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Abstract

In this paper we develop a nonparametric estimator for the Hölder constant of a density
function. We consider a simulation study to evaluate the performance of the proposal and con-
struct smooth bootstrap confidence intervals. Also, we give a brief review over the impossibility
to decide whether a density function is Hölder.
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1 Introduction

Modern statistics assumes many hypothesis concerning the underlying distribution of the data in
order to obtain good estimators. It is often assumed that the underlying distribution has a density
f that belongs to certain class F . To decide whether f belongs to F based on the data is not always
possible. When it is, we say that the class F is discernible. Devroy and Lugossi (2002) discuss
this problem in detail. Between many examples considered in their work, they show that there is
no rule able to decide whether a density is Lipschitz or not. We generalize this fact proving that
the class of γ-Hölder densities is not discernable. Given these circumstances, we limit ourselves to
estimate the Hölder constat of a density, including the Lipschitz case, whenever it is finite. In other
words, assuming that the density is γ-Hölder, we will make inference on its constant. Carando, et.
al. (2009) studied a maximum likelihood non parametric density estimator under the assumption
that the density is Lipschitz with a known constant: our proposal can be plugged in their method.

This note is organized as follows. In Section 2, we discuss the discernibility of the class of Hölder
functions. The proposed estimator of the Hölder constant and a simulation study to evaluate its
performance are included in Section 2 and 3, respectively. Finally, smoothed bootstrap confidence
intervals are defined in Section 4.

2 Hölder densities are not discernible

According to Devroy and Lugossi (2002), a class of densities F is said to be discernible if for any
density f we can decide whether it belongs to F or not, based on sample X1, X2, . . . of i.i.d. random
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variables with common density f . The decision is made based on a classification rule, which is a
sequence {Tn} of functions Tn : Rn → {0, 1} that satisfies

lim
n→∞Tn(X1, . . . , Xn) =

{
1 a.s. if Xi has denisty f ∈ F ,
0 a.s. if Xi has denisty f 6∈ F .

(1)

The authors also show that the class F of densities supported in [0, 1], such that each f ∈ F has
a Lipschitz version, is not discernible. We will prove that γ- Hölder densities are not discernible,
including the Lipschitz case with γ = 1. Recall that, for γ ∈ (0, 1], f is γ-Hölder if

|f(x)− f(y)| ≤ wγ(f)|x− y|γ (2)

with finite wγ(f), where

wγ(f) = sup
x6=y

|f(x)− f(y)|
|x− y|γ . (3)

We follow the approach by Fraiman and Meloche (1999) used to prove that the class of densities
with finitely many modes is not discernable. Their presentation is based on the results obtained by
Le Cam and Schartz (1960), where necessary and sufficient conditions for the existence of consistent
estimates are discussed.

We denote by L1[0, 1] the set of integrable Lebesgue functions on [0, 1], and denote the L1

norm with ||f ||1 =
∫ 1
0 f(x) dx. Let B ⊂ L1[0, 1] be the set of densities in the interval [0, 1]. Note

that (B, || · ||1) is a closed subset of L1[0, 1]. Let G be a subset of B such that both G and Gc are
dense in B. By Lemma 1.1 in Fraiman and Meloche (1999) we can conclude that such G is not
discernible. As we mentioned, we will take advantage of this fact to prove that Gγ , the class of
densities supported in [0, 1] such that each f ∈ Gγ has a γ-Hölder version, is not discernible. We
will see that both Gγ and Gc

γ are dense in B, as follows:

1. To prove that Gγ is dense in B, we use the fact that the convolution preserves regularity in
order to approximate any density f by a sequence of densities in Gγ . To be more precise, let
K be a kernel in Gγ and consider Kh(y) = h−1K(y/h). Given f ∈ B, consider

fh(x) =
f ∗Kh(x) I[0,1](x)

Ch(f)
, where Ch(f) =

∫ 1
0 f ∗Kh(x)dx .

Note that f ∗Kh converges to f in L1[R] and so, since f is supported in [0, 1], we get that
Ch → 1. This guarantees that fh converges to f in L1[0, 1]. On the other hand, f ∗Kh is as
regular as K, meaning that if K ∈ Gγ , f ∗Kh is γ-Hölder and by consequence fh ∈ Gγ .

2. In order to prove that Gc
γ is dense in L1[0, 1], we need to prove that any element f ∈ Gγ can

be approximated by a sequence in Gc
γ . Take g ∈ Gc

γ and define

fh = (1− h)f + hg .

Then, fh ∈ Gc
γ and converges to f in L1[0, 1], when h ↓ 0.
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3 Estimation of the Hölder constant.

Let X be a random variable with density f γ-Hölder; i.e. f satisfies condition (2). We want to
remark that this condition has a nice geometric interpretation. In the Lipschitz case, i.e. Hölder
function with γ = 1, there is a double cone whose vertex can be translated along the graph in such
a way that the graph of the density remains always entirely inside the cone. When the density
is γ-Hölder, the situation is analogous, but considering a double parabolic cone instead of linear
cone, as we can see in Figure 1. Note that given a double cone with slope m, any cone with slope
m′ ≥ m satisfies also this property. The Hölder constant agree with the smallest of these slopes.
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Figure 1: a) Lipschitz’s cone. b) Hölder’s cone.

Let X1, ..., Xn be independent observations of a random variable X with unknown probability
density function f γ-Hölder, with known γ. In order to define a nonparametric estimator of the
Hölder constant wγ(f), we consider the following result whose proof can be obtained straightfor-
wardly by Borel–Cantelli’s Lemma.

Lemma: Let G ⊂ Rk be an open set and h : G → R a bounded and continuous function. Let
(Yi)i≥1 be independent and identically distributed random variables taking values on Rk, with
density function f , such that f(y) > 0 for all y ∈ G and P (Y1 ∈ G) = 1. Then

Mn = max
1≤i≤n

h(Yi) → sup
y∈G

h(y) = M a.s.. (4)

Note that if we apply the Lemma to the function h(x, y) = |f(x)−f(y)|
|x−y| and the variables Wj =

(X2j−1, X2j), for 1 ≤ j, in the open set that excludes the diagonal, then a natural approach is to
consider

ŵγ(f) = max
1≤i,j≤n; i 6=j

|f(Xi)− f(Xj)|
|Xi −Xj |γ .

But, since f is unknown, we will estimate f trough a nonparametric estimator fn. Therefore
the nonparametric estimator of the Hölder constant wγ(f) is defined as ŵγ(fn).
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In this work, we consider the class of kernel type estimators of f which has been widely studied
since the work of Rosenblatt (1956) and Parzen (1962). These estimators are defined as

fn(x) =
1

nh

n∑

j=1

K

(
x−Xj

h

)
, (5)

where K(u) is a bounded density on R and h is a sequence of positive number such that h → 0 and
nh →∞ as n →∞.

We note that the estimator ŵγ(fn) has also a geometric interpretation. If we consider the
Lipschitz case, the estimator can be defined as follow: for each point of the random sample of size
n, for example X1, we consider the n−1 segments that join the points (X1, fn(X1)) and (Xi, fn(Xi))
for i = 2, . . . n, and denote by mX1(Xi) the slopes of these segments. Figure 2 a) shows some slopes
for two points on the random sample. Therefore for each point of the sample, we can estimate
a local double cone as the cone given by the maximum of these slopes. Finally, we consider a
estimator of the Lipschitz constant as the maximum slope of the local cones given the sample.

In the Hölder case, the procedure is the same but instead of consider straights we have to
consider curves defined by the graph of xγ . In Figure 2 b), we show this situation.
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Figure 2: a) Lipschitz’s cone. The lines in red correspond to the cone with the estimated constant. The
solid lines in blue correspond to the local cone estimator for a particular sample point and the dashed lines
correspond to the straight lines for this point with some of the others points in the sample. In green the
same kind of plots are shown, constructed at a different point of the sample. b) Hölder’s cone. The figure is
analogous to a) but with an appropriate curve.

4 MonteCarlo study

This section contains the results of a simulation study designed to evaluate the performance of the
estimator defined in Section 3. To perform this study, we considered four models. For each model,
we generated X1, . . . , Xn independent samples of size n = 100, 500, 1000 according with a density
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f . In each model, we performed N = 1000 replications. The different models were generated from
the following density functions.

Model 1 : fX(x) = 1√
2π(2φ(2)−1)

exp{−1
2x2}I(−2,2)(x) in this case the Lipschitz constant

w1(f) = e−1/2(
√

2π(2φ(2)− 1))−1 = 0.2535053 where φ denotes the standar normal distribu-
tion function.

Model 2 : fX(x) = (x + 1)I(−1,0)(x) + (1 − x)I(0,1) in this case the Lipschitz constant
w1(f) = 1.

Model 3 : fX(x) = 1
2((x + 1)I(−1,0)(x) + (1− x)I(0,1)(x) + (x− 1)I(1,2)(x) + (3− x)I(2,3)(x))

in this case the Lipschitz constant w1(f) = 1
2 .

Model 4 : fX(x) = 2
3

√
xI(0,1)(x) in this case the Hölder constant w 1

2
(f) = 2

3 .

Figure 1 shows the densities considered in models 1 and 4 while Figure 3 shows the density
functions in the models 2 and 3.
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Figure 3: a) Density function of Model 2. b) Density function of Model 3.

In all cases, for smoothing procedure, we take the gaussian kernel and we consider an auto-
matic bandwidth selector given by Scott (1992). To study the performance of the estimators of
wγ(f), denoted by ŵγ(fn), we have considered the mean square error (MSE) calculated over the N
replications, i.e.

MSE(ŵγ(fn)) =
1
N

N∑

i=1

[ŵγ(fn)i − wγ(f)]2

where ŵγ(fn)i denotes the estimator of the constant given by the replication i.

Table 1 gives the values of the MSE of ŵγ(fn) for the four considered models. The simulation
study confirms the good behavior of constant estimators, under the different models. Model 1
corresponds to a infinitely differential function and as we expected the estimator of the constant
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has a good performance. The densities considered in Models 2 and 3 correspond to non differentiable
functions however the behavior is comparable. Finally, Model 4 is an example of the Hölder case
where we also obtained a good performance.

Model 1 Model 2 Model 3 Model 4
n = 100 0.0101 0.0113 0.0281 0.0174
n = 500 0.0050 0.0084 0.0051 0.0062
n = 1000 0.0037 0.0096 0.0016 0.0047

Table 1: MSE for the different models.

5 Smoothed bootstrap confidence intervals

In this section, we develop a bootstrap procedure to implement confidence intervals for the Hölder
constant. One of the main motivations to construct confidence intervals is to be able to answer
questions about the true value of the Holder constant. For example, if a 100(1 − α)% confidence
intervals for wγ(f) does not contain the value c0, this is evidence against the null hypothesis that
wγ(f) is c0. In this way, as usual, the confidence intervals can provide a test for such null hypothesis.
Moreover, confidence intervals give an idea about the global variability of the estimator.

The bootstrap method introduced by Efron (1979) is a very useful tool used primarily to estimate
the sampling distribution of some statistic of interest. Given a set of independent and identically
distributed observations X1, . . . , Xn, the estimator of the Hölder constant ŵγ(fn) can be defined
as some function T (X1, . . . , Xn). The smoothed bootstrap technic (Efron (1979, 1982); Silverman
and Young, (1987)) estimates the sampling distribution of interest by that of T (X∗

1 , . . . , X∗
n), for

bootstrap samples X∗
1 , . . . , X∗

n of size n obtained by independent sampling from the distribution
Fn with density fn defined in (5).

In order to construct bootstrap confidence intervals, we consider the smoothed bootstrap
method. Thus, the bootstrap confidence intervals can be described as follows.

Step 1 Based on X1, . . . , Xn, we estimate f through fn(x) = (nh)−1
∑n

j=1 K
(

x−Xj

h

)
and compute

ŵγ(fn).

Step 2 A bootstrap sample X∗
1 , . . . , X∗

n is generated as X∗
j = Xij + εj , with i1, . . . , in independent

and uniformly distributed integers from {1, . . . , n} and ε1, . . . , εn independent and identically
distributed with density Kh(t) = h−1K(t/h). The bootstrap estimate ŵ∗γ(f∗n) of wγ(f) is
calculated based on X∗

1 , . . . , X∗
n.

Step 3 Repeat Step 2, B times, to get B values of ŵ∗γ(f∗n)r for 1 ≤ r ≤ B.

Step 4 A bootstrap estimator of the variance of ŵγ(fn) is computed as

varB(ŵγ(fn)) =
1

B − 1

B∑

r=1

(ŵ∗γ(f∗n)r − ŵ∗γ(f∗n))2

6



where ŵ∗γ(f∗n) = 1
B

B∑

r=1

ŵ∗γ(f∗n)r.

Step 5 The 1− α confidence interval of wγ(f) is defined as

IC(wγ(f)) =
(
ŵγ(fn)− q∗

(
1− α

2

)√
varB(ŵγ(fn)), ŵγ(fn)− q∗

(α

2

)√
varB(ŵγ(fn))

)

where q∗(α) is the α−quantile of the empirical bootstrap distribution of T ∗r = ŵ∗γ(f∗n)r−ŵγ(fn)√
varB(ŵγ(fn))

for 1 ≤ r ≤ B.

To evaluate the performance of the bootstrap intervals described above, we implement this proce-
dure to the models considered in the previous Section. The following Table summarizes the results
of the empirical coverage, defined as the proportion of the bootstrap intervals containing the true
parameter over the N = 1000 replications. For each model, we consider B = 1000 bootstrap repli-
cations and in all cases, we compute confidence intervals with level 0.95. Note that, as expected, the
bootstrap intervals have a good performance since the empirical coverages are near to the nominal
level 0.95.

Model 1 Model 2 Model 3 Model 4
n = 100 94.1 95 97 96.5

Table 2: Empirical coverage of nominal 95% confidence intervals. The empirical coverages are in
percent.
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