ON YAMABE CONSTANTS OF PRODUCTS WITH
HYPERBOLIC SPACES

GUILLERMO HENRY AND JIMMY PETEAN

ABSTRACT. We study the H"-Yamabe constants of Riemannian
products (H™ x M™, gi + g), where (M, g) is a compact Riemann-
ian manifold of constant scalar curvature and gj, is the hyperbolic
metric on H". Numerical calculations can be carried out due to
the uniqueness of (positive, finite energy) solutions of the equa-
tion Au — Au + u? = 0 on hyperbolic space H" under appro-
priate bounds on the parameters A, g, as shown by G. Mancini
and K. Sandeep. We do explicit numerical estimates in the cases
(n,m) =(2,2),(2,3) and (3,2).

1. INTRODUCTION

For a closed Riemannian k-dimensional manifold (W, g) the Yamabe
constant of its conformal class [g] is defined as

fW Sh dvh
k—2
Tk

Y (W, = inf
(W: [g) M Vol(Wi )

where sy, is the scalar curvature, dvy, the volume element and Vol(W, h) =

Sy vy is the volume of (W, h).
We let a, = 4(:__21) and p = p = kQ—_kQ For h € [g] we write h = fP~2g
for a function f : W — R<( and write the previous expression in terms

of f and ¢g: we have

YW g) = inf Yy(f)

where

_ S x|V fI? + sgf? dvg

Yo(f) T
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We will call Y, the Yamabe functional. Its critical points are solutions
of the Yamabe equation:

—arAgf +sof = pfr7,
where p is a constant (p = Yg(f)HfH;_p): this means that the co-
rresponding metric h = fP72g has constant scalar curvature. The
Yamabe problem, which consists in finding metrics of constant scalar
curvature in a given conformal class, was solved for closed Riemannian
manifolds by showing that the infimum in the definition of the Yamabe
constant is always achieved.

There are different possible ways to try to generalize these ideas to
non-compact manifolds. The non-compact case has attracted the aten-
tion of many authors (see for instance [1, 2, 7, 9, 10] ) for the interest
in the problem itself and also because non-compact examples play an
important role when studying the Yamabe invariant of a closed mani-
fold N, Y(N) (the supremum of the Yamabe constants over the family
of conformal classes of Riemannian metrics on N).

In this article we will study the case when the manifold is a Riemann-
ian product (H" x M™, g;' 4+ g) where (M™, g) is a closed Riemannian
manifold of constant scalar curvature and (H", g}') is the n—dimensional
hyperbolic space of curvature —1. We denote by s = s, — n(n — 1) the
scalar curvature of g; + g. We define their Yamabe constant as:

n m n :
Y(H" x M™, gy +9g) = feL%(H”lilf\/[’”)f{O} Ygrig (f)-
Note that this is well defined since the Sobolev embedding L3(H" x
M™) c LP(H™ x M™) holds (see [6, Theorem 2.21]).

It is important the case when (M, g) is (S™,rgg'), where gi* is the
round metric of constant curvature 1 and r is a positive constant, since it
plays a fundamental role in understanding the behaviour of the Yamabe
invariant under surgery. In [3, Theorem 1.3 and Section 3], it is proved
that if M* is obtained from N* by performing surgery on a sphere of
dimension [ < k — 3 then

Y(M) = min{Y (N), Ag}

for positive constant Ap;. If | < k—-4orl < k—3and k < 6 this
constant is actually the infimum for r € (0, 1] of the Yamabe constants
of (H'1x §F=1=1 glth 4 pgh=I=1) (see [5], in the case | = k—3 and k > 7
one might need to deal with solutions of the Yamabe equation which
are not in L?). It can be seen via symmetrizations that the infimum in



YAMABE CONSTANTS 3

the definition is achieved by a function which is radial in both variables
(it depends only on the distance to the origin in hyperbolic space and
on the distance to a fixed point in the sphere). It seems reasonable
to expect [2, 3] that for r» € (0, 1] there is a minimizer which depends
only on the H"-variable (when r = 1 this is known to be true, see [3,
Proposition 3.1]; the limit when r approaches 0 is the case of the product
of the round sphere with Euclidean space, considered in [2]). The main
objective of this article is to show that if this were the case then one
could compute the corresponding Yamabe constants numerically.
We recall the following definition from [2]:

Definition 1.1. For a Riemannian product (N x M,h + g) we define
the N-Yamabe constant as

YN(N X M,h+g)= inf Y; .
N ( g) et htg(f)
We will study Yg-(H" x M™, g;' + g), where (M, g) is a closed Rie-
mannian manifold of constant scalar curvature s, and volume V,. Note
that

2 n @ VI12+sf? dogn
Yo (H" x M™, gjy +9) = V"™ inf i i J;‘ I dug;
feLi(am) [ -
If f € L3(H") is a critical point of Yy g restricted to L2(H"), then
it satisfies the subcritical equation

—OngmAnf +sf = pfrmnt
where 1 is a constant (it is called a subcritical equation since pp4yn <

Pn)-
Let

c=cppn=Mm—-1)(m-1)/(m+n-2).
In Section 2 we will prove:

Theorem 1.2. If s, > c then Ygr(H" x M™, g/ + g) > 0 and the
constant is achieved. If s = ¢ then Y- (H"™ x M™, g7 + g) > 0 but the
constant is not achieved. If s4 < ¢ then Yen(H" x M™, g} + g) = —00.

In Section 3 and Section 4 we will consider the case (M, g) = (5™, rgg"),
for r € [0,1], m > 2. The case when r € [0,1] is of interest because
these are the values that appear in the surgery formula [3]. Note that for
r € (0,1] we have s,gm = (1/r)m(m — 1) > c. Let g(r) = g} +rgg* and
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denote by g the Euclidean metric on R". We define @, , : [0,1] —
R0 by

Qn(r) = Y (H™ x 8™, g(1)) if >0,
A Yee (R x 8™, g2 +g7') if m=0.

In section 2 we will also show the following;:
Proposition 1.3. @, s a continuous function.

Note that @y n(0) is computed in [2, Theorem 1.4] in terms of the
best constants in the Gagliardo-Nirenberg inequalities (which can be
computed numerically).

If (M™,g) is a closed Riemannian manifold of constant scalar curva-
ture s; > c and f realizes Y (H" x M™, gj' 4+ g), then f is a positive
smooth solution of the subcritical Yamabe equation

_aernAgﬁf + ngH-gf = aernfpern—l
(of course, f is a minimizer then for any positive constant «, af is also
a minimizer. One obtains a solution of the previous equation by picking
a appropriately).

Due to the symmetries of hyperbolic space, using symmetrization, one
can see that f is a radial function (with respect to some fixed point).
Consider the following model for hyperbolic space:

H" = (R",sinh?(r) g0~ + dr?).
For a radial function f write f(z) = ¢(||z||), where ||z|| denotes the

distance to the fixed point. Then f is a solution of the Yamabe equation
if ¢ : [0,00) — R~ solves the ordinary differential equation:

2t
et +1
EQung: @'+ -1 ¢ =rp—¢*

where \ = sgg+g/an+m and ¢ = ppom — 1.
Note that

/ fkdvgh = Vgg1/ @ (t) sinh™ 1 (¢)dt
H"» 0
(for any k£ > 0) and

/ ]Vf|2dng:Vn_1/ @' sinh™ 1 (t)dt.
H» 90 0

Uniqueness of (positive, finite energy) solutions of the subcritical
Yamabe equation (or equivalently EQ) , ,) was proved by G. Mancini
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and K. Sandeep in [8, Theorem 1.3, Theorem 1.4]. We will describe
the solutions of the ODE in Section 3 to see that one can numerically
compute @ (r) for any fixed » € (0,1] and use this in Section 4 to
prove:

Theorem 1.4. For (n,m) = (2,2),(2,3),(3,2)and r € [0,1] Qpnm(r) >
0.99 Q. (0).

Following the discussion above on applications to estimating the
Yamabe invariants of closed manifolds, assuming  that
Y (HH x SF1-1 ghr L pgh=l=1) — o (HIF L gR—io by ki1
the previous results would show that the surgery constants Ay could
be proved to be very close to Ygis1 (R x §F=1=1 ghtl 4 gh=l=1) " Thege
constants are computed in [2] and would give a great improvement over
the estimates for Ay ; known at present.

It should be true that Qp m(r) > Qnm(0) for r > 0, but we have not
been able to prove it (the problem is to prove the inequality for r close
to 0). But for any given 0 < p < 1 and a given pair (n,m) one could
prove that Qn,m(r) > Qn,m(o)'

2. H"™-YAMABE CONSTANTS

In this section we will prove Theorem 1.2 and Proposition 1.3.

Proof of Theorem 1.2: This is a subcritical result and most of it
actually appears in [8] with a different notation. We will sketch the
proof for the convenience of the reader.

Recall that

IV/13 _ (n—1)*
reczEm)—{o} || f]3 4

Let

s . an anim|VfI?+ (s —n(n — 1))f2dvg;?
Yim(F) = . ’

so that, if (M, g) is a closed Riemannian manifold of volume V and
constant scalar curvature s then

2
Yign (H" x M™, g + g) = Vien inf V2 (f)
Hr ( ) rerzim oy T (f)

We can rewrite the expression of Y7, (f) as:

o o 2
Vi) = s [ wsp (220 - 0000 pay

H f Hpn+m Am-+n
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It follows that if s — ¢ < 0 then there exists f € C5°(H") such that
Y,)m(f) < 0. For each integer k we can consider f;, € C§°(H") which
consists of & disjoint copies of f. Then Y7, (fx) = kl_(z/p)Y,f’m(f) and
S0

lim Yﬁsm(fk) = —0Q,
k—oo ’
proving the last statement of Theorem 1.2.
If s —c >0 then V7, (f) > 0 for all f € L{(H"). To prove that

the constant is strictly positive it is enough to consider the case when
s =c. But

Y’I’S,m(f) = am+n5n7pm+n*17

inf

feLz(H)—{0}
where S, ;... —1 is the best constant in the Poincaré-Sobolev inequality
proved in [8, (1.2)]. If the infimum were achieved in this case then the
minimizing function would be a positive smooth solution in L?(H") of
Af 4 (n—1)2/4 4 fP~1 = 0; but such a solution does not exist by [8,
Theorem 1.1]. In case s > c then bounds on Y7, (f) give bounds on the
L2-norm of f, so minimizing sequences are bounded in L?(H"). Then
by the usual techniques one can show convergence to a smooth positive
function in L?(H"). This is explicitly done in [8, Theorem 5.1].

This concludes the proof of Theorem 1.2.

Proof of Proposition 1.3:
Note that for r > 0, Qnm(r) = Ya(H™ x S™,(1/r)g) + g¢') and
continuity at 0 means that

Jim Vi (H" x S™, Tgj! + gi") = Yen (R" x 5™, g + gi").

If we had a closed Riemannian manifold instead of hyperbolic space,
then we would be in the situation of [2, Theorem 1.1]. As in [2] one has
to prove

limsup Yin (H" x S™, Tgp + g5") < Yrn(R™ x S™, g7 + g7"),

T—o00

and

liminf Yee (H" x 8™, Tgp + g4") > Yre(R™ x S™, g7 + g7°).

T—o00

The proof of the first inequality given in [2] does not use compactness
and works in our situation. The second inequality is actually very simple
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in our case. It follows for instance from the Proposition 4.2 in Section
4 of this article.
Now consider r € (0, 1].

T ryml|VF3 + s 1113
Qnm(r) =reen Vo™ inf HE '
feL?(H)—{0} Pn+m
Let

[V F113 + $90) 1113
IS HEDR) 1150 '
It is clear that F'(r) is uniformly bounded in any interval [rg, 1], for
ro > 0. Let f, be a minimizer for F(r) (i.e. f, is a minimizer for
Qnm(r)). We can normalize it to have || f;||p,.,, = 1. Then

F(r) =

Apim(n —1 2
F) = ansnl VA1 + sy 8713 2 (2G5 4 sy ) 1418
Since
_1)2 _1)\2
M+SQ(T) > M+m(m_1)_n(n_1)

4 4

=m(m—-1)—c>0,
it follows that || f.||3 is uniformly bounded. Then F is clearly continuous
at any r > 0 and so @, is continuous.

3. COMPUTING Ygn(H™ x S™, ¢(r)) FOR r € (0,1]

In this section r € (0, 1] will be fixed. It follows from Theorem 1.2
that there is a function f, which acieves Qp m(r) = Y (H" X S™, g(1)),
where we call g(r) = gi'+rgg’. Then (after normalizing it appropriately)
fr(x) = r(]|z]]) where ¢, is a solution of EFQy 4 with X = A(r) =
—n(n—1)+r~tm(m—1)

An+m

Then

and ¢ = pp+m — 1.

||V Frl3 + sg0 157113
”frH1277L+’m

m 2
anm(r) - }/_q(r) (fr) = rntm Vg%’jrm

m 2 —1
= QptmTntm ‘/Yggrj-m ||f7‘||£’r;:7:':n—2

(where all the norms are taken considering f, as a function on H").



8 G. HENRY AND J. PETEAN

In this section 7 (and A) will be fixed and we want to show that we
can effectively numerically compute Qy, ,(7), which means that we can

compute numerically || fr|lp, .-

Let ¢ be the solution of EQ) ,, 4 with ¢(0) = « > 0 and ¢’(0) = 0. Of
course ¢ depends only on « and we will use the notation ¢ = ¢, when
we want to make explicit this dependence. We will use the notation
fa(@) = @a(lz])-

We are interested in the cases A € [a,,},,(m(m — 1) — n(n — 1)), c0).
The cases when A > 0 have some qualitative differences to the cases
when A < 0.

Consider the energy function associated with ¢:

E = E(p) = (1/2)(¢')* = M*/2+ ¢"1 /(g + 1).
Then

et +1
() = —(n— )51 (¢ () 0.

If a solution ¢ intersects the ¢ axis, let b(p) be the first point such
that o(b(p)) = 0. If ¢ does not cross the ¢ axis, we define b(p) = co.
Note that in the first case ¢’(b,) < 0 and therefore E(b(¢)) > 0. We
are going to consider the function ¢ defined in [0, b(y)].

We divide the solutions ¢ into these families:

e N = {Solutions for which b(¢) < oo}.
e P = {Solutions which stay positive but are not in LI*1}.
e G = {Solutions for which b(¢) = co and are in LI},

The minimizing solution belongs to G. It is proved in [8, Theorem
1.2] that there exists exactly one such solution. If the initial value of
this solution is ¢(0) = v, then they also show [8, Corollary 4.6] that
if a < ay then ¢, € P and if a > «) then ¢, € N. Note that we are
using the notation f, = faw).

To see that one can compute @y, () numerically we will argue that
we can numerically approximate the value of a,.) and that for any
given € > 0 we can explicitly find ¢ > 0 such that

| frlgz)>tllp < e

Claim 1 For fixed A the value ) can be approximated to any given
precision.
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If for some « the solution ¢, hits 0, then a@ > «a). To analyse the
case when ¢, stays positive up to some large value 7" we consider the
next lemma.

Lemma 3.1. Fiz A, let o > ay and let f,, fo, be the corresponding
functions in hyperbolic space. Then Hfa‘B(O,ba)Hp > |[faxll,,- Moreover,

if o;, © = 1,2 are such that 00 > ba, > bay then || faz|B(0ba,)ll =

p
1 fas|B0.ba) -

Proof. Restrict the Yamabe functional Y,y to smooth functions with

support in the Riemannian ball B(0,T"). It can be seen that the infimum

of this functional is achieved by a smooth solution of EQ) , , which is

positive in [0,7") and vanishes at 7. But there is exactly one such

solution by [8, Proposition 4.4]. It follows that if b, = T then f, is the
2 4

_m_ P
minimizer and then the infimum is 77+m V™ || follp ™ 7%, If bay > ba,
0

then we restrict ¢q, to [0,bq,] and extend it by 0 to [bay,ba,]. The
corresponding function on hyperbolic space has support in B(0, by, )
and it then follows from the previous comments that || fa,|B(0,ba,)llp =

[ forr | B(0,pa ) llp-
O

Then for some given value of a one can numerically compute the
corresponding solution ¢, and decide if @ > a; (in case it hits 0 at
some point) or a < a (in case for some T' > 0, || fa|po,1)llp is bigger
than the LP-norm of a solution in N).

In the case when A > 0 one can do it a little easier since solutions of
the equation which are in P will have positive local minimums.

Claim 2: For a given £ > 0 one can find ¢ such that || f;|{z)>1llp < €

Note first that there are known explicit positive lower bounds for
| fr|l,, this is of course equivalent to have lower bounds for Q@ m (r) and
in [4, Theorem 4.1, Corollary 4.2] the authors give lower bounds for
Y(H" x S™,g(r)) (and of course Y (H" x 5™, g(r)) < Qnm(r)).

Now

1@ (7) L (mm—1) 2
0

> (" Sl = 1) = nn = 1)) U1 = IS
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Note that D > 0.
If p,.(t) < e then fF(x) < eP~2f2(z) for all = such that ||z| > t.
Therefore

2
oy 2 2 rllp@nm(r)
/{|x||>t} fr=e QHfTH2 <e” QW < K(e),

e oy D

where K (€) is some explicit function of e that goes to 0 with e.

Upper bounds for | f[|,, are easy to obtain (for instance using Lemma
3.1) and this implies that given any positive ¢, since ¢, is decreasing,
one can explicitly find ¢ such that ¢, (t) < e.

Then for any given € > 0 one can explicitly find ¢ such that such that
1frlgzp>ellp < e

It follows from Claims 1 and 2 that || f,|,, can be effectively computed
numerically.

To finish our description we show examples in each case A < 0 and
A>0.

3.1. ODE for A < 0. In this case if ¢y is a local minimum of a solution
¢ then ¢(tp) < 0 and in case ¢ is a local maximum then ¢(tg) > 0.

If for some initial value the solution hits 0 we know that it belongs
to N. Solutions in P are always decreasing and to decide if a solution
belongs to P one has to apply Lemma 3.1.

The following graphic shows the solutions of the equation EQ) with
parameters A = —3/32 and ¢ = 7/3 (which correspond to m +n =5
and s = —1/2) with initial condition ¢(0) = 0.5, ¢(0) = 0.9, ¢(0) = 1.2,
©(0) = 1.9 and ¢(0) = 3 respectively.

3

25

2t

151

1t

0.5
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3.2. ODE for A\ > 0. It is equivalent to solve

2t
BEQy: "+ (n- 1)% "= e —¢?).

We normalize it in this way so we always have the constant solutions
0 and 1.

Note that if ¢ € N then E(b(¢)) > 0.

Since F is a decreasing function, the solutions ¢ are bounded.

Suppose that tg is a critical point of ¢. Then ¢(tg) < 1 if ¢ty is a
local minimum and ¢(tp) > 1 if it is a local maximum (we are only
considering ¢ defined where it stays positive). If ¢y is a local minimum
of ¢ then E(tg) <0and p € PUG.

Now suppose that ¢ is always positive and 0 is a limit point of .
Then it follows that E(oco) = lim;_,oo E(t) = 0. Therefore ¢ cannot
have any local minimum and ¢ must be monotone decreasing (to 0). So
if ¢ has a local minimum them ¢ € P

The graphic below shows the solutions of the equation E@) with
parameters A = 15/8, ¢ = 7/3 (which correspond to m +n = 5 and
s = 10) and with initial condition ¢(0) = 0.3, ¢(0) = 2.5 and ¢(0) = 2.8
respectively.

4. NUMERICAL COMPUTATIONS: PROOF OF THEOREM 1.4

We saw in the previous section that for r fixed we can compute
Qn.m(r). We want to estimate the infimum of @y, ,,(r) for r € [0, 1]. Re-
call that we denote by g(r) the metric gj' +rgg’. Note that the product
(H™x 8™, g(r)) is conformal (by a constant, 1/7) to (H} x S™, gi' +g¢")
where g7 is the hyperbolic metric of constant curvature —r. Therefore
Y- (H"x 8™, g(r)) = Y (H} xS™, g5, +9¢"). We proved that Qp m(r)
is continuous.
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Recall also that @y, m (1) = Ya» (H"xS™,g(1)) = Y (H"xS™,9(1)) =
Y (S™™), as was noted in [3, Proposition 3.1]. Qpm(0) = Ygn(R™ x
S™, gt + g¢*) was computed in [2] and
Qn,m(0) < Qnam(1).

To prove Theorem 1.4 we will use the fact that we can compute
Qmn(r) for r fixed and two simple results. The first one is a simpler
case of [3, Lemma 3.7].

Lemma 4.1. Let 0 < rg < rq, then

T m
Y (H" x §™, g(r1)) < <;;>n+mYHn<H” x S™, g(ro)).

m

Proof. We have that sg(..y < S4(r0), @g(rg) = (:—?)?d g(ry) a0d ||Vf]|2 (r) =

9712, for any f € LA(H"). Then Yyp srug () < (2757 Yy sroq (/)
for any f € L?(H") and the Lemma follows. O

The other simple result we will use is the following proposition. It is
proved in a more general situation in [4, Corollary 3.3]: we give a short
proof of this simpler case.

Proposition 4.2. For any smallr > 0, Qp m(r) > %Qnm( ).

Proof. For r > 0, Qum(r) = Ya-(H" x S™,(1/r)gp + g¢*). Given
any non-negative function f € C§°(H"), considered as a function in
(H",(1/7)gy), we consider its Euclidean radial symmetrizations: this
is the radial, non-increasing, non-negative function f, € C5°(R") such
that for each ¢t > 0 Vol({f > t}) = Vol({f. > t}). It is elementary that
for any ¢ > 0, || £, = [|fll,- On the other hand since the isoperimetric
profile of (H", (1/r)g;’) is greater than that of Euclidean space it follows
from the coarea formula that ||V ]|, > ||V fl5-
Then, if we let s = —rn(n — 1) + m(m — 1), we have

Jign @ntm| V12 + Sf2d0(1/r)g;;

2
Y(I/T)g}f+g(’f(f) = Vgown

1130 B
—rn(n —1) +m(m — V"”” Jan @ngm|V [l + m(m — 1) f2dvogn
m(m —1) 1 fll5
_ —rn(n—1)+m(m—1)
- m(m _ 1) Ygg"—s—gg(f*)

And the proposition follows.
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4.1. H? x S2. Tt follows from Proposition 4.2 that if r € [0,0.01] then
QZZ(T) > 0.99@272(0) = 58.81076. It is known that QQ,Q(].) = Y(
52,92+ g2) = Y(S*) = 61.56239 > Q22(0) = Yp2(S? x R?) = 59. 40481

Let
£0.99Q2(0)12
52_( Q22(1) )

Then 0.99Q22(0) = 55/262272(1). By Lemma 4.1 it follows that Q2.2(s) >
0.99Q2,2(0) for any s € [s2,1]. On the other hand, as explained in Sec-
tion 3, we can numerically compute Q2 2(s2) = 61.55039 > 0.99Q22(0) =
58.81076. Let

[0.99Q(0)\2
83 = <QQQ(32)> sy = 0.83317 .

Since 0.99Q22(0) = (s3/52)/%Q22(s2), by Lemma 4.1 and the inequality
above Q22(s) > 0.99Q22(0) if s € [s3,1]. Following this procedure we
found a finite succession s; with ¢ = 1,...,126 such that

(0.99Q22(0)\2
Si+1 = <QQ,2(81)> Sis

Q2,2(si) > 0.99Q22(0) and s126 < 0.01. Then by Lemma 4.1 and Propo-
sition 4.2 Q22(r) > 0.99Q22(0) for all r € [0, 1].
In the following table we exhibit some values of the succession s;:

7 21 42 63 84 105 126
S; 0.22732 | 0.09051 | 0.04630 | 0.02641 | 0.01593 | 0.00992
Q2.2(s;) | 60.42277 | 59.87433 | 59.65783 | 59.55268 | 59.49515 | 59.46143

The graph of Q22 in [0, 1] is

62

6151

61

601

59.5,

59
0
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4.2. H? x S3. By Proposition 4.2 Q2,3(r) > 0.99Q2 3(0) for r € [0,0.03].

It is known that QQ23(0) = 78.18644 and @Q23(1) = 78.99686. As in the

case H? x S? we can numerically compute a finite succession s; with
i=1,...,152, such that s; =1,

oy — (0.99Q2,3(0)>2 '

1+ Q2,3(3i) (2]

Q2,3(si) > 0.99Q23(0) and s152 < 0.03. Therefore, Theorem 1.4 for
(n,m) = (2,3) follows from Lemma 4.1 and Proposition 4.2. The fol-
lowing table includes some values of the succession s;:

7 25 51 76 101 126 152
S; 0.46075 | 0.22854 | 0.12886 | 0.07706 | 0.04774 | 0.02968
Q2,3(s;) | 78.79217 | 78.55030 | 78.40924 | 78.32559 | 78.27483 | 78.24226

The graph of Q2,3 in [0,1] is :

79.1

781 . . . .
0 0.2 0.4 0.6 0.8 1

4.3. H3 x S2. Recall that Sg(r) <0 for r > 1/3. As in the cases H2 x 52 and
H? x 83 we found a succession s; with the properties described above, which
proves the Theorem 1.3 in this situation. In this case Q32(1) = 78.99686,
Q372(0) = 75.39687 and the last term S132 < 1/300

7 9 33 o7 81 105 132
S; 0.36158 | 0.07155 | 0.02794 | 0.01315 | 0.00668 | 0.00325
Q3.2(s:) | 77.77070 | 76.03779 | 75.66151 | 75.52397 | 75.46201 | 75.42872

The graph of Q32 in [0,1] is :
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