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Abstract

The paper concerns the strong uniform consistency and the asymptotic distribution
of the kernel density estimator of random objects on a Riemannian manifolds, proposed
by Pelletier (2005).
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1 Introduction

In recent years with the objective to explore the nature of complex nonlinear phenomena,
the field of nonparametric inference has increased attention. The idea of nonparametric
inference is to leave the data to show the structure lying beyond them, instead of imposing
one. Kernel density estimation is a well-known method for estimating the probability density
function of a random sample. However, in many applications, the variables x take values
on a Riemannian manifold more than on IRd and this structure of the variables needs
to be taken into account when considering neighborhoods around a fixed point x. Some
examples could be found in image analysis, astronomy, geology and other fields, they include
distributions on spheres, orthogonal groups, Lie groups. Research on the statistical analysis
of such objects was studied by [9], [4] and more recently [12] and [8]. Nonparametric kernel
methods for estimating densities of spherical data have been studied by [7] and [1].
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Pelletier([10]) proposed a family of nonparametric estimators for the density function
based on kernel weight when the variables are random object valued in a Riemannian man-
ifolds. More precisely, let (M,g) be complete Riemannian manifolds and let us consider
x1, . . . ,xn independent and identically distributed random object on M with density func-
tion f(p). The Pelletier’s idea was to consider an analogue of a kernel on (M,g) by using
a positive function of the geodesic distance on M , which is then normalized by the vol-
ume density function of (M,g) to take into account for curvature. These estimators are an
average of the weight depending on the distance between xi and p. The Pelletier’s estima-
tors is consistent with the kernel density estimators in the Euclidean case. Pelletier ([10])
studied L2 convergence rates, under regularity conditions. The object of this note is to
complement Pelletier’s results with classical properties such as strong uniform consistency
and asymptotic distribution.

This paper is organized as follows. Section 2 contains a brief summary of the Pelletier’s
proposal. Uniform consistency of the estimators is derived in Section 3, while in Section
4 the asymptotic distribution is obtained under regular assumptions on the bandwidth
sequence. Proofs are given in the Appendix.

2 Pelletier’s density estimator

2.1 Preliminaries

Let (M,g) be a d−dimensional oriented Riemannian manifold without boundary. Denote by
dg the distance induced by g and by injgM = inf

p∈M
sup{s ∈ IR > 0 : Bs(p) is a normal ball}

the injectivity radius of (M,g).

Througout this paper, we will assume that (M,g) is complete, i.e. (M,dg) is a complete
metric space, and that injgM is strictly positive. Some examples of Riemannian mani-
folds with positive injectivity radius are IRd with g the canonical metric (injgIRd = ∞),
and the d−dimensional sphere Sd with the metric induced by the canonical metric of IRd

(injgSd = π). It is also well known that compact Riemannian manifolds have positive in-
jectivity radius. Moreover, complete and simply connected Riemannian manifolds with non
positive sectional curvature, have also this property. Some standard results on differential
geometry can be seen for instance in [2], [3], [5] and [6].

From now on, we will denote by Bs(p) the normal ball in (M,g) centered at p with
radius s. Then, Bs(0p) = exp−1

p (Bs(p)) is an open neighborhood of 0p in TpM , the tangent
space of M at p, and so it has a natural structure of differential manifold. We are going to
consider the Riemannian metrics g ′ and g ′ ′ in Bs(0p), where g ′ = exp∗p(g) is the pullback
of g by the exponential map and g ′ ′ is the canonical metric induced by gp in Bs(0p).
Let w ∈ Bs(0p), for any chart (Ū , ψ̄) of Bs(0p) such that w ∈ Ū , the volumes of the
parallelepiped spanned by {(∂/∂ψ̄1|w

)
, . . . ,

(
∂/∂ψ̄d|w

)} with respect to the metrics g ′ and
g ′ ′ are given by |det g ′ ((∂/∂ψ̄i|w) , (∂/∂ψ̄j |w)) |1/2 and |det g ′ ′ ((∂/∂ψ̄i|w) , (∂/∂ψ̄j |w)) |1/2
respectively. The quotien between these two volumes is independent of the selected chart.
So, given q ∈ Bs(p), if w = exp−1

p (q) ∈ Bs(0p) we can define the volume density function,
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θp(q), on (M,g) as

θp(q) =
|det g ′ ((∂/∂ψ̄i|w) , (∂/∂ψ̄j |w)) |1/2
|det g ′ ′ ((∂/∂ψ̄i|w) , (∂/∂ψ̄j |w)) |1/2

for any chart (Ū , ψ̄) of Bs(0p) that contains w = exp−1
p (q). For instance, if we consider the

exponential chart (U,ψ) of (M,g) induced by an orthonormal basis {v1, . . . , vd} of TpM and
U a normal neighborhood of p then

θp(q) =
∣∣∣∣det gq

(
∂

∂ψi

∣∣∣
q
,
∂

∂ψi

∣∣∣
q

)∣∣∣∣
1
2

,

where ∂
∂ψi

|q = Dαi(0)expp(α
′
i (0)) with αi(t) = exp−1

p (q) + tvi for q ∈ U . Note that the
volume density function θp(q) is not defined for all p and q in M , but only for those points
such that dg(p, q) < injgM . It is worth noticing that, when M is IRd with the canonical
metric, then θp(q) = 1 for all p, q ∈ IRd. See also, [3] and [12] for a discussion on the volume
density function.

2.2 The estimator

Consider a probability distribution with a density f on a d−dimensional Riemannian man-
ifold (M,g). Let x1, · · · ,xn be i.i.d random object takes values on M with density f . In
order to estimate f using observations x1, . . . ,xn Pelletier ([1]) proposed the following kernel
estimate:

fn(p) =
1
nhdn

n∑
i=1

1
θp(xi)

K

(
dg(p,xi)
hn

)
(1)

where K : IR→ IR is a non-negative function, θp(q) denotes the volume density function on
(M,g) and the bandwidth hn is a sequence of real positive numbers such that limn→∞ hn = 0
and hn < injgM , for all n. This last requirement on the bandwidth guarantees that (1) is
defined for all p ∈M (see, [11]).

3 Consistency

Let U an open set of M , we denote by Ck(U) the set of k times continuously differentiable
functions from U to IR. As in [10], we assume that the image measure of P by x is
absolutely continuous with respect to the Riemannian volume measure νg, and we denote
by f its density on M with respect to νg. In this section we will consider the following set
of assumptions to derive the strong consistency results of the estimate fn(p) definied by
Pelletier in [10].

H1. Let M0 be a compact set on M such that:

i) f is a bounded function such that infp∈M0 f(p) = A > 0.

ii) infp,q∈M0 θp(q) = B > 0.
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H2. For any open set U0 of M0 such that M0 ⊂ U0, f ∈ C2(U0).

H3. The sequence hn is such that hn → 0, nhdn → ∞ and nhd
n

logn → ∞ as n→ ∞.

H4. K : IR→ IR is a bounded nonnegative Lipschitz function of order one, with compact
support [0, 1] satisfying:

∫
IRd K(‖u‖)du = 1,

∫
IRd uK(‖u‖)du = 0 and

0 <
∫

IRd ‖u‖2K(‖u‖)du <∞.

Remark 3.1. The fact that θp(p) = 1 for all p ∈M guarantees that H3 ii) holds. Assump-
tion H4 is a standard assumption when dealing kernel estimators.

Remark 3.2. Using the Theorem 3.2 in [10] and the compactness of M0 we have that

sup
p∈M0

|E(fn(p)) − f(p)| ≤ c h2
n

∫
‖u‖2K(‖u‖)du.

Then, in order to obtain strong uniform consistency it suffices to show that

sup
p∈M0

|fn(p) − E(fn(p))| a.s.−→ 0.

Theorem 3.3. Assume that H1 to H4 holds, then we have that

sup
p∈M0

|fn(p) − E(fn(p))| a.s.−→ 0.

4 Asymptotic normality

Denote by V ⊂M an open neighborhood of p. With the objective to derive the asymptotic
distribution of the estimator of f , we will consider two assumptions more.

H5. f(p) > 0, f ∈ C2(V ) and the second derivative is bounded.

H6. The sequence h is such that hn → 0, nhdn → ∞ as n→ ∞ and there exists 0 ≤ β <∞
such that

√
nhp+4

n → β as n→ ∞.

In the following we will denote by Vs the ball in IRd centered at the origin and of radius s.

Theorem 4.1. Assume H4 to H6. Then we have that√
nhdn(fn(p) − f(p)) D−→ N (b(p), V (p))

with

b(p) =
β

2

∫
V1

K(‖u‖)u2
1 du

d∑
i=1

∂f ◦ ψ−1

∂ui∂ui
|u=0
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and
V (p) = f(p)

∫
V1

K2(‖u‖)du

where u = (u1, . . . , ud) and (Bhn(p), ψ) some exponential chart induced by an orthonormal
basis of TpM.

Remark 4.2. Note that the Pelletier’s estimator converges at the same rate as the Euclid-
ean kernel estimator.

Appendix

From now on, we will denote by dνg the usual volume element induced by g and the
orientation of M.

Proof of Theorem 3.3: Let us begin by fixing some notation. Given p ∈M , denote

Vj(p) =
1

θp(xj)
K

(
dg(p,xj)

hn

)
−E

(
1

θp(xj)
K

(
dg(p,xj)

hn

))
,

let Sn(p) =
∑n
j=1 Vj. The fact that E(Vj) = 0, the kernel K is bounded and the volume

density function satisfies θp(q) ≥ B > 0 for all p, q ∈ M0, we have that |Vj(p)| < A1. Then,
Bernstain’s inequality implies that, for n > n0 and for some positive constants α, we have

sup
p∈M0

P

(
1
nhpn

|Sn(p)| > ε

)
≤ 2 exp (−nhdnα). (2)

On the other hand, since M0 is a compact set, we can consider a finite collection of balls
(Bi = Bhγ

n
(pi)) centeres at points pi ∈ M0 with radius hγn with γ > 2 + d, such that

M0 ⊂ ∪li=1Bi. Then, l = O(h−γn ) and

sup
p∈M0

|Sn(p)| ≤ max
1≤j≤l

sup
p∈Bj

|Sn(p) − Sn(pj)| + max
1≤j≤l

Sn(pj)|. (3)

Using that K is Lipschitz function with Lipschitz constant ‖K‖L, straightforward calcula-
tion lead to

1
nhdn

|Sn(p) − Sn(pj)| < 2‖K‖)L 1
nhdn

nhγ−1
n = Chγ−(d+1)

n

for all p ∈ Bj , which entails that for n large enough, let us say, for n > n1, we have

max
1≤j≤l

sup
p∈Bj

1
nhdn

|Sn(p) − Sn(pj)| < ε (4)

Finally, (2), (3) and (4) implies that, for n > max{n0, n1}

P

(
sup
p∈M0

1
nhdn

|Sn(p)| > 2ε

)
≤ P

(
max
1≤j≤l

|Sn(pj)| > ε

)
≤ lh−γn nαδn
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with δn = nhd
n

logn . Taking γ = d + 3 and using, that from H3, nhn → ∞ and δn → ∞, we
have that for n > n2, (nhn)−γ < 1 and γ − δnα < 2. Hence, for n ≥ max{n0, n1, n2} and
some constant C ′, we get

P

(
sup
p∈M0

1
nhdn

|Sn(p)| > 2ε

)
≤ C ′n−2

which shows that
∞∑
n=1

P

(
sup
p∈M0

1
nhdn

|Sn(p)| > 2ε

)
<∞ , concluding the proof.

Proof of Theorem 4.1: Let Sn(p) =
∑n
j=1 Vj(p) like in the previous theorem, with Vj(p) =

1
θp(xj)

K
(
dg(p,xj)
hn

)
−E

(
1

θp(xj)
K
(
dg(p,xj)
hn

))
. Firstly we note that if we take a Taylor expan-

sion of f arround p at order two we get

√
nhdn(E(fn(p))− f(p)) =

√
nhdn

2

d∑
i,j=1

[
∂f ◦ ψ−1

∂uiuj
|u=0

∫
V1

K(‖u‖)uiujdu
]
h2
n +

√
nhpn o(h2

n)

where u = (u1, . . . , ud) and (Bh(p), ψ) some exponential chart induced by an orthonor-
mal basis of TpM . Then, the fact that

∫
V1
K(‖u‖)uiujdu = 0 and

∫
V1
K(‖u‖)u2

i du =∫
V1
K(‖u‖)u2

jdu if i �= j implies that

√
nhdn(E(fn(p)) − f(p)) → β

2

d∑
i=1

∂f ◦ ψ−1

∂ui∂ui
|u=0

∫
V1

K(‖u‖)u2
1du

Therefore, it is enough to obtain the asymptotic behavior of 1√
nhp

n

Sn(p). In order to prove

this, we will show that Vj(p) satisfies the Linderberg Central Limit Theorem.

Pelletier ([11]) obtained that

1
nhdn

var

⎛⎝ n∑
j=1

Vj(p)

⎞⎠ = f(p)
∫
V1

K2(‖u‖)du + o(1).

Finally, we note that

h−dE(V 2
1 (p)I(x1)) ≤ h−dn

∫ 1
θ2
p(q)

K2
(
dg(p, q)
hn

)
I(q)f(q) dνg(q)

+ h−dn

[
E

(
1

θp(x1)
K

(
dg(p,x1)

hn

))]2

= An +Bn

where I(q) = 1 if q ∈
{
q : | 1

θp(q)K (dg(p, q)/hn) −E
(

1
θp(x1)K (dg(p,x1)/hn)

)
| >

√
nhdnε

}
and 0 in other case. Since

E

(
1

θp(x1)
K

(
dg(p,x1)

hn

))
≤ hdnf(p) + Ch2+d

n

∫
V1

‖u‖2K(‖u‖)du
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we have that Bn → 0 as n → ∞. Also, exists n0 such that for all n ≥ n0

|V1(p)| ≤ 1
θp(x1)K

(
dg(p,x1)
hn

)
+ ε

2

√
nhdn then,

An ≤
∫ 1
hdθ2

p(q)
K2

(
dg(p, q)
hn

)
Ĩ(q)f(q) dνg(q)

where Ĩ(q) = 1 if q ∈
{
q : 1

θp(q) |K(dg(p, q)/hn)| >
√
nhdnε/2

}
and 0 in other case. There-

fore, the fact that
∫ 1
hd

nθ
2
p(q)

K2
(
dg(p,q)
hn

)
f(q) dνg(q) = f(p)

∫
V1
K2(‖u‖)du+o(1) <∞ implies

that An → 0 as n → ∞ and
∑n
i=1E( 1

nhd
n
V 2
j (p)I(xj)) → 0 as n → ∞. Then, we conclude

that
√
nhdnSn(p)

D−→ N(0, f(p)
∫
K2(‖u‖)du).
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