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1 Introduction.

In [9], Kowalski and Sekizawa defined and characterized the natural tensor fields on the
tangent bundle TM of a manifold M . They called a tensor g̃ of type (0, 2) on TM natural
if it cames from a second order natural operator of a metric g on M . They showed that
there exist natural F − metrics ξ1, ξ2 and ξ3 (i.e. a bundle morphism of the form ξ :
TM ⊕TM ⊕TM −→M × IR linear in the second and in the third argument) derived from
g, such that g̃ = ξs,g1 + ξh,g2 + ξv,g3 with ξ1 and ξ3 symmetric, where ξs,g1 , ξh,g2 and ξv,g3 are
the classical Sasaki, horizontal and vertical lift of ξ1, ξ2 and ξ3 respectively. Also Kowalski
and Sekizawa [10] study the natural tensor fields on the linear frame bundles of a manifold
endowed with a linear connection.

In [2], Calvo and Keilhauer showed that any (0, 2) tensor field on TM over a Riemannian
manifold (M, g) admits a global matrix representation. Using this one to one relationship,
they defined and characterized what they called natural tensor. In the symmetric case
this concept coincides with the one of Kowalski and Sekizawa. Keilhauer in [7], defined and
characterized the tensor fields of type (0, 2) on the linear frame bundle of a Riemannian
manifold LM endowed with a linear connection. The natural tensors on the tangent and
cotangent bundle T ∗M of a semi Riemannian manifold was characterized by Araujo and
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Keilhauer in [1]. The main idea of [1], [2] and [7] is to use a suitable fiber bundle P in order
to see the tensor fields on TM , T ∗M and LM as matricial functions from P to IRm×m. The
principal difference between [9] and [10] and [1], [2] and [7] is that these last works do not
make use of the theory of differential invariant developed by Krupka [11] (see also [8] and
[12]).

The aim of this work is generalized the notion of natural tensor fields in the sense of
[1],[2] and [7] to manifolds and fibrations. With this purpose we introduce the concept of
s-space. In Section 2, we define and give some examples of s-spaces. We also see general
properties of s-spaces, for example, that there exists a one to one relationship between the
tensor fields of type (0, 2) and some types of matricial maps. This relationship allows us
to study the tensor fields in the sense of [2]. We characterize the s-spaces which its group
acts without fixed point. We study some general statement of morphisms of s-spaces and
tensor fields on manifolds in Section 3. In Section 4, we define connections on s-spaces, that
coincides with the well known notion of connection when the s-space is also a principal fiber
bundle. We give a condition that a s-space endowed with a connection has to satisfied in
order to has a parallelizable space manifold. Also, using a connection we show an useful
way of lift metrics to the space manifold of the s-space. The concept of s-space gives several
notions of naturality. The λ− natural and λ-natural tensors with respect to a fibration are
define in section 5. We give examples and we see that these notions extend the idea of
naturality of [1],[2] and [7]. In Section 7, we define the notion of atlas of s-spaces and we
use them to generalize the λ− naturality. In Section 8, we consider some s− spaces over
a Lie group and characterized the natural tensors fields on it. Finally, we study the bundle
metrics on a principal fiber bundle endowed with a linear connection.

2 S-spaces.

Definition 2.1 Let M be a manifold of dimension n. A collection λ = (N,ψ,O,R, {ei})
is called a s-space over M if:

a) N is a manifold.

b) ψ : N −→M is a submersion.

c) O is a Lie group and R is a right action of the group O over N which is transitive in
each fibers. The action also must satisfied that ψ ◦Ra = ψ for all a ∈ O.

d) ei : N −→ TM , with 1 ≤ i ≤ n, are differential functions such that {e1(z), . . . , en(z)}
is a basis of Mψ(z) for all z ∈ N .

If ψ(z) = p, then {e1(z), . . . , en(z)} and {e1(z.a), . . . , en(z.a)} are bases ofMp. Therefore
there exists an invertible matrix L(z, a) such that {ei(z.a)} = {ei(z)}.L(z, a) , (i.e. ei(z.a) =∑n

j=1 e
l(z)Lli(z, a) for 1 ≤ i ≤ n). If the matrix L only depends of the parameter of the Lie

group O, we have a differentiable map L : O −→ GL(n) such that

{ei} ◦Ra = {ei}.L(a).
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We called this map the base change morphism of the s-space λ. It easy to see that L is a
group morphism. In this case we said that λ have a rigid base change. From now on, we
will consider only this class of s-spaces.

In the sequel, unless otherwise stated, dimM = n, dimO = k and we will denote the
Lie algebra of O by o. Also, we assume that all tensor are of type (0, 2).

Example 2.2 The linear frame bundle of M induces a s-space λ = (LM,π,GL(n), ( · ), {πi})
over M , where π is the projection of the bundle, ( · ) is the canonical action of the general
linear group over LM and πi(p, u) = ui. The base change morphism is given by L(a) = a for
all a ∈ GL(n). This example shows that every manifolds admits a s-space. For simplicity
of notation, let us denote this s-space with LM . If we consider a Riemannian metric on
M or an orientation, then the bundle of orthonormal frames and the bundle of orientated
bases induced similar s-spaces over M .

Example 2.3 Let α = (P, π,G, · ) be a principal fiber bundle over M , and ω be a connec-
tion on α. Let λ = (N,ψ,O,R, {ei}) where

a) N = {(p, u, w) : p ∈ P, u and w are a bases of Mπ(p) and g respectively}.

b) ψ(p, u, w) = p.

c) O = GL(n)×GL(k) and R(a,b)(p, u, w) = (p, u.a, w.b).

d) For 1 ≤ i ≤ n and 1 ≤ j ≤ k, ei(p, u, w) is the horizontal lift with respect to ω of ui at
p and en+j(p, u, w) is the only vertical vector on Pp such that ω(p)(en+j(p, u, w)) = wj.

λ is a s-space over P and its base change morphism is given by L(a, b) =
(
a 0
0 b

)
.

Example 2.4 This example can be found in [7]. Let M be a manifold and ∇ be a linear
connection on it. Let K : TTM −→ TM be the connection function induced by ∇ ( i.e. K
is the unique function that for v ∈ Mp satisfies that K |TMv : TMv −→ Mp is a surjective
linear map and for any vector field Y on M such that Y (p) = v, K(Y∗p(w)) = ∇wY ). For

1 ≤ i, j ≤ n, consider the 1-forms θi and ωij defined by π∗(p,u)
(b) =

n∑
i=1

θi(p, u)(b)ui and

K((πj)∗(p,u)
(b)) =

n∑
i=1

ωij(p, u)(b)ui. Let λ = (LM × GL(n), ψ,GL(n), R, {Hi, V
i
j }) where

ψ(p, u, b) = (p, u.b), the action is Ra(p, u, b) = (p, u.a, a−1b) and {Hi, V
i
j } is dual to {θi, ωij}.

λ is a s-space over the frame bundle of M with base change morphism L(a) ≡ Idn×n.

The importance of the s-spaces for the study of the tensor fields is given by the following
proposition:
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Proposition 2.5 Let λ = (N,ψ,O,R, {ei}) be a s-space over M with base change mor-
phism of L. There is a one to one correspondence between tensor fields of type (0, 2) on M
and the differentiable maps λT : N −→ IRn×n that satisfy the invariance property

λT ◦Ra = (L(a))t.λT.L(a)

Proof. Let T be a tensor on M . Consider the matrix function λT : N −→ IRn×n defined
by [λT (z)]ij = T (ψ(z))(ei(z), ej(z)). For a ∈ O, we have that the (i, j) entry of the matrix

λT (z.a) is [λT (z.a)]ij = T (ψ(z.a))(ei(z.a), ej(z.a)) = T (ψ(z))(
n∑
r=1

er(z)L(a)ri ,
n∑
s=1

es(z)L(a)sj)

=
∑n

r,s=1 L(a)ri .
λT (z)rs.L(a)sj , hence λT satisfies the invariance property. Let F : N −→

IRn×n be a differentiable function that satisfies the invariance property. If X is a vector
field on M , then it induces a map λX = (x1, . . . , xn) : N −→ IRn such that X(ψ(z)) =
n∑
i=1

xi(z)ei(z). It is easy to check that λX◦Ra =λ X.[L(a)t]−1. Then, we define T (p)(X,Y ) =

λX(z).F (z).(λY (z))t where ψ(z) = p. Consider z and z̄ such that ψ(z) = ψ(z̄) = p.
Since O acts transitively on the fibers of N , there exists a ∈ O that satisfies z̄ = z.a.
Therefore, λX(z̄).F (z̄).(λY (z̄))t =λ X(z).(L(a)t)−1.L(a)t.λF (z).L(a).(L(a))−1(λY (z))t =
λX(z).F (z).(λY (z))t, what it prove that T it is well defined. Given X and Y vector fields
on M , T (X,Y ) : M −→ IR is a differentiable function because T (X,Y ) ◦ ψ is differentiable
and ψ is a submersion. Since T is F(M)-bilinear, we conclude that T is a tensor of type
(0,2) on M . Finally, it is clear that λT = F .

Theorem 2.6 Let λ = (N,ψ,O,R, {ei}) be a s-space over M , such that O acts without
fixed point, then (N,ψ,O,R) is a principal fiber bundle over M .

Let us denote by z ∼ z′ the equivalence relation induced by the action of the group O
on the manifold N . To prove the previous Theorem we will need the following next two
lemmas.

Lema 2.7 Let λ = (N,ψ,O,R, {ei}) be a s-space over M . Then N/O has differentiable
manifold structure and π : N −→ N/O is a submersion.

Proof. Consider the map ρ : N × N −→ M ×M defined by ρ(z, z′) = (ψ(z), ψ(z′)). ρ
is a submersion since ψ it is. Let the set ∆̄ = {(z, z′) : z ∼ z′} and ∆ be the diagonal
submanifold of N ×N . Since z ∼ z′ if and only if ψ(z) = ψ(z′), we have that ∆̄ = ρ−1(∆).
Therefore ∆̄ is a closed submanifold of N × N . It is well known that if a group O acts
on a manifold N , N/O has a structure of differentiable manifold such that the canonical
projection π is a submersion if and only if ∆̄ is a closed submanifold of N ×N . In this case,
the differentiable structure of N/O is unique.
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Lema 2.8 Under the hypotheses of the previous lemma:

i) N/O is diffeomorphic to M .

ii) kerπ∗ = kerψ∗.

Proof. Let f : N/O −→ M defined by f([z]) = ψ(z). By definition f ◦ π = ψ, then f
is differentiable function and kerπ∗ ⊆ kerψ∗. On the other hand, let g : M −→ N/O
be the function defined by g(p) = π(z) where z ∈ N satisfies that ψ(z) = p. Since O acts
transitively on the fibers of N , g is well defined. As π = g◦ψ we have that g is a differentiable
function and that kerψ∗ ⊆ kerπ∗. An easy verification shows that g ◦ f = IdN/O and
f ◦ g = IdM .

Remark 2.9 If λ = (N,ψ,O,R, {ei}) is a s-space over M , then (N,ψ,O,R) is a principal
fiber bundle over N/O.

Proof of Theorem 2.6. It remains to prove that (N,ψ,O,R) satisfies the local triviality
property, (i.e. all p ∈ M has an open neighbourhood U on M , and a diffeomorphism
τ : ψ−1(U) −→ U×O such that τ = (ψ, φ), where φ(z.a) = φ(z).a for all a ∈ O). Let p ∈M ,
take [z0] ∈ N/O such that f([z0]) = p. As (N,ψ,O,R) is a principal fiber bundle over N/O,
there exist an open neighbourhood V of [z0] and a diffeomorphism τ̄ = (π(z), φ̄(z)) such
that satisfy the local triviality property. U = f(V ) is an open neighbourhood of p on M ,
since f is a diffeomorphism, and it satisfies that ψ−1(U) = π−1(V ) . Finally, if we define
τ : ψ−1(U) −→ U × O by τ(z) = (ψ(z), φ̄(z)), U and τ satisfy the local triviality property
on p.

Remark 2.10 Note that there exist s-spaces that are not principal fiber bundles. For
example, let λ = (IRn × (IRn − {0}), pr1, GL(n), R, {ei}) over Rn, where pr1(p, q) = p,
Ra(p, q) = (p, q.a) and ei(p, q) = ∂

∂ui
|p is the basis of IRn

p induced by the canonical coordi-
nate system of IRn .

We say that a s-space λ = (N,ψ,O,R, {ei}) over M is a principal fiber bundle if
(N,ψ,O,R) is a principal fiber bundle over M .

We denote by Sz = {a ∈ O : z.a = z} the stabilizer’s group of the action R at z. It is
well known that if for a point z ∈ N the orbit z.O is locally closed (i.e. if w ∈ z.O, there
exists an open neighbourhood V of w on N , such that V ∩ z.O is a closed set of V ), then
z.O is a submanifold of N and fz([a]) = z.a is a diffeomorphism between O/Sz and z.O.

Proposition 2.11 Let λ = (N,ψ,O,R, {ei}) be a s-space over M , then

i) There exists s ∈ IN0 such that dimSz = s for all z ∈ N .
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ii) dimN = dimM + dimO − s.

Proof. Let z ∈ N and ψ(z) = p. Since f is a submersion we have that dimN = dim kerψ∗z+
dimM and dim kerψ∗z = dimψ−1(p). Note that z.O = ψ−1(p), since O acts transitively on
the fibers. As ψ−1(p) is locally closed, it foolows that dimO/Sz = dimψ−1(p). Therefore,
dimN = dimM + dimO − dimSz for all z, so Sz is of constant dimension.

Given a s-space λ over M , it will be important to know which are the tensors on M that
satisfy that λT is a constant matrix. It is clear that not for every matrix A ∈ IRn×n there
exists a tensor T on M such that λT = A. A necessary and sufficient conditions for this
holds is that L(a)t.A.L(a) = A for all a ∈ O. In that case, we said that λ admits matrix
representations of type A. To finish the section we will state some conditions in order to
guarantee that a s-space admits matrix representations of certain class of diagonal matrices.

For ν = 0, 1, · · · , n− 1, we denote by Iν the following matrix of IRn×n

Iν =



−1
. . .

ν

−1
1

. . .
n−ν

1


if ν ≥ 1 and I0 = Idn×n

With Oν we denote the orthonormal group of index ν. If ν = 0, then O0 = O(n).

Proposition 2.12 Let λ = (N,ψ,O,R, {ei}) be a s-space over M with base change mor-
phism L. If 0 ≤ ν ≤ n− 1, the following conditions are equivalent:

i) Img(L) ⊆ Oν .

ii) λ admits matrix representations of type Iν .

iii) There is a semi-Riemannian metric on M of signature ν such that {e1(z), . . . , en(z)}
is an orthonormal basis of Mψ(z) for all z ∈ N .

iv) There exists a tensor T on M that satisfies λT (z) = Iν for all z ∈ ψ−1(p0) and for a
p0 ∈M .

Proof. i) =⇒ ii) Consider the constant map F ≡ Iν . Since F satisfies the invariance prop-
erty, it follows from the Proposition 2.5 the existence of a tensor such that λT = Iν . ii) =⇒
iii) If λT = Iν , then T is a semi-Riemannian metric of index ν and T (ψ(z))(ei(z), ej(z)) =
[Iν ]ij . iii) =⇒ iv) Is immediately. iv) =⇒ i) Let a ∈ O and z0 such that ψ(z0) = p0, then
Iν = Iν(z0.a) = L(a)t.Iν .L(a) for all a ∈ O.
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The next Proposition is a consequence of the fact that O(m) ∩Oν = {D ∈ O(m) : D =(
A 0
0 B

)
with A ∈ O(ν) and B ∈ O(m− ν)}.

Proposition 2.13 Let λ = (N,ψ,O,R, {ei}) be a s-space over M with base change mor-
phism L and 1 ≤ ν ≤ n− 1. λ admits matrix representations of type I0 and Iν if and only
if there exist differentiable functions L1 : O −→ O(ν) and L2 : O −→ O(n− ν) such that

L(a) =
(
L1(a) 0

0 L2(a)

)
Proposition 2.14 Let λ = (N,ψ,O,R, {ei}) be a s-space over M with O connected. λ
admits matrix representations of type Iν for all 0 ≤ ν ≤ n−1 if and only if λ admits matrix
representations of type A for all constant matrix A ∈ IRn×n.

Proof. If λ admits matrix representations of type I0, I1, . . . , Iν , from the proposition above

we have that L(a) =


±1

. . .
ν

±1
l(a)

 with l(a) ∈ O(n−ν). Since L is differentiable

and L(ab) = L(a).L(b), we see that L(a) =
(
Idν×ν 0

0 f(a)

)
. If ν = n, then L ≡ In×n and

the proposition it follows.

3 Morphisms of s-spaces.

Definition 3.1 Let λ = (N,ψ,O,R, {ei}) and λ′ = (N ′, ψ′, O′, R′, {e′i}) be s-spaces over
M . We call a pair (f, τ) a morphism of s-spaces between λ and λ′ if

a) f : N −→ N ′ is a differentiable function.

b) τ : O −→ O′ is a morphism of Lie groups.

c) ψ′ ◦ f = ψ.

d) f(z.a) = f(z).τ(a) for all z ∈ N and a ∈ O.

Note that if λ and λ′ are principal fiber bundles, (f, τ) is a principal bundle morphism.

Example 3.2 Let λ = (N,ψ,O,R, {ei}) be a s-space over M and let LM be the s-space
induced by the linear frame bundle of M . Consider the pair (Γ, L) : λ −→ LM , where
Γ(z) = (ψ(z), e1(z), . . . , en(z)) and L is the base change morphism of λ, then (Γ, L) is a
morphism of s-spaces.
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Remark 3.3 Let λ and λ′ be s-spaces over M and let (f, τ) : λ −→ λ′ be a morphism
between them. If λ′ is a principal fiber bundle and τ is injective, then λ is a principal fiber
bundle.

Remark 3.4 It is easy to see that if τ is surjective then f is also surjective. If O′ acts
without fixed point, then we have that τ is surjective if and only if f is surjective; the
injectivity of τ implies that of f ; and if τ is bijective then so is f . If O and O′ act without
fixed point, then f is injective if and only if τ is it.

Let (f, τ) : λ −→ λ′ be a morphism of s-spaces. As ψ′(f(z)) = ψ(z) we have that
{e′i(f(z))} and {ei(z)} are bases of Mψ(z). Therefore, there exists C(z) ∈ GL(n) that
satisfies {e′i(f(z))} = {ei(z)}.C(z). We called the function C : N −→ GL(n) the linking
map of (f, τ). For example the linking map of the morphism given in Example 3.2 is
C(z) = Idn×n. Let λ be a s-space over M with base change morphism L and let a0 ∈ O.
Consider (f, τ) : λ −→ λ defined by f(z) = Ra0 and τ(b) = Ad(a−1

0 )(b), then C(z) = L(a0).

The linking map of a morphism (f, τ) satisfies that C(z.a) = (L(a))−1.C(z).L′(τ(a)),
where L and L′ are the base change morphism of λ and λ′ respectively. The relationship
between two linking maps is given by C(g,γ)(z) = C(f,τ)(z).L′(a(z)), where a : N −→ O is a
differentiable function.

Let λ = (N,ψ,O,R, {ei}) be a s-space over M and consider a function F : N −→ IRn×n.
We say that F comes from a tensor if there exists a tensor T on M such that λT = F . In
this case, we say that F is the matrix representation (or the induced matrix function by)
of T with respect to λ.

Proposition 3.5 Let λ = (N,ψ,O,R, {ei}) and λ′ = (N ′, ψ′, O′, R′, {e′i}) be two s-spaces
over M with base change morphism L and L′ respectively, and let (f, τ) : λ −→ λ′ be a
morphism. If λ

′
T is the matrix representation of T with respect to λ′, then λ′T ◦ f comes

from a tensor if and only if

(L(a))t.(λ
′
T ◦ f)(z).L(a) = (L′(τ(a)))t.(λ

′
T ◦ f)(z).L′(τ(a))

for all z ∈ N and a ∈ O.

Proof. If λ′T ◦ f comes from a tensor, then it satisfies (λ
′
T ◦ f)(z.a) = (L(a))t.λ

′
(T ◦

f)(z).L(a). Therefore, λ
′
T (f(z.a)) = L′(τ(a)))t.λ

′
T (f(z)).L′(τ(a)). The other implication

follows by a verification of the invariance property.

Remark 3.6 Let T be a tensor on M . From the above Proposition it follows that until the
kth iteration of T by (f, τ) comes from a tensor on M if and only if Lt.(Ct)j .λT.Cj .L =
(L′ ◦ τ)t.(Ct)j .λT.Cj .(L′ ◦ τ) for all 1 ≤ j ≤ k.

Corollary 3.7 The following sentences are equivalent:
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i) For all tensor T on M , λ
′
(T ◦ f) comes from a tensor on M .

ii) L′ ◦ τ = ±L.

Proposition 3.8 Let (f, τ) : λ −→ λ′ be a morphism of s-spaces and let T be a tensor on
M then

(λ
′
T ◦ f)(z) = (C(z))t.λT (z).C(z),

where C is the linking map of (f, τ).

Proof. [(λ
′
T ◦ f)(z)]ij = T (ψ′((f(z))))(e′i(f(z)), e′j(f(z))) =

= T (ψ(z))(
m∑
r=1

(C(z))ri er(z),
m∑
s=1

(C(z))sjes(z)) =
m∑

r,s=1

(C(z))ri [
λT (z)]rs.(C(z))sj

Definition 3.9 Let (f, τ) : λ −→ λ′ be a morphism of s-spaces and T be a tensor on M .
We say that T is invariant by (f, τ) if λ

′
T ◦ f =λ T . Let us denote with I(f,τ) the subspace

of the invariant tensors of (f, τ).

Let λ be a s-space over M . If (f, τ) : λ −→ LM is the morphism given in the Example 3.2,
then all the tensors are invariant. Given a s-space λ = (N,ψ,O,R, {ei}) and T 6= 0, then
there exists a ∈ GL(n) and z ∈ N such that at.T (z).a 6= T (z). Therefore, if we consider
the s-space λ′ = (N,ψ,O,R, {e′i}), where {e′i} = {ei}.a, T is not an invariant tensor by the
morphism (IdN , IdO).

Proposition 3.10 Let (f, τ) : λ −→ λ′ be a morphism and T be a tensor on M . If there
exists k ∈ IN such that the kth iteration by (f, τ) of T is an invariant tensor, then T is an
invariant tensor.

Proof. Let us denoted by λT j and λ′T j the matrix representation of the jth iteration of
T with respect to λ and λ′ respectively. λT k =λ′ T k ◦ f = Ct.λT k.C , since the kth

iteration is an invariant tensor. On the other hand, λT k = (λ
′
T k−1 ◦ f) = Ct λT k−1C =

Ct.(λ
′
T k−2 ◦ f).C = (Ct)2.λT k−2.C2 = (Ct)k−1.λT.Ck−1, hence λT = Ct.λT.C .

Let T be a tensor on M and λ = (N,ψ,O,R, {ei}) be a s-space over M . For each z ∈ N ,
consider the Lie subgroup of GL(n) defined by GλT (z) = {D ∈ GL(n) : Dt.λT (z).D =λ

T (z)}. We call it the group of invariance of T at z. For simplicity of notation we write
GT (z) instead of GλT (z). A tensor T is invariant by (f, τ) if and only if C(z) ∈ GT (z) for
all z ∈ N .

If ψ(z) = ψ(z′) we have that GT (z) ' GT (z′). This is because ϕa : GT (z′) −→ GT (z),
defined by ϕa(D) = L(a).D.L(a−1) = Ad(L(a))(D) for a ∈ O such that z′ = z.a, is a
homomorphism of Lie groups. We called the subset FT = {(z, g) : z ∈ N and g ∈ GT (z)}
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of N ×GL(n) the invariance set of T . If there is a tensor T on M that admits a matrix
representation of the type α.Idn×n with α 6= 0, then FT = N × O(n). Let λ be the s-

space of Example 2.4. If T is the tensor on LM such that λT =
(

0 Idm×m
−Idm×m 0

)
with m = n+n2

2 , then FT = LM × GL(n) × Sm where Sm denotes the symplectic group
of IR2m×2m. In general FT does not has a manifold structure. The invariant tensor by a
morphism (f, τ) : λ −→ λ′ are those that satisfy that (z, C(z)) ∈ FT for any z in N .

Remark 3.11 Let (f, τ) : λ −→ λ′ be a morphism with linking map C. If T ∈ I(f,τ) and T
is non degenerated, then det(C(z)) = ±1 for any z in N .

4 Connections on s-spaces.

Given λ = (N,O,ψ, IR, {ei}) a s-space over M , for z ∈ N let us denote by Vz the vertical
subspace at z induced by the projection ψ (i.e. Vz = kerψ∗z). Note that dimVz = k − s
where s is the dimension of the stabilizer Sz and k = dimO. We adaptate the concept of
connection in fibrations (see [13]) to s-spaces as follows:

Definition 4.1 A connection on a s-space λ over M is (1, 1) tensor φ on N that satisfies:

1) φz : Nz −→ Vz is a linear map.

2) φ2 = φ, φ is a projection to the vertical subspace.

3) φz.a((Ra)∗z(b)) = (Ra)∗z(φ(b)).

Note that 3) has sense because (Ra)∗z(Vz) = Vz.a.

We called to Hz = kerφz the horizontal subspace at z. It is clear that Nz = Hz ⊕ Vz.
Since φza((Ra)∗z(φ(z)(b))) = (Ra)∗z(φ(z)(b)) = (Ra)∗z(0) = 0, (Ra)∗z(Hz) = Hz.a. As in
the case of connections in principal fiber bundles we have that: There is a connection φ
on λ if and only if there exists a differentiable distribution on N (z −→ Hz) such that
Nz = Hz ⊕ Vz and Hz.a = (Ra)∗z(Hz). If we have a distribution with these properties, we
define φ(z)(b) = bv where b = bh + bv.

Definition 4.2 Let λ = (N,ψ,O,R, {ei}) be a s-space over M endowed with a connection
φ. Let v ∈ Mp and z ∈ ψ−1(p). We called horizontal lift of v at z to the unique vector
vhz ∈ Nz such that ψ∗z(vhz ) = v and vhz ∈ Hz.

Given a vector field X on N , let H(X) and V (X) the vector fields that satisfy that
H(X)(z) ∈ Hz, V (X)(z) ∈ Vz and X(z) = H(X)(z) + V (X)(z) for all z ∈ N . We called
H(X) and V (X) the horizontal and the vertical projections of X. Is easy to see that H(X)
and V (X) are smooth vector fields if X is a smooth vector field.
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Proposition 4.3 Let X be a vector field on M . Then there exists a unique vector field Xh

on N such that Xh(z) ∈ Hz and ψ∗z(Xh(z)) = X(ψ(z)) for all z ∈ N .

Proof. Let p0 ∈ M and z0 ∈ N such that ψ(z0) = p0. As ψ is a submersion, there exist
two charts (U, x) and (V, y) centered at p0 and z0 respectively that satisfy ψ(U) ⊆ V and
y ◦ ψ ◦ x−1(a1, . . . , an, an+1, . . . , am) = (a1, . . . , an). If X(p) =

∑n
i=1 ρ

i(p) ∂
∂yi
|p for p ∈ U ,

let the vector field on V defined by X̃U (z) =
∑n

i=1(ρi ◦ ψ)(z) ∂
∂xi
|z, then we have that

ψ∗(X̃) = X ◦ ψ. For this reason, we can take an open covering {Ui}i∈I of N such that
for each Ui we have a field X̃i ∈ χ(Ui) that satisfies the previous property. Let {ζi}i∈I be
a unit partition subordinate to the covering {Ui}i∈I . Consider the vector field X̃ ∈ χ(N)
given by X̃ =

∑
i∈I ζi.X̃i. X̃ satisfies that ψ∗z(X̃(z)) = X(ψ(z)) for all z ∈ N . Finally,

H(X̃) is the vector fields that we looked for. The uniqueness follows from the fact that
ψ∗z |Hz : Hz −→Mψ(z) is an isomorphism.

Remark 4.4 The horizontal distribution z −→ Hz is trivial since {ehi (z) = (ei(z))hz}ni=1 is
a base of Hz for all z ∈ N and {ehi }ni=1 are smooth vector fields.

For any z in N let the function σz : O −→ N given by σz(a) = z.a. If X ∈ o, let
V (X)(z) = (σz)∗e(X) ∈ Vz, where e is the unit element of O. If the group O acts effectively
and X 6= 0 is easy to see that V is not the null vector field. If O acts without fixed point,
then V (X)(z) 6= 0 for all z ∈ N and X 6= 0. Anyway if {X1, . . . , Xk} is a base of o, then
{V (X1)(z), · · · , V (Xk)(z)} spanned Vz. It is not difficult to see that ker(σz)∗e = TeSz. The
1-forms θi on N defined by ψ∗z(b) =

∑n
i=1 θ

i(z)(b)ei(z) are a basis of the null space of
the vertical subspace. Straightforward calculations show that the 1-forms θi satisfy that

L(a).

 θ1(z.a)((Ra)∗z(b))
...

θn(z.a)((Ra)∗z(b))

 =

 θ1(z)(b)
...

θn(z)(b)

 for all z ∈ N and a ∈ O.

Proposition 4.5 Let λ be a s-space over M such that exists a subspace Ṽ of o that satisfies
dim Ṽ = k − s (s = dimSz) and Ṽ ∩ TeSz = {0} for all z ∈ N . If λ admits a connection,
then the tangent bundle of N is trivial.

Proof. Let {X1, . . . , Xk−s} be a base of Ṽ , then the vertical vector fields Vi(z) = (σz)∗e(Xi)
with i = 1, . . . , k−s are a base of Vz for all z ∈ N . Therefore the frame {eh1 , . . . , ehn, V1, . . . , Vk−s}
trivializes the tangent bundle of N .

Remark 4.6 With the same hypothesis of the Proposition above is easy to see that
{θ1(z), . . . , θn(z),W 1(z), . . . ,W k−s(z)}, where Wi are the 1-forms defined by φz(b) =∑k−s

i=1 W
i(z)(b)Vi(z), is a basis of N∗z . Note that it is the dual base of {eh1(z), . . . , ehn(z),

, V1(z), . . . , Vk−s(z)}.
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Remark 4.7 Let λ = (N,ψ,O,R, {ei}) be a s-space over M that is also a principal fiber
bundle. Is well know that every principal fiber bundle admits a smooth distribution that is
transversal to the vertical distribution and is invariant by the action of the group O, see [4],
so there exists a connection on λ. On the other hand, the group O acts on N without fixed
point and the hypothesis of the Proposition 4.5 are satisfied. Therefore, the tangent bundle
of N is trivial.

Remark 4.8 Let G be a metric on N such that the maps Ra are isometries for any a in
O. If O is compact and N is a closed manifold, then N admits a metric with this property
(see [4]). Let Hz be the subspace of Nz orthogonal to Vz. Is easy to see that z → Hz induces
a connection on λ.

Remark 4.9 In the situation of Proposition 4.5, we can lift a metric G on M to a metric
G̃ on N in a natural way as follows:

G̃ = ψ∗(G) +
k−s∑
i=1

W i ⊗W i.

The projection ψ : (N, G̃) −→ (M,G) is a Riemannian submersion. The metric G̃ can be
very useful because using the fundamental equations of a Riemannian submersion [16] we
can relate the curvature tensors of both metrics. If we chose appropriately the s-space over
M , the calculation of the curvature tensor of (M,G) can be simplified. For example, In [6]
(see also [5]), the curvature tensor of the tangent bundle of a Riemannian manifold endowed
with certain class of metrics is computed using this technic.

Remark 4.10 Let λ be a s-space over M and let ∇ be a linear connection on M with
connection function K. Consider Ki : TN −→ TM defined by

Ki
z(b) = K

(
(ei)∗z(b)

)
and let Hz = {b ∈ Nz : Ki

z(b) = 0 for i = 1, . . . , n}. This smooth distribution is invariant
by the group action but it is not necessary complementary to Vz. If Fz : Nz −→ Mψ(z) ×

n times︷ ︸︸ ︷
Mψ(z) × . . .×Mψ(z) is given by Fz(b) = (ψ∗z(b),K1

z (b), . . . ,Kn
z (b)), it is not difficult to see

that the following facts are equivalent:

i) Fz is injective and (Mψ(z) × 0× . . .× 0) ∈ Img Fz.

ii) Nz = Hz ⊕ Vz.

So if λ satisfies i) and ii) we have that the distribution z → Hz induces a connection on
λ. If G is a metric on M let the (0,2) symmetric tensor on N given by

G̃(A,B) = c(z)G(ψ∗z(A), ψ∗z(B)) +
n∑
i=1

li(z)G(Ki(A),Ki(B))
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where c, li are positive differentiable functions. If F is injective, G̃ is a Riemannian metric.
If λ is the s-space LM , c = 1 and li = 1 for i = 1, . . . n, then G̃ is the well know Sasaki-Mok
metric (see [3] and [15]).

5 Natural tensor fields.

5.1 Natural tensor fields on fibrations.

In this section we will study certain class of tensors on a manifolds and fibrations. With a
tensor T on a fibration we want to mean that T is a tensor on the space manifold of the
fibration. If α = (P, π, IF) is a fibration we will consider a particular class of s-spaces over
P in order to take into account the structure of the fibration for the study of the tensors
on it.

Definition 5.1 Let α = (P, π, IF) be a fibration on M and λ = (N,ψ,O,R, {ei}) be a
s-space over P . We say that λ is a trivial s-space over α if N = N ′ × IF.

Example 5.2 The s-space λ = (LM ×GL(n), ψ,GL(n), R, {Hi, V
i
j }) given in the Example

2.4 is a trivial s-space over the linear frame bundle of M .

Definition 5.3 Let α = (P, π, IF) be a fibration and λ = (N×IF, ψ,O,R, {ei}) be a trivial s-
space over α. We say that a tensor T on P is λ-natural with respect to α if λT (z, w) =λT (w)
(i.e. its matrix representation depends only of the parameter w of the fiber IF).

Remark 5.4 Let M be a manifold endowed with a linear connection ∇ and a Riemannian
metric g. If we consider the s-spaces λ = (LM × GL(n), ψ,GL(n), R, {Hi, V

i
j }) (Example

2.4) and λ′ = (O(M) × GL(n), ψ,O(n), R, {Hi, V
i
j }), where O(M) is the manifold of or-

thonormal bases of (M, g), the action of the orthonormal group and the projection are similar
to that ones of λ. The λ − naturality and λ′ − naturality with respect to (LM,π,GL(n))
agree with the concept of natural tensor with respect to the connection ∇ and with respect
to the metric g given in [7].

Remark 5.5 There exist s-spaces such that the concept of λ− natural with respect to the
fibration agree with the known cases of naturality. So, our definition also generalizes the
notion of natural tensor on the tangent and the cotangent bundle of a Riemannian (see [2]
and Example 6.2) and semi-Riemannian manifold (see [1]).

5.2 Natural tensor fields on manifolds.

In view of the definition of λ − natural with respect to a fibration, it seems interesting
to ask what it means to be λ − natural with respect to a manifold? A manifold M can
be viewed as a trivial fibration αM = (M × {a}, pr1, {a}). Therefore, there is a one to

13



one correspondence between the s-spaces over λ and the trivial s-spaces over α. A s-space
λ = (N,ψ,O,R, {ei}) over M induced the λ′ = (N × {a}, ψ,O,R, {ei}) over α. A tensor T
on M induce a tensor T ′ on M × {a}. Then T ′ is λ′ − natural with respect to a α if and
only if λ

′
T ′(z, a) =λ′ T ′(a), hence T ′ is λ′ − natural with respect to a α if and only if λT is

a constant map. This suggests the following definition:

Definition 5.6 Let λ be a s-space over M and T a tensor on M . We say that T is
λ− natural if λT is a constant map.

Example 5.7 Let (M, g) be a Riemannian manifold and let λ = (O(M), π,O(n), ·, {πi})
be the s-space over M induced by the orthonormal frame bundles of M . Since L(a) = a for
all a ∈ O(n), T is λ − natural if and only if λT = k.Idn×n ( T is a scalar multiple of the
metric g).

Example 5.8 Suppose that the map F of the Remark 4.10 is bijective. Let β = (N, idN , {1},
, ( · ), {(ei(z))h, (ej(z))v(i)

z }) be the s-space over the space manifold of λ, where {1} is the
trivial group, ( · ) is the trivial action, (ei(z))h is the horizontal lift of ei(z) at z and
(ej(z))

v(i)
z satisfies that Ki((ej(z))

v(i)
z ) = ej(z). If G is a metric on M and G̃ is the genera–

lizes Sasaki-Mok metric on N then

βG̃(z) =


[λG] 0 · · · 0

0 [λG] 0 0

0 0
. . . 0

0 · · · · · · [λG]

 ,

so G̃ is β natural if and only if G is λ-natural.

Remark 5.9 Let α = (P, π, IF) be a fibration on M and λ a trivial s-space over α. λ
is also a s-space over P . If a tensor T on P is λ − natural then T is λ − natural
with respect to α. The converse implication not necessarily holds. Let λ = (O(M) ×
GL(n), ψ,O(n), R, {Hi, V

i
j }) over LM , there are more λ − natural tensors with respect to

LM than constant maps, see [7].

Remark 5.10 Consider the s-space LM and let T be a LM − natural tensor on M . Let
A ∈ Rn×n such that LMT ≡ A. Since the base change morphism of LM is the identity of
GL(n), A = at.A.a for all a ∈ GL(n), hence T must be the null tensor. Therefore, for a
manifold M the null tensor is the only one that is λ− natural for all the s-spaces over M .

Remark 5.11 If T is λ−natural, we have that N × Im(L) ⊆ FT where FT = N ×G with
G a subgroup of GL(n).

Let λ = (N,O,ψ, IR, {ei}) be a s-space over M . Note that if T is λ − natural and
(f, τ) : λ −→ λ is a morphism of s-spaces then T ∈ I(f,τ). On the other hand, if T ∈ I(f,τ)
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for all (f, τ) automorphism of λ, then λT is constant in each fiber of N . A necessary and
sufficient condition for a tensor T to have a constant matrix representation in each fiber is
that T ∈ I(fa,τa) for all a ∈ O, where (fa, τa) is the morphism defined by fa(z) = Ra(z) and
τa(b) = a−1b.a.

Let us see some facts about the relationship between the natural tensors and the mor-
phisms of s-spaces. The next two proposition follow from Proposition 3.8.

Proposition 5.12 Let λ and λ′ be two s-spaces over M and (f, τ) : λ −→ λ′ be a morphism
with linking map C. If T is a λ′−natural tensor with λ′T = A ∈ IRn×n, then T is λ−natural
if and only if (C(z)−1)t.A.C(z)−1 is a constant map.

Proposition 5.13 Let (f, τ) : λ −→ λ′ be a morphism of s-spaces with linking map C and
T a tensor on M that is λ and λ′ − natural. Let A and B ∈ Rn×n such that λT = A and
λ′T = B, then C(z)t.A.C(z) = B for all z ∈ N .

In particular, if λ = λ′, the image of the linking map of any automorphism has to be
included in the group of invariance of all the λ − natural tensors. For example, if λ =
(LM ×GL(n), ψ,GL(n), R, {Hi, V

i
j }) and (f, τ) is an automorphism of λ with linking map

C, then C(z) = Id(n+n2)×(n+n2) for all z ∈ LM ×GL(n).

Proposition 5.14 Let λ = (N,ψ,O,R, {ei}) and λ′ = (N ′, ψ′, O′, R′, {e′i}) be two s-spaces
over M , (f, τ) : λ −→ λ′ be a morphism of s-space, T a λ′ − natural tensor and let
A ∈ Rn×n such that λ′T = A. Then λ′T ◦ f comes from a tensor on M if and only if
(L(a))t.A.L(a) = A for any a in O.

Proof. Since T is λ′ − natural, (L′(a′))t.A.L′(a′) = A for all a′ ∈ O′, then the Proposition
follows from Proposition 3.5.

Remark 5.15 There are tensors on M that are not λ − natural for any s-space over M .
Let T be a not null tensor on M , then there exists p ∈M such that T (p) : Mp ×Mp −→ IR
is not the null bilinear form. Let f be a differentiable function on M that satisfies f(p) = 1
and f(q) = 0 for q 6= p. Consider the tensor T̃ defined by T̃ (ξ) = f(ξ).T (ξ). If T̃ is
λ−natural, then λT̃ ≡ A and since T̃ (q) = 0, A must be the zero matrix. For z′ ∈ ψ−1(p),
we have that λT̃ (z′) = [T̃ (q)(ei(z′), ej(z′))] = f(p)[T (p)(ei(z′).ej(z′))] 6= 0, hence T is not
λ− natural.

Proposition 5.16 Let T be a symmetric tensor on M with index and constant rank, then
there is a s-space λ over M such that T is λ− natural.

Proof. If rank(T ) = 0 then T is the null tensor and T is λ − natural for all λ. Sup-
pose that rank(T ) = r ≥ 1 and index(T ) = r − s. For every p ∈ M there is a ba-
sis {v1, . . . , vs, vs+1, . . . , vr, vr+1, . . . , vn} of Mp that diagonalizes the matrix of T (p), i.e.
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[T (p)(vi, vj)] =

 Ids×s 0 0
0 −Id(r−s)×(r−s) 0
0 0 0

 = Isr. Let λ = (N, π,O, ·, {πi}) where

N = {(q, v) ∈ LM : [T (q)(vi, vj)] = Isr}, O =

O(s) 0 0
0 O(r − s) 0
0 0 GL(n− r)

; the action,

the projection and the maps πi are similar to those of LM . Then λT = Isr

6 Sub s-spaces.

Let λ = (N,ψ,O,R, {ei}) and λ′ = (N ′, ψ′, O′, R′, {e′i}) be s-spaces over M and N respec-
tively and h : M −→ M ′ be a differentiable function. Let f : N −→ N ′ be a differentiable
function and τ : O −→ O′ a group morphism.

Definition 6.1 We said that (f, τ) is a morphism of s-spaces over h if f(z.a) = f(z).τ(a)
for all z ∈ N and a ∈ O and ψ′ ◦ f = h ◦ ψ.

This definition generalizes the concept of morphism of s-spaces. If λ and λ′ are s-spaces
over M and (f, τ) : λ −→ λ′ is a morphism of s-spaces, then (f, τ) is a morphism over IdM .

Example 6.2 Let (M, g) be a Riemannian manifold and let λ = (O(M)× Rn, ψ,O(n), R,
, {ei}) be the s-space over TM where the projection is defined by ψ(p, u, ξ) = (p,

∑n
i=1 uiξ

i),
O(n) acts on O(M) × IRn by Ra(p, u) = (p, u.a, ξ.a). For 1 ≤ i ≤ n, let ei(p, u, ξ) =
(π∗ψ(p,u,ξ)

×Kψ(p,u,ξ))−1(ui, 0) and en+i(p, u, ξ) = (π∗ψ(p,u,ξ)
×Kψ(p,u,ξ))−1(0, ui), where K is

the connection map induced by the Levi-Civita connection of g. Before we see an example
of subs-space let us make a brief comment. The tensors on TM that are λ naturals with
respect to TM agree with the ones of Calvo-Keilhauer [2]. The Sasaki metric GS and the
Cheeger-Gomoll metric Gcg are λ−naturals with respect to TM . The matrix representation

of the Sasaki metric and the Chegeer-Gromoll metric are λGS(p, u, ξ) =
(
Idn×n 0

0 Idn×n

)
and λGcg(p, u, ξ) =

(
Idn×n 0

0 1
1+|ξ|2 (Idn×n + (ξ)t.ξ)

)
respectively .

Consider the s-space λ′ = (O(M), ψ′, O(n− 1), R′, {e′i}) over the unitary tangent bundle
T1M of M , where ψ′(p, u) = (p, un) and the action of O(n − 1) on O(M) is given by
R′a(p, u) = (p,

∑n−1
i=1 uia

i
1, . . . ,

∑n−1
i=1 uia

i
n−1, un). The maps {e′i} are defined by e′i(p, u) =

(π∗ψ(p,u)
× Kψ(p,u))−1(ui, 0) if 1 ≤ i ≤ n and by e′n+i(p, u) = (π∗ψ(p,u)

× Kψ(p,u))−1(0, ui)
if 1 ≤ i ≤ n − 1. Let f : O(M) −→ O(M) × IRn and τ : O(n − 1) −→ O(n) defined by

f(p, u) = (p, u, v) where v is the nth vector of the canonic base of IRn, and τ(a) =
(
a 0
0 1

)
.

Then (f, τ) : λ −→ λ′ is a morphism of s-spaces over the inclusion map of T1M in TM .

Let M and M ′ be two manifolds of dimension n and n′ respectively. Let λ = (N,ψ,O,R,
, {ei}) and λ′ = (N ′, ψ′, O′, R′, {e′i}) be two s-spaces over M and M ′ and (f, τ) : λ −→ λ′ a
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morphism of s-space over an inmersion h : M −→ M ′. For every z ∈ N , h∗ψ(z)
(Mψ(z)) is a

subspace of dimension n of M ′ψ(f(z)) and it is generated by {h∗ψ(z)
(e1(z)), . . . , h∗ψ(z)

(en(z))}.
As {e′i(f(z))} is a base of M ′ψ′(f(z)), for every z ∈ N there exists a matrix A(z) ∈ IRn′×n′

with rank(A(z)) = n that satisfies

{h∗ψ(z)
(e1(z)), . . . , h∗ψ(z)

(en(z)),
n′−n︷ ︸︸ ︷

0, . . . , 0} = {e′1(f(z)), . . . , e′n′(f(z))}.A(z).

In the previous example, A(p, u) =
(
Id(2n−1)×(2n−1) 0

0 0

)
. If M = M ′ and h is the identity

map then (f, τ) is a morphism of s-spaces and A(z) = C−1(z) is C is the linking map of
(f, τ). In this situation, we have the following definition:

Definition 6.3 λ is a subs-space of λ′ if there exists a morphism of s-spaces (f, τ) over an
injective inmersion h : M −→ M ′ such that f is an inmersion and the map A induced by
(f, τ) is constant. In this case, we said that λ is a subs-space of λ′ with morphism (f, τ)
over h. A s-space λ = (N,ψ,O,R, {ei}) is included in λ′ = (N ′, ψ′, O′, R′, {e′i}) if N ⊆ N ′.

Example 6.4 Let M be a parallelizable manifold , V a vectorial space and V ′ a subspace of
V . Let GL(V ) be the group of linear isomorphisms of V and let GL(V, V ′) be the subgroup
of linear isomorphisms of V with the property that T (V ′) = V ′. Consider the s-space
λ = (M×V, pr1, GL(V ), Rf , {ei}) over M , where the action is defined by Rf (p, z) = (p, f(z))
for (p, z) ∈M ×V and f ∈ GL(V ), and ei = ēi ◦pr1 where {ē1, . . . , ēn} are the vector fields
that trivialized the tangent bundle of M . If λ′ = (M × V ′, pr1, GL(V, V ′), Rf , {ei}), then λ′

is a subs-space of λ.

Proposition 6.5 Let λ = (N,ψ,O,R, {ei}) and λ′ = (N ′, ψ′, O′, R′, {e′i}) be two s-spaces
over M such that λ is a subs-space of λ′ with morphism (f, τ) over the identity map of M .
If a tensor T on M is λ′ − natural then T is λ− natural.

Proof. [λT (z)]ij = T (ψ(z))(ei(z), ej(z)) = T (ψ′(f(z)))(
∑n

l=1 e
′
l(z)A

l
i,
∑n

s=1 e
′
s(z)A

s
j) =

=
∑n

lsA
l
i.A

s
j [
λ′T ]ij , then λT is a constant map.

Remark 6.6 The converse statement does not holds in general. Let (M, g) be a Rieman-
nian manifold and O(M) be the s-space induced by the principal bundle of orthonormal
frames. If iO(M) : O(M) −→ LM and iO(n) : O(n) −→ GL(n) are the respective inclusion
functions, then O(M) is a subs-space of LM with morphism (iO(M), iO(n)) over the identity
map of M . We known that there are O(M)− natural tensors that are not LM − natural.

Let T be a tensor on M and let LMT : LM −→ Rn×n be the matrix map induced
by the s-space LM . Given a s-space λ = (N,ψ,O,R, {ei}) over M we have a morphism
(Γ, L) : λ −→ LM (see Example 3.2). It is clear that λT =LM T ◦Γ, thus if T is λ−natural
then there exists a matrix A ∈ IRn×n such that Img Γ ⊆ (LMT )−1(A).

17



Proposition 6.7 Let T be a tensor on M . There exists λ a s-space over M such that T is
λ− natural if and only if there exist a matrix A ∈ Rn×n and a subs-space of LM included
in (LMT )−1(A).

Proof. Suppose that T is λ− natural ( λ = (N,ψ,O,R, {ei})) and let A ∈ Rn×n such that
λT = A. Let λ′ = (Γ(N), π, L(O), R′, {πi}), where π, R′ and {πi} are induced by LM .
The map π : Γ(N) −→ M is a submersion. Since π(Γ(N)) = ψ(N) = M , π is surjective.
Let p ∈ M and z ∈ ψ−1(p), then π(Γ(z)) = p. Given v ∈ Mp there exists w ∈ Nz such
that ψ∗z(w) = v. Let α be a curve on N that satisfies α(0) = z and α̇(0) = w, then for
β(t) = Γ(α(t)) we have that β(0) = Γ(z) and π∗Γ(z)

(β̇(0)) = D|0(π(β(t))) = ψ∗z(w) = v, so
π∗Γ(z)

: NΓ(z) −→Mp is surjective. On the other hand, it is clear that L(O) acts transitively
on Γ(N), so λ′ is a s-space and it is a subs-space of LM with morphism (iΓ(N), iL(O)) over
the identity map of M .

Conversely, suppose that there exists λ = (N,ψ,O,R{ei}) a s-space over M that is
also a subs-space of LM with morphism (f, τ) over the identity map, and suppose that
f(N) ⊆ (LMT )−1(A) for a matrix A ∈ Rn×n. Since {ei(z)} = {πi(f(z))}.B for B ∈ GL(n),
this implies that [λT (z)] = [T (ψ(z))(ei(z), ej(z))] = Bt.[T (ψ(z))(πi(f(z)), πj(f(z)))].B =
Bt.A.B.

7 Atlas of s-spaces.

Definition 7.1 Let M be a manifold and let A : {λi = (Ni, ψi, Oi, Ri, {el})}i∈I be a col-
lection of s-spaces over M . The collection A is called an Atlas of s-spaces if for each pair
(i, j) ∈ I × I there is a morphism of s-spaces (fij , τij) : λi −→ λj such that fij : Ni −→ Nj

is a diffeomorphism.

We said that the s-spaces λ and β are compatible if there exists a morphism (fλβ, τλ,β) :
λ −→ β and (fβλ, τβ,λ) : β −→ λ such that fλβ and fβλ are diffeomorphisms. Hence, an
atlas is a set of compatible s-spaces over M . We say that A is a maximal atlas if A ⊆ B
implies that A = B. In other words, if λ is a s-space compatible with the s-spaces of A then
λ ∈ A. If λ is a s-space over M let us notate with A =< λ > the maximal atlas generated
by λ. Let A be a maximal atlas, it follows from the definition that A =< λ > for every
λ ∈ A. Note that there are different maximal atlases over a manifold. Consider a metric
on M , then < LM > and < O(M) > are maximal s-spaces but they are different because
LM and O(M) are not compatible.

Let λ be a s-space over M , then A = {λ} is an atlas. Therefore the concept of atlas is
a generalization of the notion of s-space.

Example 7.2 Let λ = (N,ψ,O,R, {ei}) be a s-space over M and let A : N −→ GL(n) be
a differentiable function. Consider λA = (N,ψ,O,R, {eAl }) where eAl (z) =

∑n
i=1 ei(z)A

i
l(z).

The collection A = {λA}A∈F(M) is an atlas of s-spaces.
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Example 7.3 Let M be a parallelizable manifold and {Hi}ni=1 the vector fields that trivialize
the tangent bundle of M . Let (N, g) be a Riemannian manifold such that its isometry group
I(N,g) acts transitively on N . Let λ(N,g) = (M × N, pr1, I(N,g), Rf , {Hi ◦ pr1}) where the
action of I(N,g) on M ×N is given by Rf (z, p) = (z, f(p)). If (N ′, g′) is isometric to (N, g)
then λ(N,g) is compatible with λ(N ′,g′). If N ′ is not diffeomorphic to N , then < λ(N,g) > and
< λ(N ′,g′) > are different atlases.

Definition 7.4 Let A and B be two atlases of s-spaces over M and F a collection of
morphisms of s-spaces from a s-space of A to a s-space of B. F will be called a morphism
between the atlas A and B if for every λ ∈ A and β ∈ B there exists (f, τ) ∈ F such that
(f, τ) : λ −→ β.

Remark 7.5 Let A and B be two atlas over M , λ0 ∈ A, β0 ∈ B and (f0, τ0) : λ0 −→ β0.
Consider F = {fβ0β ◦ f0 ◦ fλλ0 , τβ0β ◦ τ0 ◦ τλλ0,}λ∈A, β∈B where (fβ0β, τβ0β) : β0 −→ β and
(fλλ0 , τλλ0) : λ −→ λ0 are the morphisms that show the compatibility between β and β0 and
between λ and λ0 respectively. Then F is morphism of atlases between A and B.

Remark 7.6 If λ is a s-space over M we have a canonical morphism (Γλ, Lλ) : λ −→ LM
(see Example 3.2), hence for every s-space λ we have a morphism between the atlases < λ >
and < LM >. But this property do not characterize < LM >. In other words, if a s-space
β satisfies that for every λ there exists a morphism (fλ, τλ) : λ −→ β, β is not necessarily
compatible with LM .

λ
(Γλ,Lλ)

}}||
||

||
|| (fλ,τλ)

��=
==

==
==

LM
(fLM ,τLM )

33 β

(Γβ ,Lβ)
rr

Consider a parallelizable Riemannian manifold (M, g). Let {Hi}ni=1 be orthonormal
fields that trivialized the tangent bundle of M . If λ = (N,ψ,O,R, {ei}) is a s-space over M ,
let (fλ, τλ) : λ −→ O(M) be a morphism defined by f(z) = (ψ(z), H1(ψ(z)), . . . ,Hn(ψ(z)))
and τ(a) = Idn×n. Therefore, for every maximal atlas A there is a morphism between it
and O(M), but O(M) is not compatible with LM .

A
FA,LM

zzvvvvvvvvvv
FA,O(M)

%%JJJJJJJJJJ

< LM >
FLM,O(M)

11 < O(M) >
FO(M),LM

qq

There are more atlases with this property. If (M, g) is an oriented manifold, the maxi-
mal atlas generated by the s-space induced by the principal fiber bundles of orthonormal
oriented bases SL(M) have this property. The atlas < (M, IdM , {1}, R1, {Hi}) >, where
R1 is the trivial action, is another example.
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Definition 7.7 Let A be an atlas of s-spaces over M . A tensor T on M will be called
A− natural if T is λ− natural for all λ ∈ A.

Note that the concept of A−naturality generalized the notion of λ−naturality. If we
consider the atlas A = {λ}, then T is A− natural if and only if T is λ− natural.

Example 7.8 Let λ be a s-space over M and consider the subatlas of the atlas given in the
Example 7.2 defined by A = {λA}A∈GL(n). T is A−natural if and only if T is λ−natural.
Let T be a λ− natural tensor on M and A′ = {λA}A∈F(N,GT ), then T is A′ − natural and
it has the same matrix representation in all the s-spaces of the atlas.

Remark 7.9 If A is a maximal atlas then the unique A−natural tensor is the null tensor.
Let λ = (N,ψ,O,R, {ei}) ∈ A and f : N −→ IR be a differentiable function such that
f(z) 6= 0 for all z ∈ N and f2 is not constant. If λ′ = (N,ψ,O,R, {f.ei}) we have that
λ′ ∈ A, but the null tensor is the only one that is λ−natural and λ′−natural at the same
time.

Definition 7.10 Let A be an atlas of s-spaces over M and T a tensor on M . T is called
A− weak natural if there exists λ ∈ A such that T is λ− natural.

If A = {λ} or A is the atlas of Example 7.8, the concept of A − natural and A −
weak natural coincide.

For study the naturality of tensors on a fibration α it will be useful consider the atlases
A such that all its s-spaces are trivial over α. An atlas with this property will be called a
trivial atlas over α. The following definition is a generalization of the concept of naturality
with respect to a fibration:

Definition 7.11 Let A be a trivial atlas over a fibration α = (P, π, IF) and T a tensor on
P , then T is A − natural with respect to α if T is λ − natural with respect to α for all
λ ∈ A.

Example 7.12 Let α = (P, π,G, · ) be a principal fiber bundle on (M, g) endowed with
a connection ω. For every W = {W1, . . . ,Wk} basis of g let λW = (N,ψ,O,R, {eWi })
where N = {(p, u, b) : p ∈ P, u is an orhonormal base of Mπ(p), b ∈ G}, ψ(q, u, b) = q.b,
O = O(n)×G and the action R is defined by R(h,a)(q, u, b) = (qa, uh, a−1b). For 1 ≤ i ≤ n,
eWi (p, u, g) is the horizontal lift of ui with respect to ω at p.g and for 1 ≤ j ≤ k, en+j(p, u, g)
is the only one vertical vector on Pp.g such that ω(p)(en+j(p, u, g)) = Wj. A = {λW }W∈Lg

is a trivial atlas over α. An easy computation shows that the set of A − natural tensors
with respect to α is the set of tensors T whose matrix representation with respect to some

λW is λW T (q, u, a) =
(
f(a).Idn×n 0

0 B(a)

)
, where f : G −→ IR and B : G −→ IRk×k are

differentiable functions.
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As above, if A is a maximal trivial atlas over α the only A−natural tensor with respect
to α is the null tensor. So we have a weak definition of naturality for this case too. We say
that T is A − weak natural with respect to α if T is λ-natural with respect to α for some
λ ∈ A.

8 Examples.

We conclude showing some examples of s-spaces:

8.1 Lie groups.

Let G be a Lie group of dimension k. We denote with e the unit element of G. If v =
{v1, . . . , vn} is a base of g, let Hv

i be the unique left invariant vector field on G such that
Hv
i (e) = vi.

Example 8.1 Given v a basis of g, let λv = (N,ψ,G,R, {evi }) be the s-space over G defined
by N = G×G, ψ(g, h) = g.h, Ra(g, h) = (g.a, a−1.h) and evi (g, h) = Hv

i (g.h) for 1 ≤ i ≤ k.
Since evi ◦Ra(g, h) = evi (g, h), the base change morphism Lv is equal to the identity matrix
of Rk×k. Therefore, if T is a tensor on G it satisfies that

λvT ◦Ra =λv T .

For this reason, all constant matricial maps come from a tensor and the λv−natural tensors
are in a one to one relation with the matrices of IRk×k.

Suppose that λvT depends only of one parameter, for example λvT (g, h) =λv T (h).
Since [λ

v
T (g′, h′)]ij = [λ

v
T (g′hh′−1, h′)]ij = T (g′h)(Hv

i (g′h), Hv
j (g′h)) = [λ

v
T (g′, h)]ij =

[λ
v
T (g, h)]ij, T is λv − natural. Therefore, T is λv − natural if and only if T is λvT

depends of one parameter. The left invariant metrics are tensors of this type.

Let v′ be another basis of g and consider λv
′
. If avv′ ∈ GL(k) is the matrix that satisfies

v′ = avv′v, then we have that ev
′
i (g, h) = evi (g, h).avv′ and λv

′
T = (avv′)t.λ

v
T.avv′ for a

tensor T on M . Thus the set of λv − natural tensors is independent of the choice of the
basis v. We can observe that (IdG×G, IdG) is a morphism of s-spaces with linking map
equals avv′, so T ∈ I(IdG×G,IdG) if and only if avv′ ∈ GT (g, h).

Example 8.2 Let λ = {N,ψ,O,R, {ei}} be the s-space over G defined by
N = G × Lg = {(g, v) : g ∈ G and v is a basis of g}, ψ(g, v1, . . . , vn) = g, O = GL(n),
Rξ(g, v) = (g, v.a) and ei(g, v) = Hv

i (g). Since {ei} ◦Rξ = {ei}.ξ, λT ◦Rξ = ξt.λT.ξ for all
ξ ∈ GL(k). Therefore, the null vector is only one that is λ− natural.

The left invariant metrics on G are not λ − natural but for a metric T on G we have
that T is a left invariant metric if and only if λT (g, v) =λ T (v). If T is a left invariant
metric, then

[λT (g, v)]ij = T (g)((Lg)∗e(vi), (Lg)∗e(vj)) =
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T (e)((Lg−1)∗g((Lg)∗e(vi)), (Lg−1)∗g((Lg)∗e(vi))) = T (e)(vi, vj) = [λT (e, v)]ij .

Suppose that the matrix representation induced by T depends only of the parameter of g.
Let g, h ∈ G and w, v ∈ TgG, we have to see that T (g)(v, w) = T (hg)((Lh)∗g(v), (Lh)∗g(w)).
Let {u1, . . . , un} be a basis of g. If v =

∑n
i=1 vi(Lg)∗e(ui) and w =

∑n
i=1wi(Lg)∗e(ui), then

(Lh)∗g(v) =
∑n

i=1 vi(Lhg)∗e(ui) and (Lh)∗g(w) =
∑n

i=1wi(Lhg)∗e(ui). Hence,

T (hg)((Lh)∗g(v), (Lh)∗g(w)) = (v1, . . . , vn).λT (hg, u).

w1
...
wn

 = T (g)(v, w).

Let T be a tensor such that λT (g, v) depends only of v. We know that λT (g, v.ξ) =
(ξ)t.λT (e, v).ξ for all ξ ∈ GL(k). Fixed v0 ∈ Lg and let F : Lg −→ GL(k) defined by
v = v0.F (v). Then λT (g, v) = (F (v))t.λT (e, v0).F (v) for all (g, v) ∈ G × Lg. There-
fore, λT depends only of the parameter of Lg if and only if there exists A ∈ Rk×k and
a differentiable function F : Lg −→ GL(k), that satisfies F (w.ξ) = F (w).ξ, such that
λT (g, w) = (F (w))t.A.F (w).

Example 8.3 Fixed v ∈ Lg and consider λv = (G×O(k), ψ,O(k), R, {evi }) where ψ(g, ξ) =
g, Ra(g, ξ) = (g, ξa), evi (g, ξ) = Hv.ξ

i (g) . λ is a s-space over G with base change morphism
L = IdO(k). If T is a tensor of M , then λT ◦Ra = at.λT.a. Therefore, T is λ− natural if
and only if λT (g, ξ) = f(g).Idk×k with f : G −→ IR a differentiable function. Is easy to see
that λT ((g, ξ).a) = (ξa)t.λT (g, Id).(ξa), hence the matrix representation of T depends only
of the parameter of O(k) if and only if λT (g, ξ) = ξt.A.ξ with A ∈ IRn×n.

8.2 Bundle metrics.

Let α = (P, π,G, · ) be a principal fiber bundle over a Riemannian manifold (M, g) endowed
with a connection ω. Let us denote with Mad(g) the set of metrics on g that are invariant
by the adjoint map ad. Consider the metric on P defined by

h(p)(X,Y ) = g(π(p))(π∗p(X), π∗p(Y )) + (l ◦ π)(p)(ω(X), ω(Y )) (1)

where l : M −→ Mad(g). If G is compact, Mad(g) 6= ∅, and if g is also a simple algebra,
then essentially there is only one conformal class of positive defined ad-invariant metric [14].
If l is a constant function, h is called a bundle metric. It is easy to see that π : (P, h) −→
(M, g) is a Riemannian submersion.

Let l0 be an ad-invariant metric on g. In the following we are going to consider the
s-space λ = (N,ψ,O,R, {ei}) over P given by N = {(q, u, v, g) : q ∈ P, u is an orthonormal
base of Mπ(q), v is an orthonormal base of g with respect to l0 and g ∈ G}, ψ(q, u, v, g) =
q.g, O = O(n)×O(k)×G and the action is defined by R(a,b,h)(q, u, v, g) = (qh, ua, vb, h−1g).
For 1 ≤ i ≤ n, ei(q, u, v, g) is the horizontal lift with respect to ω of ui at q.g and, for 1 ≤ j ≤
k, en+j(q, u, v, g) is the unique vertical vector on Pp.g such that ω(q.g)(en+j(q, u, v, g)) = vj .
λ is a trivial s-space over α.
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Let G be a compact Lie group with g a simple algebra and h a metric on P of the type
of (1). We have the following proposition:

Proposition 8.4 h is λ− natural with respect to α if and only if h is a bundle metric.

Proof. λh(q, u, v, g) is the matrix of h(q.g) with respect to de base {ei(q, u, v, g) , en+i(q, u, v, g)}.
For 1 ≤ i, j ≤ n, we have that:

h(q.g)(ei(q, u, v, g), ej(q, u, v, g)) = g(ui, uj) + 0 = δij .

For 1 ≤ i ≤ n and 1 ≤ j ≤ k:

h(qg)(ei(q, u, v, g), en+j(q, u, v, g)) = 0 = h(qg)(en+j(q, u, v, g), ei(q, u, v, g))

and for 1 ≤ i, j ≤ k:

h(q.g)(en+i(q, u, v, g), en+j(q, u, v, g)) = l ◦ π(qg)(vi, vj) = f(π(q)).δij ,

because g has essentially one ad-invariant metric. Since

λh(q, u, v, g) =
(
Idn×n 0

0 f(π(q)).Idk×k

)
,

h is λ− natural with respect to α if and only if f is a constant map, that is to say that h
is a bundle metric.

Remark 8.5 If g has different ad-invariant metrics and h is a metric of the type of (1),
then λh : N −→ IR(n+k)×(n+k) only depends of the parameter of G if l = δ.l0 with δ a
constant. In general, the metrics of type (1) that are λ− natural with respect to α are the
bundle metrics induced by the ad-invariant metric l0.

Remark 8.6 The s-space λ depends of l0 and ω. Let ω′ be another connection on α and con-
sider the s-space λ′ induced by it. The difference between λω and λω

′
are the maps ei : N −→

TP and e′i : N −→ TP . Let A(p, u, v, g) =
(
a1(p, u, v, g) a2(p, u, v, g)
a4(p, u, v, g) a3(p, u, v, g)

)
∈ GL(n + k)

be the matricial map that satisfies {e′i, e′n+j} = {ei, en+j}.A where a1(p, u, v, g) ∈ IRn×n,
a2(p, u, v, g) ∈ IRn×k, a3(p, u, v, g) ∈ IRk×k and a4(p, u, v, g) ∈ IRk×n. Since en+j(p, u, v, g) =
e′n+j(p, u, v, g), we have that a2 ≡ 0 and a3 ≡ Idk×k. If T is a tensor, then

λω
′
T (p, u, v, g) =

(
at1(p, u, v, g) at4(p, u, v, g)

0 Idk×k

)
.λ
ω
T (p, u, v, g).

(
a1(p, u, v, g) 0
a4(p, u, v, g) Idk×k

)
.

Suppose as in the proposition above that there is essentially one ad− invariant metric.
Then if h is a metric of type (1) we have that

λω
′
h(p, u, v, g) =(

at1(p, u, v, g)a1(p, u, v, g) + f(π(p))at4(p, u, v, g).a4(p, u, v, g) f(π(p)).at4(p, u, v, g)
f(π(p))a4(p, u, v, g) f(π(p)).Idk×k

)
.
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Therefore, if the connections satisfy that a1 ∈ O(n) and a4 is a constant map, then h
is λ − natural with respect to α if and only if h is λ′ − natural with respect to α. In this
situation h is a bundle metric.
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