume
the opposite inequality in (38). Therefore,

upn−3v2
2 = upn−1,

which implies that u = |v2|. �

Remark 4.1. Let (M, g) be a closed Riemannian manifold with dim (M) ≥ 3
and G be a closed subgroup of I(M, g). If Y 2

G(M, [g]G) = 0, then we have
that YG(M, [g]G) = Y (M, g) < 0. Indeed, since YG(M, [g]G) ≤ Y 2

G(M, [g]G),
we have that YG(M, [g]G) ≤ 0, and therefore, YG(M, [g]G) = Y (M, [g]) and
the G−equivariant Yamabe constant is attained. It follows by definition of
the second Yamabe constant that

Y (M, [g]) = YG(M, [g]G) ≤ Y 2(M, [g]) ≤ Y 2
G(M, [g]G) = 0.

Let us assume that Y (M, [g]) = 0. Then, λ1(g) = 0 and Y 2(M, [g]) = 0. By
[2, Theorem 1.4], Y 2(M, [g]) is attained by a genelarized metric h = upn−2g
with u ∈ Lpn≥0(M). Hence, λ2(h) = 0. But this implies that λ2(g) = 0 wich
is a contradiction, since g is a Riemannian metric and therefore we have the
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strict inequality λ1(g) < λ2(g). Then, Y (M, [g]) = YG(M, [g]G) is a negative
constant.

Proposition 4.2. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 3 and G be a closed subgroup of I(M, g). Assume that Y 2

G(M, [g]G) = 0
and is attained. Then, there exists a G−invariant nodal solution of the
Yamabe equation

(39) Lg(v) = 0.

Proof. Let u0 ∈ Lpn≥0,G such that λ2,G(gu0) = 0. Then, there exists V0 ∈
Gr2

u(H2
1,G(M)) such that

sup
v∈V0−{0}

Hu0(v) = 0.

This implies that

0 = sup
v∈V0−{0}

H1(v) ≥ λ2,G(g).

By hypothesis, λ2,G(h) ≥ 0 for any generalized metric h, hence λ2,G(g) = 0.
If we consider an eigenfunction v associated to the eigenvalue λ2,G(g) = 0,
then v satisfies Equation (39) and is a sign changing function. �

If (M, g) satisfies the assumptions of Theorem 1.1, then as a consequence
of the proposition above and Theorem 1.7 (see Section 7) we have a G-
invariant nodal solution of the Yamabe equation (Corollary 1.8).

5. Riemannian products

Proof of Theorem 1.9. The proof of Theorem 1.1 in [1] works in the equi-
variant case. In this setting we have the action of the group G, however this
action is the trivial one in (N,h). Therefore, the proof of the above men-
tioned theorem can be adapted to prove (6). For the same reason, Equality
(7) follows from the proof of Theorem 1.1 in [12]. �

Let (M, g) and G be a subgroup of I(M, g) as in Theorem 1.10. Note
that any function in C∞0 (M ×Rl), which is constant on M , is automatically
G−invariant, since G acts trivially on Rl. Therefore,

YG(M × Rl, [g + gle]) ≤ YRl(M × Rl, g + gle),

where YRl(M ×Rl, g + gle) is the Rl− Yamabe constant of (M ×Rl, g + gle),
defined by

YRl(M × Rl, g + gle) := inf
u∈C∞0 (Rl)−{0}

∫
Rl an+l|∇u|2gl0 + sgu

2dvgl0
‖u‖2pn+l

(
vol(M, g)

) 2
n+l .
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If in addition, sg is constant and vol(M, g) = 1, then by Theorem 1.4 of
[1] it follows that

YG(M × Rl, [g + gle]G) ≤ C(n, l)s
n
n+l
g ,

where C(n, l) = a
l

n+l

n+l(n + l)l−
l

n+ln
−n
n+lα−1

n,l with αn,l the (n, l) Nirenberg-

Gagliardo constant. Hence, if sg is small enough we have that

YG(M × Rl, [g + gle]G) ≤ Y (Sn+l)Λ
2
n+l

G .

If, in addition l ≥ 2, Theorem 1.10 says that we have the strict inequality
in the inequality above.

To prove Theorem 1.10, we will need a G−equivariant conformal normal
coordinate system at (P, 0) ∈ (M × Rl). That is to say, h is a G−invariant
Riemannian metric, that belongs to [g+gle] such that in a normal coordinate
system we have:

• If n + l = 4, det(h) = 1 + O(r3), (which is equivalent to have
Ricch(P, 0)(h) = 0).
• If n + l = 5, det(h) = 1 + O(r4), (which is equivalent to have
Ricch(P, 0) = 0 and ∇Ricch(P, 0) = 0).
• If n+ l ≥ 6, For any s >> 1, det(h) = 1+O(rs) and Ricch(P, 0) = 0.

In [8], Hebey and Vaugon proved the existence of these kind of metrics
for the compact setting. Here, M × Rl is not compact, but the action of
G = G1 × {IdRl} is trivial in (Rl, gle). When G is the trivial group of
I(M ×R, g+ gle), Inequality (8) is proved by Akutagawa, Florit, and Petean
in [1].

Proof of Theorem 1.10. We can assume that the action of G1 on M has
finite orbits. If it does not, the inequality of the theorem holds trivially.
Let OG(Q1) = {Q1 = (P1, 0), . . . , Qk = (Pk, 0)} be a minimal finite orbit.
Assume that n+ l ≥ 6. Note that (M ×Rl, g+ gl0) is not locally conformally
flat. Indeed, when both dim (M) = n and dim (N) = l are greater or equal
than 2, the Riemannian product (M × N, g + h) is locally conformally flat
if and only if (M, g) and (N,h) have constant sectional curvature c and
−c, respectively (see [23]). By assumption, sg > 0. Hence, if (M, g) has

constant sectional curvature it must be positive. Therefore, (M ×Rl, g+ gl0)
is not locally conformally flat, which is equivalent to say that the Weyl
tensor Wg+gle

never vanish completely. More precisely, since for any P ∈M
sg(P ) > 0, then Wg+gle

(P, 0) 6= 0. Therefore, ω(Qj) = 0 for any point Qj
in the minimal orbit OG(Q1). The G−equivariant Yamabe constant is an
invariant of [g+gle]G, then in order to prove the theorem it will be convenient
to consider a G−equivariant conformal normal coordinate system h instead
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of g + gle. Since the Weyl tensor is invariant by a conformal change of the
metric, then ωh(Qj) = 0, for any j = 1, . . . , k.

Let us consider, for small δ > 0, the G−equivariant function φε defined
in (14). We extend φε trivially to M × Rl. By (20), for ε small enough, the
following inequality holds for the Yaamabe functional of M × Rl:

Y (φε) < k
2
n+lY (Sn+l),

see for instance [8]. Assume now that n + l = 4, 5. Akutagawa, Florit and
Petean proved in [1] that for any P̄ ∈ M there exists a unique normalized
Green function GQ̄ for the conformal Laplacian Lg+gle with pole at Q̄ =

(P̄ , 0). Also, they proved that (M × Rl − {Q̄}, G
4

n+l−2

Q̄
(g + gle)), which is a

scalar-flat and asymptotically flat manifold, has positive mass. Then, after
choosing a G−equivariant conformal normal coordinate system, we use the
Schoen’s test function in order to construct an appropriate G−invariant test
function. Let

ζQ̄,ε(Q) :=


(

ε
ε2+r2(Q)

)n+l−2
2

if r(Q) ≤ δ,

ε0

(
GQ̄(Q)− η(Q)αQ̄(Q)

)
if δ ≤ r(Q) ≤ 2δ,

ε0GQ̄(Q) if r(Q) > 2δ,

where r(Q) := d(Q̄,Q), η is a cut-off function as in (14), ε0 > 0 is a small
constant that satisfies

ε0 =
[ ε

(δ2−(n+l) +A)
2

n+l−2 (ε2 + δ2)

]n+l−2
2

,

and αQ̄ is the function that appears in asymptotic expansion of the Green
functionGQ̄ (see for instance [15] and [20]). Then, we consider theG−equiva-

riant function in M × Rl defined by

ζε(Q) :=

k∑
i=1

ζQi,ε(Q).

By computations made in [8] we get that for ε small enough

Y (ζε) < Y (Sn+l)k
2
n+l ,

and this proves the theorem. �

proof of Corollary 1.11. By Theorem 1.10 we have that

2
2
kYG(M × Rn, [g + gle]G) <

(
YG(M × Rl, [g + gle]G)

k
2 + Y (Sk)

k
2 ΛG

) 2
k
,
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with k = n + l. Therefore, for t large enough, by Theorem 1.9, we get the
desired inequality. �

Corollary 1.12 is an immediate consequence of the corollary above, The-
orem 1.7, and Theorem 1.5.

6. The subcritical case

Let (Mn, g) and (N l, h) be closed Riemannian manifolds of constant scalar
curvature such that sg+h > 0. Assume that n+ l ≥ 3. Let G = G1×G2 be a
compact subgroup of I(M×N, g+h) where G1 and G2 are closed subgroups
of I(M, g) and I(N,h), respectively. We also assume that the action of G1

on M is not transitive.
WhenG1 = {IdM}, Proposition 1.13 and Corollary 1.14 was proved by Pe-

tean in [19]. The key argument to prove this case is that H2
1 (M) is compactly

embedded in Lpn+l(M), which is a consequence of the Rellich-Kondrakov
theorem since pn+l < pn (see for instance [15]).

When G1 is not the trivial group the situation is similar because the
inclusion of H2

1,G(M) in Lpn+l(M) is a compact operator (see [11]).
In the following we sketch the proof of Proposition 1.13.
We can assume without loss of generality that vol(N,h) = 1. Let guk =

u
pn+l
k (g+h) with uk ∈ C∞G1,>0(M) and ‖uk‖pn+l = 1 be a minimizing sequence

of Y 2
M,G1

(M ×N, g+h). Let {vk1} and {vk2} as in (31) and (32), respectively.

The sequence {uk} is bounded in Lpn+l(M), therefore there exists a subse-
quence that converges weakly to u. On the other hand, {vk1} and {vk2} are
bounded sequences in H2

1,G1
(M). Hence, there exist v1 and v2 such that

v1
k ⇀ v1 and v2

k ⇀ v2 weakly in H2
1,G1

(M). Since H2
1,G1

(M) ⊆ Lpn+l(M), we

have that there exists a subsequence of v1
k and v2

k that converge strongly in
Lpn+l(M). Then, we can pass into the limits in (33) and we obtain that

(40)

∫
M
upn+lvivj = δij .

Furthermore, u, v1, and v2 satisfy in the sense of distributions that

(41) Lg(v1) =
(

lim sup
k→∞

λM1,G1
(guk)

)
upn+l−2v1,

and

(42) Lg(v2) = Y 2
M,G1

(M ×N, g + h)upn+l−2v2.

By (40), we have that V0 := span(v1, v2) ∈ Gr2
u(H2

1,G1
(M)). Since

lim supk λ
M
1,G1

(guk) ≤ Y 2
M,G1

(M ×N, g + h), by (41) and (42) we have that

supv∈V0−{0}Hu(v)
( ∫

M
upn+ldvg

) 2
n+l ≤ Y 2

M,G1
(M ×N, g + h).
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Hence, Y 2
M,G1

(M ×N, g + h) is achieved by the generalized metric gu. In
the variational characterization of the G1−equivariant M−second Yamabe
constant, the infimum is realized by the subspace V0, and the supremum in
V0 is achieved by the G1−invariant function v2.

Corollary 1.14 follows by similar arguments as the ones used to proved
Theorem 1.5 (see Section 4).

7. Proof of Theorem 1.7

In order to prove Theorem 1.7 we will need the following result due to
Hebey and Vaugon (see [7]):

Theorem 7.1. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 3 and G be a closed subgroup of I(M, g), with ΛG < ∞. Then, there
exists B0 ∈ R, such that for any v ∈ H2

1,G(M)− {0}, we have that

(43) Y (Sn)Λ
2
n
G ≤

∫
M an|∇v|2g +B0v

2dvg

‖v‖2pn
To prove Theorem 1.7, we follow closely the proof of Theorem 1.4 in

[2], pointing out what we should adapt to the equivariant setting. As in
the Section 6, let guk = upnk g with uk ∈ C∞G,>0(M) and ‖uk‖pn = 1 be a

minimizing sequence of Y 2
G(M, [g]G). Let {vk1} and {vk2} as in (31) and (32),

respectively. These functions satisfies in a weak sense the following:

Lg(v
k
1 ) = λ1,G(guk)upn−2

k vk1 ,(44)

Lg(v
k
2 ) = λ2,G(guk)upn−2

k vk2 ,(45) ∫
M
upn−2vivjdvg = δij .(46)

The sequence {uk} is bounded in Lpn(M), therefore there exists a subse-
quence that converges to u weakly in Lpn(M). On the other hand, {vk1} and
{vk2} are bounded sequence in H2

1,G(M), therefore, there exist v1 and v2 such

that v1
k ⇀ v1 and v2

k ⇀ v2 weakly in H2
1,G(M). Then (up to a subsequence)

we have in a weak sense

Lg(v1) =
(

lim
k→+∞

λ1,G(guk)
)
upn−2v1,

Lg(v2) = Y 2
G(M, [g]G)upn−2v2.

However, it is not clear that upn−2v1 and upn−2v2 are linearly independent
in H2

1,G(M). If it is the case, then they span a 2−dimensional subspace of

H2
1,G(M). It yields that upn−2g realizes Y 2

G(M, [g]G). Under the assumptions

of Theorem 1.7, we show that dim
(
span

(
upn−2v1, u

pn−2v2

))
= 2.



25

End of the proof of Theorem 1.7. If ΛG = +∞, then H2
1 (M) is compactly

embedded in Lpn(M), therefore a minimizing sequence (up to a subsequence)
converge to a generalized metric upn−2g that minimizes Y 2

G(M, [g]G). So let

us assume that ΛG < +∞. Let vk2 be as above and P be an arbitrary point of
M . Its orbit has finite or infinite cardinality. In the following, we distinguish
two cases, corresponding to the finiteness of the orbit of P .

Finite case. Let OG(P ) := {P1, . . . , PK} be the orbit of P (not necessarily a
minimal one) of cardinality K ≥ ΛG. We define

Vk,i = ηi|vk2 |εvk2 ,

where 0 < ε < (pn − 2)/2, and ηi is a cut-off function centered at Pi and
depends only on the distance to Pi, such that supp ηi ⊂ Bδ(Pi) for all i,
with δ smaller than the half distance between Pi and OG(Pi)−{Pi}. Hence
the function

(47) Vk =
K∑
i=1

Vk,i

is G−invariant, by construction. We claim that we obtain the same inequal-
ity as (39) in [2]. That is

(48) ‖Vk‖2pn ≤
( 1 + ε2

1− 3ε2

)Y 2
G(M, [g]G)

Y (Sn)Λ
2
n
G

(∫
∪Ki=1Bδ(Pi)

upnk dvg

) 2
n ‖Vk‖2pn + Cδ,

where δ is small enough and Cδ is a constant that depends on δ.
Indeed, doing similar computations as Step 1 in the proof of Theorem 1.4

of [2], we obtain:

(49)

∫
M
η2
i |vk2 |2εvk2Lg(vk2 )dvg ≥

(1− 3ε2

1 + ε2

) ∫
M
an|∇Vk,i|2 +B0V

2
k,idvg − Cδ.

Note that (49) corresponds to Equation (42) in [2], which holds for vk2 and
Vk,i in our notation, since these two functions satisfy the same assumptions
as the functions wm and Wm used in [2]. Therefore,

K∑
i=1

∫
M
η2
i |vk2 |2εvk2Lg(vk2 )dvg ≥

(1− 3ε2

1 + ε2

) K∑
i=1

∫
M
an|∇Vk,i|2 +B0V

2
k,idvg

−KCδ.

By (45), we have that

Y 2
G(M, [g]G)

∫
M
upn−2V 2

k dvg ≥
(1− 3ε2

1 + ε2

) ∫
M
an|∇Vk|2 +B0V

2
k dvg −KCδ
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and by Theorem 7.1, we have

(50) Y 2
G(M, [g]G)

∫
M
upn−2
k V 2

k dvg ≥
(1− 3ε2

1 + ε2

)
Y (Sn)Λ

2
n
G‖Vk‖

2
pn −KCδ.

Using the Hölder inequality in the left hand side of (50), we get (48).

Infinite case. Let us assume that P does not belong to a finite orbit. As in
the proof of Theorem 1.5, we construct a function ζ, which is G−invariant
and with support in a tubular neighbourhood Tδ(OG(P )) of OG(P ), for δ > 0
sufficiently small. Let us consider the G−invariant function

(51) Ṽk = ζ|vk2 |εvk2 .
Then, using the same arguments as above, we obtain that

(52) ‖Ṽk‖2pn ≤
( 1 + ε2

1− 3ε2

) Y 2
G(M, g)

Y (Sn)Λ
2
n
G

(∫
Tδ(OG(P ))

upnk dvg

) 2
n ‖Ṽk‖2pn + Cδ.

First, we assume that Y 2
G(M, [g]G) < Y (Sn)Λ

2
n
G. Note that this assump-

tion does not correspond to the one of Theorem 1.7. The general case is
treated below. For ε small enough and by (48) and (52), we have that

‖Vk‖2pn ≤ c‖Vk‖
2
pn + Cδ,(53)

‖Ṽk‖2pn ≤ c‖Ṽk‖
2
pn + Cδ,(54)

where c < 1. These inequalities implies that {vk2} is a bounded sequence in
Lpn+ε(M). Since, vk2 converge strongly in Lpn−ε(M), we can use the same
arguments used in Step 2 (proof of Theorem 1.4, [2]) to conclude that vk2
converge strongly to v2 in Lpn(M). Hence, we obtain that∫

M
upn−2vivjdvg = δij .

This implies that dim
(
span

(
upn−2v1, u

pn−2v2

))
= 2.

Now, we assume that

Y 2
G(M, [g]G) <

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2 ΛG

) 2
n .

As in Step 3 (proof of Theorem 1.4 in [2]) we can use (48) and (52) to prove
that, there exists a closed set Ω ⊂ M , such that for any open set U , with
Ū ⊆ M − Ω, the sequences {vk1} and {vk2} converge strongly in H2

1,G(Ū) to
v1 and v2, respectively. Ω is the set of concentration points, i.e., P ∈ Ω, if
for all δ > 0

lim sup
k→∞

∫
Bδ(P )

upnk dvg >
1

2
.

If Ω = ∅, then by comments above implies that dimension of the subspace
span

(
upn−2v1, u

pn−2v2

)
is 2, and the theorem follows.
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Let assume that Ω 6= ∅. Since ‖uk‖pn = 1, the cardinality of Ω is at most
one. If Ω = {P}, then OG(P ) = {P} and ΛG = 1, since the image of a
concentration point by an isometry is also a concentration point. If upn−2v1

and upn−2v2 are not linearly independent, then we can mimic, without sub-
stantial changes due to the equivariant setting, Step 4 (Actually Step 4, is
true without assuming neither the linear dependence of upn−2v1 and upn−2v2

nor Ω 6= ∅), Step 5, and Step 6 of (proof of Theorem 1.4, [2]), to obtain that

Y 2
G(M, [g]G) ≥

(
YG(M, [g]G)

n
2 + Y (Sn)

n
2
) 2
n

which is a contradiction to our assumption. Therefore, upn−2v1 and upn−2v2

are linearly independent, and the theorem follows in this case too.
�
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