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1 Introduction

Let (M, g) be a Riemannian manifold of dimension n ≥ 2. Let π : TM −→ M and
P : O(M) −→ M be the tangent and the orthonormal bundle over M respectively. In this
paper we deal with certain class of Riemannian metrics on TM . A metric G belongs to this
class if the canonical proyection π : (TM,G) −→ (M, g) is a Riemannian submersion, the
horizontal distribution induced by the Levi-Civita connection of (M, g) is orthogonal to the
vertical distribution and G is the image by a natural operator of order two of the metric
g. The Sasaki metric and the Cheeger-Gromoll metric are well known examples of these
class of metrics, and there were extensively studied by Kowalski [7], Aso [2], Sekizawa [11],
Musso and Tricerri [9], Gudmundsson and Kappos [4] among others. The notion of natural
tensor on the tangent bundle of a Riemannian manifold as a tensor that is the image by a
natural operator of order two of the base manifold metric, was introduced and characterized
by Kowalski and Sekizawa in [8]. In [3], Calvo and the second author showed that for a
given Riemannian manifold (M, g), any (0, 2) tensor field on TM admits a global matrix
representation. Using this one to one relationship, they defined and characterized, without
making use of the theory of differential invariants, what they also called natural tensor. In
the symmetric case this concept coincide with the one defined by Kowalski and Sekizawa.
In [5], the first author gives a new approach of the concept of naturality, introducing the
notion of s-space and λ-naturality. This approach avoids jets and natural operators theory
and generalized the one given in [3] and [8].
∗G. Henry was supported by a doctoral fellowship of CONICET.
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In section 2, we introduce natural metrics on TM by means of [3]. For any q ∈ M , let
Mq be the tangent space of M at q. Let ψ : N := O(M) × IRn −→ TM be the projection
defined by

ψ(q, u, ξ) =
n∑
i=1

ξiui (1)

where u = (u1, . . . , un) is an orthonormal basis for Mq and ξ = (ξ1, . . . , ξn) ∈ IRn. It is well
known (see [9]), that for a fixed Riemannian metric G on TM a suitable Riemannian metric
G∗ on N can be defined such that ψ : (N,G∗) −→ (TM,G) is a Riemannian submersion.
Based on this fact and the O’Neill formula, in Section 3, we compute the curvature tensor
of (TM,G), when G is a natural metric. As an application, we get in Section 4 some
relationships between the geometry of TM and the geometry of M . In [1] Abbassi and
Sarih studied some relationships between the geometry of TM and the geometry of M ,
when TM is endowed with a g − natural metric. For example (Theorem 0.1) states that
if (TM,G) is flat, then (M, g) is flat. Since in this paper we deal with a subclass of
g − natural metrics we get Corollary 4.2 as a converse of this theorem. Throughout, all
geometric objects are assumed to be differentiable, i.e. C∞.

2 Preliminaries.

Let ∇ be the Levi-Civita connection of g and K : TTM −→ TM be the connection map
induced by ∇. For any q ∈M and v ∈Mq, let π∗v : (TM)v −→Mq be the differential map
of π at v, and Kv : (TM)v −→Mq be the restriction of K to (TM)v.

Since the linear map π∗v × Kv : (TM)v −→ Mq × Mq defined by (π∗v × Kv)(b) =
(π∗v(b),Kv(b)) is an isomorphism that maps the horizontal subspace (TM)hv = kerKv onto
Mq × {0q} and the vertical subspace (TM)vv = kerπ∗v onto {0q} ×Mq, where 0q denotes
the zero vector, we define differentiable mappings ei, en+i : N = O(M)× IRn −→ TTM for
i = 1, . . . , n and v = ψ(q, u, ξ) by

ei(q, u, ξ) = (π∗v ×Kv)−1(ui, 0q),
(2)

en+i(q, u, ξ) = (π∗v ×Kv)−1(0q, ui).

The action of the orthonormal group O(n) of IRn×n on N is given by the family of maps
Ra : N −→ N , a ∈ O(n), Ra(q, u, ξ) = (q, u.a, ξ.a) where u.a = (

∑n
i=1 a

i
1ui, . . . ,

∑n
i=1 a

i
nui)

and ξ.a = (
∑n

i=1 a
i
1ξ
i, . . . ,

∑n
i=1 a

i
nξ
i). Clearly, ψ ◦Ra = ψ. It follows from (2) that

ej(Ra(p, u, ξ)) =
n∑
i=1

ei(p, u, ξ)aij for j = 1, . . . , n

and

en+j(Ra(p, u, ξ)) =
n∑
i=1

en+i(p, u, ξ)aij for j = 1, . . . , n.
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For any (0, 2) tensor field T on TM we define the differentiable function gT : N −→
IR2n×2n as follows: If (q, u, ξ) ∈ N and v = ψ(q, u, ξ), let gT (q, u, ξ) be the matrix of the
bilinear form Tv : (TM)v × (TM)v −→ IR induced by T on (TM)v with respect to the
basis {e1(q, u, ξ), . . . , e2n(q, u, ξ)}. One sees easily that gT satisfies the following invariance
property:

gT ◦Ra = (L(a))t.gT.L(a) (3)

where L : O(n) −→ IR2n×2n is the map defined by

L(a) =
(
a 0
0 a

)
.

Moreover, there is a one to one correspondence between the (0, 2) tensor fields on TM
and differentiable maps gT satisfying (3).

A tensor field T on TM will be call natural with respect to g if gT depends only on
the parameter ξ, (see [3]). In the sense of [5], the collection λ = (N,ψ,O(n), R̃, {ei}) is a
s-space over TM , with base change morphism L; and the natural tensors with respect to g
are the λ-natural tensors with respect to TM .

Writing gT in the block form gT =
(
A1 A2

A4 A3

)
, where Ai : N −→ IRn×n; it follows from

Lemma 3.1 of [3], that T is natural if there exist differentiable functions αi, βi : [0,+∞) −→
IR (i = 1, 2, 3, 4), such that

Ai(p, u, ξ) = αi(|ξ|2)Idn×n + βi(|ξ|2)ξt.ξ

where |ξ| denotes the norm of ξ induced by the canonical inner product of IRn. In that case
T is said to be a g − natural metric if in addition T is a Riemannian metric.

It is easy to check that a (0,2)- tensor field T on TM is a g−natural metric if and only if
T is natural, A2 = A4, α3(t) > 0, α1(t).α3(t)−α2

2(t) > 0, φ3(t) > 0 and φ1(t)φ3(t)−φ2
2(t) > 0

for all t ≥ 0; where φi(t) = αi(t) + tβi(t) for i = 1, 2, 3.

In this paper we will call G a natural metric on TM if:

1. G is a Riemannian metric such that π : (TM,G) −→ (M, g) is a Riemannian submer-
sion.

2. For v ∈ TM , the subspaces (TM)vv and (TM)hv are orthogonals.

3. G is natural with respect to g.

It follows that G is a natural metric on TM if

gG(p, u, ξ) =
(
Idn×n 0

0 α(|ξ|2).Idn×n + β(|ξ|2)(ξ)t.ξ

)
(4)

where α, β : [0,+∞) −→ IR are differentiable functions satisfying α(t) > 0, and α(t) +
tβ(t) > 0 for all t ≥ 0.
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Remark 2.1 The Sasaki metric Gs corresponds to the case α = 1, β = 0; and the Cheeger-
Gromoll metric Gch to the case α(t) = β(t) = 1

1+t .

3 Curvature equations.

In this section we compute the curvature tensor of TM endowed with a natural metric. Since
this computation involves well known objects defined on N , we shall begin to describe them
briefly using the connection map.

3.1 Canonical constructions on N .

Let θi, ωij be the canonical 1-forms on O(M), which in terms of the connection map are
defined as follows:

θi(q, u)(b) = gq

(
P∗(q,u)

(b), ui
)

(5)

and
ωij(q, u)(b) = gq

(
K((πj)∗(q,u)

(b)), ui
)

(6)

where πj : O(M) −→ TM is the jth projection, i.e. πj(q, u) = uj and 1 ≤ i, j ≤ n.

From now on, let θi, ωij , dξ
i be the pull backs of the canonical 1-forms on O(M) and the

usual 1-forms on IRn by the projections P1 : N −→ O(M) and P2 : N −→ IRn respectively.

For any z ∈ N let us denote by Vz = kerψ∗z and Hz := {b ∈ Nz : ωij(z)(b) = 0, 1 ≤ i <
j ≤ n} the vertical and the horizontal subspace of Nz respectively. By letting (see [9])

θn+i = dξi +
n∑
j=1

ξj .ωij (7)

we get that for any z ∈ N , {θ1(z), . . . , θ2n(z), {ωij(z)}} is a basis for N∗z and Vz := {b ∈
Nz : θl(z)(b) = 0 for 1 ≤ l ≤ 2n}.

Let H1, . . . ,H2n, {V l
m}1≤l<m≤n be the dual frame of {θ1, . . . , θ2n, {ωij}}. These vector

fields were constructed as follow: If z = (q, u, ξ), let ci be the geodesic that satisfies ci(0) = q
and ċi(0) = ui. Let Ei1, . . . , E

i
n be the parallel vector fields along ci such that Eil (0) = ul.

If we define γi(t) = (ci(t), Ei1(t), . . . , Ein(t), ξ), then

Hi(z) = γ̇i(z) (8)

and
Hn+i(z) = (i(q,u))∗ξ(

∂

∂ξi
|ξ) (9)

for 1 ≤ i ≤ n, where i(q,u) : IRn −→ N is the inclusion map given by i(q,u)(ξ) = (q, u, ξ).
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Let σz : O(n) −→ N be the map defined by σz(a) = Ra(z) = z.a. Since Vz = ker(ψ∗z) =
(σz)∗Id(o(n)), where o is the space of skew symmetric matrices of IRn×n, let

V l
m(z) = (σz)∗id(A

l
m) (10)

where [Alm]lm = 1, [Alm]ml = −1 and [Alm]ij = 0 otherwise. Hence,

ψ∗z(V
l
m(z)) = 0. (11)

An easy check shows that
ψ∗z(Hi(z)) = ei(z) (12)

and
ψ∗z(Hn+i(z)) = en+i(z). (13)

Let ω =
∑

1≤i<j≤n ω
i
j ⊗ ωij , if G is a Riemannian metric on TM then

G∗ = ψ∗(G) + ω (14)

is also a Riemannian metric on N . It follows easily that Vz ⊥G∗ Hz and ψ∗z : Hz −→
(TM)ψ(z) is an isometry, therefore ψ : (N,G∗) −→ (TM,G) is a Riemannian submersion.
We shall use this fact to compute the curvature tensor of (TM,G) when G is a natural
metric.

Remark 3.1 Let X be a vector field on TM , the horizontal lift of X is a vector field Xh

on N such that Xh(z) ∈ Hz and ψ∗z(Xh(z)) = X(ψ(z)). If X(ψ(z)) =
∑2n

i=1 x
i(z)ei(z),

from (11), (12) and (13) it follows that Xh(z) =
∑2n

i=1 x
i(z)Hi(z).

Proposition 3.2 For 1 ≤ i, j, l,m ≤ n let Rijlm : N −→ IR be the maps defined by
Rijlm(q, u, ξ) = g(R(ui, uj)ul, um), where R is the curvature tensor of (M, g). The Lie
bracket on vertical and horizontal vector fields on N satisfies:

a) [Hi, Hj ] =
∑n

l,m=1Rijlmξ
mHn+l + 1

2

∑n
l,m=1RijlmV

l
m.

b) [Hi, Hn+j ] = 0.

c) [Hi, V
l
m] = δilHm − δimHl.

d) [Hn+i, Hn+j ] = 0.

e) [Hn+i, V
l
m] = δilHn+m − δimHn+l.

f) [V i
j , V

l
m] = δilVmj + δjlVim + δimVjl + δjmVli.

g) If f : N −→ IR is a function that depends only on the parameter ξ, then Hi(f) = 0
and V i

j (f) = ξiHn+j(f)− ξjHn+i(f).

h) If X and Y are tangent vector fields on TM and v = ψ(q, u, ξ)
then [Xh, Y h]v|(q,u,ξ) =

∑
1≤l<m≤n gq(R(π∗(X(v)), π∗(Y (v)))ul, um)V l

m(q, u, ξ).

The proof is straightforward and follows by taking local coordinates in M and the induced
one in TM and evaluating the forms θi, θn+i, ωij on the fields [Hr, Hs], [Hr, V

l
m] and [V l

m, V
l′
m′ ]

for 1 ≤ r, s ≤ 2n, 1 ≤ l < m ≤ n and 1 ≤ l′ < m′ ≤ n.
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3.2 The main result.

From now on, let R̄ and R∗ be the curvature tensors of (TM,G) and (N,G∗) respectively.
For simplicity we denote by < , > the metrics G and G∗. Since ψ : (N,G∗) −→ (TM,G)
is a Riemannian submersion, by the O’Neill formula (see [10]) we have that

< R̄(X,Y )Z,W > ◦ ψ =< R∗(Xh, Y h)Zh,W h > +1
4 < [Y h, Zh]v, [Xh,W h]v >

(15)
−1

4 < [Xh, Zh]v, [Y h,W h]v > −1
2 < [Zh,W h]v, [Xh, Y h]v > .

If Y h(z) =
∑2n

i=1 y
j(z)Hi(z), Zh(z) =

∑2n
i=1 z

k(z)Hi(z) and W h(z) =
∑2n

i=1w
l(z)Hi(z),

then the first term of the right side of equality (15) is

< R∗(Xh, Y h)Zh,W h > =
2n∑

ijkl=1

xiyjzkwl < R∗(Hi, Hj)Hk, Hl > .

On the other hand, if v = ψ(q, u, ξ), it follows from Proposition 3.2 (part h) that

< [Xh, Y h]v, [Zh,W h]v > |(q,u,ξ) =

=
1
2

n∑
r,s=1

< R(π∗(X(v)), π∗(Y (v)))ur, us > . < R(π∗(Z(v)), π∗(W (v)))ur, us > . (16)

Remark 3.3 In order to compute < R̄(X(v), Y (v))Z(v),W (v) > it is sufficient to evaluate
the right side of (15) on points of N of the form z = (q, u, t, 0, . . . , 0) such that v = ψ(z),
where t = |v|, and where |v| is the norm induced by the metric g.

Let f : [0,+∞) −→ IR be a differentiable map, from now on, let us denote by ḟ(t) the
derivate of f at t.

Theorem 3.4 Let G be a natural metric on TM . Let α and β be the functions that char-
acterizes G. If 1 ≤ i, j, k, l ≤ n and z = (q, u, t, 0, . . . , 0) we have that

a) < R∗(Hi(z), Hj(z))Hk(z), Hl(z)) >=

t2α(t2).
n∑
r=1

{1
2
Rijr1(z)Rklr1(z) +

1
4
Rilr1(z)Rkjr1(z) +

1
4
Rjlr1(z)Rikr1(z)

}

+
∑

1≤r<s≤n

{1
2
Rijr1(z)Rklrs(z) +

1
4
Rilr1(z)Rkjrs(z) +

1
4
Rjlr1(z)Rikrs(z)

}
+Rijkl(z).

b) Let εijkl = δilδjk − δjlδik, then
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b.1) If no index is equal to one, then

< R∗(Hn+i(z), Hn+j(z))Hn+k(z), Hn+l(z) >= εijklF (t2)

where F : [0,+∞) −→ IR is defined by

F (t) =
α(t)β(t)− t(α̇(t))2 − 2α(t)α̇(t)

α(t) + tβ(t)
. (17)

b.2) If some index equals one, for example l = 1, then

< R∗(Hn+i(z), Hn+j(z))Hn+k(z), Hn+1(z) >= εijk1H(t2)

where H : [0,+∞) −→ IR is defined by

H(t) = φ(t)
∂

∂t
ln(α∆)|t − 2φ̇(t) (18)

and φ(t) = α(t) + tα̇(t), ∆(t) = α(t) + tβ(t).

c) < R∗(Hi(z), Hn+j(z))Hn+k(z), Hn+l(z) >= 0.

d) < R∗(Hn+i(z), Hn+j(z))Hk(z), Hl(z) >=

=
1
2

(2α(t2) + (δi1 + δj1)β(t2)t2)Rijkl(z) +
1
2
δi1(β(t2)− 2α̇(t2))t2Rklj1(z)

+
1
2
δj1(2α̇(t2)−β(t2))t2Rkli1(z) +

(α(t2))2t2

4

n∑
r=1

{Rkrj1(z)Rrli1(z)−Rkri1(z)Rrlj1(z)}.

e) < R∗(Hi(z), Hn+j(z))Hk(z), Hn+l(z) >=

1
2
α(t2)Rkilj(z)+

(α(t2))2t2

4

n∑
r=1

Rkrj1(z)Rril1(z)+
t2

2
(δj1+δl1)α̇(t2)(Rkil1(z)−Rkij1(z)).

f) < R∗(Hi(z), Hj(z))Hn+k(z), Hl(z)) >=

α(t2)t
2
{< ∇DR(Eij(s), E

l
j(s))E

k
j (s)|s=0, u1 > − < ∇DR(Eji (s), E

l
i(s))E

k
i (s)|s=0, u1 >}.

The proof follows from the Koszul formula and Proposition 3.2 and it involves a lot of
calculation. For more details we refer the reader to [6] pages 132-151.

Theorem 3.5 The curvature tensor R̄ evaluated on ei(z), en+i(z) satisfies:

a) < R̄(ei(z), ej(z))ek(z), el(z) >=

t2α(t2)
n∑
r=1

{1
2
Rijr1(z)Rklr1(z) +

1
4
Rilr1(z)Rkjr1(z) +

1
4
Rjlr1(z)Rikr1(z)} +Rijkl(z).
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b) b.1) If no index is equal to one, then

< R̄(en+i(z), en+j(z))en+k(z), en+l(z) >= εijkl.F (t2). (19)

b.2) If some index equals one, for example l = 1, then

< R̄(en+i(z), en+j(z))en+k(z), en+1(z) >= εijk1.H(t2). (20)

c) < R̄(ei(z), en+j(z))en+k(z), en+l(z) >= 0.

d) < R̄(en+i(z), en+j(z))ek(z), el(z) >=

1
2

(
2α(t2) + (δi1 + δj1)β(t2)t2

)
Rijkl(z) +

1
2
δi1

(
β(t2)− 2α̇(t2)

)
t2Rklj1(z)

+
1
2
δj1

(
2α̇(t2)−β(t2)

)
t2Rkli1(z)+

(α(t2))2t2

4

n∑
r=1

{Rkrj1(z)Rrli1(z)−Rkri1(z)Rrlj1(z)}.

e) < R̄(ei(z), en+j(z))ek(z), en+l(z) >=

1
2
α(t2)Rkilj(z)+

(α(t2))2t2

4

n∑
r=1

Rkrj1(z)Rril1(z)+
t2

2
(δj1+δl1)α̇(t2)(Rkil1(z)−Rkij1(z)).

f) < R̄(ei(z), ej(z))en+k(z), el(z)) >=

α(t2)t
2
{< ∇DR(Eij(s), E

l
j(s))E

k
j (s)|s=0, u1 > − < ∇DR(Eji (s), E

l
i(s))E

k
i (s)|s=0, u1 >}.

Proof. The proof is straightforward and follows form Theorem 3.4 and equality (15).

The functions F and H satisfy the following proposition:

Proposition 3.6 Let α, β : [0,+∞) −→ IR be differentiable functions such that α(t) > 0
and α(t) + tβ(t) > 0 for all t ≥ 0. If F is the zero function, then:

i) β(t) = t(α̇(t))2+2α(t)α̇(t)
α(t) .

ii) α(t)(α(t) + tβ(t)) = (tα̇(t) + α(t))2.

iii) α(t) + tα̇(t) > 0.

iv) H(t) = 0 for all t ≥ 0.

Proof. Assertion i) follows from equality (17) and ii) is a consequence of i). Equality ii)
shows that α(t) + tα̇(t) 6= 0 for all t ≥ 0, and since α(0) + 0.α̇(0) = α(0) > 0, then we get
iii). Equality ii) says that α.∆ = φ2, and assertion iii) says that φ > 0. Therefore, from
equality (18) we get that H = 0.
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Corollary 3.7 Let α, β : [0,+∞) −→ IR be differentiable functions such that α(t) > 0,
α(t) + tα̇(t) > 0 and α(t) + tβ(t) > 0 if t ≥ 0. If H is the zero function, then it is also F .

Proof. Since φ > 0 and H = 0, the equality (18) implies that ln(α∆) = ln(φ2) +C for some
constant C. In particular 2 ln(α(0)) = 2 ln(α(0)) + C, hence C = 0. Since α.∆ = φ2, we
obtain that F = 0.

4 Geometric consequences of curvature equations.

In this section the Riemannian metric G on TM is assumed natural. As throughout all
the paper, G is characterized by the functions α and β. As in Remark 3.3, if v ∈ TM ,
let z = (q, u, t, 0, . . . , 0) ∈ N such that ψ(z) = v and t = |v|. From Theorem 3.5 and
Proposition 3.6 we get inmediatly

Corollary 4.1 (Theorem 0.1, [1]) If (TM,G) is flat then (M, g) is flat.

Proof. It follows from part a) of Theorem 3.5 by setting t = 0.

Corollary 4.2 If dimM ≥ 3, (TM,G) is flat if and only if (M, g) is flat and

β(t) =
t(α̇(t))2 + 2α(t)α̇(t)

α(t)

Proof. Assume that (TM,G) is flat. From Theorem 3.5 part b.1) and 1 < i < j ≤ n we
have that

< R̄(en+i(z), en+j(z))en+i(z), en+j(z) >= −F (t2)

Therefore F = 0, and the desired equality on β follows from Proposition 3.6 part i).

Assuming that (M, g) is flat and β(t) =
(
t(α̇(t))2 + 2α(t)α̇(t)

)
/α(t), we only need to

show that
< R̄(en+i(z), en+j(z))en+k(z), en+l(z) >= 0 (21)

for 1 ≤ i, j, k, l ≤ 2n. The other cases also satisfies (21) because R = 0. Equality on β
implies that F = 0, therefore by Proposition 3.6 part iv) we have that H = 0, and equality
(21) is satisfied.

We get also the following result:

Corollary 4.3 If dimM = 2, (TM,G) is flat if and only if (M, g) is flat and H = 0.

Remark 4.4 Let α(t) > 0 be a differentiable function that satisfies tα̇(t) +α(t) > 0 for all
t ≥ 0 and define β(t) =

(
t(α̇(t))2 + 2α(t)α̇(t)/α(t)

)
. If we consider the natural metric G

induced by α and β, then (TM,G) is flat if (M, g) is flat.
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Remark 4.5 The above Corollaries generalizes the well known fact that (TM,Gs) is flat
if and only if (M, g) if flat (Kowalski [7], Aso [2]). This fact follows from the Corollaries
taking α = 1 and β = 0.

We will denote by K and K̄ the sectional curvatures of (M, g) and (TM,G) respectively.

Theorem 4.6 Let v ∈ TM and z = (q, u, t, 0, . . . , 0) ∈ N such that ψ(z) = v ( t = |v|).
We have the following expression for the sectional curvature of (TM,G):

a) For 1 ≤ i, j ≤ n:

K̄(ei(z), ej(z)) = K(ui, uj)−
3
4
α(t2)|R(ui, uj)v|2.

b) b.1) If 2 ≤ i, j ≤ n and i 6= j

K̄(en+i(z), en+j(z)) =
F (t2)

(α(t2))2
.

b.2) If 2 ≤ i ≤ n

K̄(en+1(z), en+j(z)) =
H(t2)

α(t2)(α(t2) + t2β(t2))
.

c) For 1 ≤ i, j ≤ n:

K̄(ei(z), en+j(z)) =
α(t2)

4
|R(uj , v)ui|2.

In particular K̄(ei, en+1) = 0 if 1 ≤ i ≤ n because v = tu1.

Proof. From equality (4) we get that {e1(z), . . . , e2n(z)} is an orthogonal basis for (TM)v
such that < ei(z), ej(z) >= δij if 1 ≤ i, j ≤ n, < en+1(z), en+1(z) >= α(t2) + t2β(t2) and
< en+i(z), en+i(z) >= α(t2) if 2 ≤ i ≤ n. Let 1 ≤ i, j ≤ n, i 6= j. By setting k = j and
l = i in equation a) of Theorem 3.5 we have that

K̄(ei(z), ej(z)) = − < R̄(ei(z), ej(z))ej(z), ei(z) >= Rijji(z)−
3
4
t2α(t2)

n∑
r=1

R2
ij1r(z).

Since K(ui, uj) = Rijji(z) and v = tu1, we can write

K̄(ei(z), ej(z)) = K(ui, uj)−
3
4
α(t2)|R(ui, uj)v|2.

Part b) follows directly from equations b.1) and b.2) of Theorem 3.5.

Since |ei(z)| = 1 and < ei(z), en+j(z) >= 0 for 1 ≤ i, j ≤ n, from Theorem 3.5 equation
e), we see that

K̄(ei(z), en+j(z)) = − (α(|v|2))2|v|2

4(α(|v|2) + δj1β(|v|2)|v|2)

n∑
r=1

Rirj1(z)Rrij1(z)
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=
α(|v|2)

4

n∑
r=1

[
g(R(uj , u1|v|)ui, ur)

]2
=
α(|v|2)

4
|R(uj , v)ui|2.

Corollary 4.7

i) (TM,G) is never a manifold with negative sectional curvature.

ii) If K̄ is constant, then (TM,G) and (M, g) are flat.

iii) If K̄ is bounded and limt→+∞ tα(t) = +∞, then (M, g) is flat.

iv) If c ≤ K̄ ≤ C (possibly c = −∞ and C = +∞), then c ≤ K ≤ C.

Proof. Assertions i), ii) and ii) follow from Theorem 4.6 part c). Let q ∈ M and u =
(u1, . . . , un) be an orthonormal basis for Mq. Then, if we consider z = (q, u, 0, . . . , 0) and
v = 0q, from Theorem 4.6 part a) we have that K̄(ei(z), ej(z)) = K(ui, uj) and part iv)
holds. Also ii) follows from Theorem 3.5) part a) taking t = 0.

Corollary 4.8 Let (M, g) be a manifold of constant sectional curvature K0 and TM en-
dowed with a natural metric G, then we have for z = (q, u, t, 0, . . . , 0) and ψ(z) = v that

a) K̄(ei(z), ej(z)) = K0 − 3
4(K0)2α(|v|2)(δi1 + δj1)|v|2 with i 6= j.

b) K̄(ei(z), en+j(z)) = α(|v|2)
4 K0|v|2(δij + δi1).

The vertical case K̄(en+i, en+j) is as Theorem 4.6 part b).

From Theorem 4.6 we get the following result

Corollary 4.9 Let G1 and G2 be two natural metrics on TM such that are characterized
by the functions {αi}i=1,2 and {βi}i=1,2 respectively. If K̄1(u)(V,W ) = K̄2(u)(V,W ) for all
u ∈ TM and V,W ∈ (TM)u and (M, g) is not flat, then α1 = α2.

Remark 4.10 Let G+exp and G− exp be the natural metrics on TM defined by

gG+exp(q, u, ξ) =
(
Idn×n 0

0 A+(ξ)

)
and gG− exp(q, u, ξ) =

(
Idn×n 0

0 A−(ξ)

)
where A+(ξ) = e|ξ|

2
(Idn×n+ ξt.ξ) and A−(ξ) = e−|ξ|

2
(Idn×n+ ξt.ξ). We call G+exp and

G− exp the positive and negative exponential metric.

It is known ([11]) that TM endowed with the Cheeger-Gromoll metric is never a manifold
of constant sectional curvature. Theorem 4.6 applied to G+exp and G− exp shows that these
metrics satisfy the same property.
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4.1 Ricci tensor and scalar curvature.

Let Ricc and R̄icc be the Ricci tensor of (M, g) and (TM,G) respectively. We will denote
by S and S̄ the scalar curvature of (M, g) and (TM,G).

Theorem 4.11 For 1 ≤ i, j ≤ n and z = (q, u, t, 0 . . . , 0) we have the following expressions
for R̄icc:

a) R̄icc(ei(z), ej(z)) = −α(t2)t2

2

∑
1≤r,l≤n

Rirl1(z)Rjrl1(z) +Ricc(ui, uj).

b) R̄icc(ei(z), en+j(z)) = −α(t2)t2

2

∑
1≤r≤n

{
< ∇DR(Eir, E

r
r )Ejr |s=0, u1 >

− < ∇DR(Eri , E
r
i )Eji |s=0, u1 >

}
.

c) c.1) If 2 ≤ i ≤ n, then

R̄icc(en+i(z), en+i(z)) =
t2α(t2)

4

∑
1≤r,l≤n

R2
rli1(z) +

(n− 2)
α(t2)

F (t2)

+
1

α(t2) + t2β(t2)
H(t2).

c.2) If 2 ≤ i, j ≤ n and i 6= j, then

R̄icc(en+i(z), en+j(z)) =
t2α(t2)

4

∑
1≤r,l≤n

Rrli1(z)Rrlj1(z).

c.3) If 1 ≤ j ≤ n, then

R̄icc(en+1(z), en+j(z)) =
(n− 1)
α(t2)

H(t2)δj1.

Proof. Let ē1(z), . . . , ē2n(z) be the orthonormal basis for (TM)v induced by the orthogonal
basis e1(z), . . . , e2n(z), where ψ(z) = v. For X,Y ∈ (TM)v we have that

R̄icc(X,Y ) =
2n∑
l=1

< R̄(X, ēl(z))ēl(z), Y > .

Equalities a), b) and c) follow directly from Theorem 3.5 and the fact that
< en+1(z), en+1(z) >= α(t2) + t2β(t2) and < en+i(z), en+i(z) >= α(t2) if 2 ≤ i ≤ n.

In [1], it is shown in the general g-Riemannian natural case that if (TM,G) is Einstein
then (M, g) is Einstein. In our situation we have

12



Corollary 4.12 If (TM,G) is Einstein, then (M, g) and (TM,G) are flats.

Proof. Let c be a constant such that R̄icc = cG. In order to prove that R = 0, it is enough
to show that for any q ∈M and any orthonormal basis u = {u1, . . . , un} for Mq the following
equalities are satisfied

< R(ui, ur)ul, u1 >= 0 (22)

for 1 ≤ i, r, l ≤ n. Let v ∈Mq, v 6= 0 and z = (q, u, t, 0, . . . , 0) ∈ N such that ψ(z) = tu1 = v.
Since G(ei(z), ej(z)) = δij if 1 ≤ i, j ≤ n, from Theorem 4.11 part a) we have that

cδij = −α(t2)t2

2

∑
1≤r,l≤n

Rirl1(z)Rjrl1(z) +Ricc(ui, uj). (23)

Taking t = 0, we get that Ricc(ui, uj) = cδij . Replacing these values for i = j in (23) we
obtain that

0 = −α(t2)t2

2

∑
1≤r,l≤n

(< R(ui, ur)ul, u1 >)2

for t ≥ 0 and equality (22) is satisfied. Since Ricc = c.g and R = 0, it follows that R̄icc = 0.
Using that (TM,G) is Ricci flat and R = 0, from Theorem 4.11 parts c.1) and c.3) one gets
that H = F = 0. From Theorem 3.5 we have that R̄ = 0.

Remark 4.13 It is easy to see from Theorem 4.11 that if (M, g) is not flat or if not exists
a constant k such that H(t) = kα(t) and (n − 2)[α(t) + tβ(t)]F (t) = α(t)k

[
(n − 2)α(t) +

(n− 1)tβ(t)
]
, then R̄icc is not a λ− natural tensor (see [5]).

Corollary 4.14 Let v ∈ TM and z = (π(v), u1, . . . , un, t, 0, . . . , 0) ∈ N such that v = u1t.
The scalar curvature of (TM,G) at v is given by

S̄(v) = S(π(v))− t2α(t2)
4

n∑
irl=1

R2
irl1(z) +

2(n− 1)

α(t2)
(
α(t2) + β(t2)t2

)H(t2)

+
(n− 1)(n− 2)

(α(t2))2
F (t2).

Proof. Since {ē1(z), . . . , ē2n(z)} is an orthonormal basis for (TM)v and the scalar curvature
S̄(v) =

∑2n
l=1Ricc(ēl(z), ēl(z)), the expression for S̄ follows straightforward from Theorem

4.11.

Remark 4.15 Corollary 4.14 applied to G+exp and G− exp reads:

S+exp(v) = S(π(v))− (n− 1)e−|v|
2

[
2 + (n− 2)(1 + |v|2)

]
(1 + |v|2)
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−e
|v|2

4

n∑
i,j=1

|R(ui, uj)v|2

and

S− exp(v) = S(π(v)) +
(n− 1)e|v|

2

1 + |v|2
[
(n− 2)(3− |v|2) +

6 + 2|v|2

1 + |v|2
]

−e
−|v|2

4

n∑
i,j=1

|R(ui, uj)v|2.

Proposition 4.16 If (M, g) is a manifold of constant sectional curvature K0, then

S+exp(v) = (n− 1)
{
K0

(
n− K0

2
|v|2e|v|2

)
− e−|v|2

[
2 + (n− 2)(1 + |v|2)

]
(1 + |v|2)

}
.

and

S− exp(v) = (n− 1)
{
K0

(
n− K0

2
|v|2e−|v|2

)
+

e|v|
2

1 + |v|2
[
(n− 2)(3− |v|2) +

6 + 2|v|2

1 + |v|2
]}
.

Corollary 4.17 Let (M, g) be a flat manifold, then we have that:

a) S+exp < 0.

b) If dimM = 2, then S− exp > 0.

c) If dim ≥ 3, S− exp(v) > 0 if and only if 0 ≤ |v|2 < (n−1)+
√

4(n−2)n+1

n−2 .

d) If dim ≥ 3, S− exp(v) = 0 if and only if |v|2 = (n−1)+
√

4(n−2)n+1

n−2 .

Proof. It follows from Proposition 4.16.

Remark 4.18 In [1], it is shown (Theorem 0.3) that if G is a g-natural metric on TM and
(TM,G) has constant scalar curvature, then (M, g) has constant scalar curvature. In our
case, this property follows immediately from Corollary 4.14, taking t = 0. We can see that
if (TM,G) has constant scalar curvature S̄ and F = 0, then (TM,G) is flat. If F = 0 by
Proposition 3.6, H = 0, and by Corollary 4.14 it follows that R = 0. Finally, from Theorem
3.5 we get that (TM,G) is flat.
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