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Abstract

In partly linear models, the dependence of the response y on (xt, t) is modeled
through the relationship y = xtβ + g(t) + ε where ε is independent of (xt, t). We are
interested in develop an estimation procedure that allows to combine the flexibility of
the partly linear models, studied by several authors, but including some variables belong
to a non Euclidean space. The motivating application for this paper deals to explain
the atmospheric SO2 pollution incidents using these models when the nature of some
of predictive variables belong in a cylinder. In this paper, estimators of β and g are
constructed when the explanatory variables t take values on a Riemannian manifold and
asymptotic properties of the proposed estimators are obtained under suitable conditions.
We illustrate the use of this estimation approach on the environment dataset and, we
explored the performance of the estimators through a simulation study.

Key words and phrases: Environmental data, Hypothesis test, Nonparametric estimation,
Partly linear models, Riemannian manifolds.

1 Introduction

The partly linear models were introduced by [7] to analyze the relationship between the
electricity usage and average daily temperature. In recent years, this model has gained
a lot of attention in order to explore the nature of complex nonlinear phenomena. Partly
linear models were widely studied in the literature see for example [18], [5], [1] among others.
The partly linear models allow modeling the response variable with a set of predictors that
enter linearly in the model while one of them is considered in the model nonparametrically.

In this paper, we discuss the application of these models to the sulfur dioxide (SO2)
pollution problem. More specifically, we are interested in model the emission of SO2 through
of variables such as the temperature and the direction and speed of the wind. It is important
to remark that the nature of the wind’s variables have a common structure. Also, the
circular structure of the wind direction allows to consider a cylinder as the space where the
speed and direction take values. However, the partly linear models do not seem include this
structure in the nature of the model. The case studied in this paper is only an example of
predictive variables taking values on a Riemannian manifold rather than on Euclidean space.
Some others examples of variables taking values in a non Euclidean space could be found
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in meteorology, astronomy, geology and other fields, that include naturally distributions on
spheres, tangent bundles, Lie groups, etc. Research on the statistical analysis of variables
with some one of these structures was studied by [4], [14] and more recently by [10], [16],[15]
and [11].

The aim of this work is to study the partly linear models when the explanatory variable
t takes values on a Riemannian manifold, i.e. when the variable to be modeled in a non-
parametric way is in a manifold. We introduce an estimation procedure that include this
structure of the variables.

This paper is organized as follows. In Section 2, we construct estimates for these models
and give a review of the nonparametric estimation on Riemannian manifolds proposed in
[15]. In Section 3, we present the asymptotic behavior of the proposed estimators under
regular assumptions. In Section 4, we explored the performance of the estimators through
a simulation study and we show an example using real data. Moreover, we review a cross
validation procedure for partial linear models. The proofs of the theoretical results presented
in Section 3 are given in the Appendix.

2 Estimators

2.1 Model and estimators

Let (yi,xt
i , ti) be an i.i.d. random vectors valued in IRp+1×M with identically distribution

to (y,xt, t), where (M, ξ) is a Riemannian manifold of dimension d. The partly linear
model assume that the relation between the response variable yi and the covariates (xt

i , ti)
can be represented as

yi = xt
i β + g(ti) + εi 1 ≤ i ≤ n , (1)

where the errors εi are independent and independent of (xt
i , ti)t, also E(εi|xi, ti) = 0. In

many situations, it seems reasonable to suppose that a relationship between the covariates
x and t exists, so as in [18] and [1], we will assume that for 1 ≤ j ≤ p

xij = φj(ti) + ηij 1 ≤ i ≤ n (2)

where the errors ηij are independent. Denote φ0(τ) = E(y|t = τ) and φ(t) = (φ1(t), . . . , φp(t)),
then we have that g(t) = φ0(t) − φ(t)tβ and hence, y − φ0(t) = (x − φ(t))tβ + ε. This
equation suggest to estimate the unknown functions and parameters as follows. Let φ̂j(t)
be the nonparametric estimators of φj , 0 ≤ j ≤ p. Regarding the estimation of the param-
eter β, we note that using the nonparametric estimators of the functions φj , the regression
parameter can be estimate considering the least square estimators obtained minimizing

β̂ = arg min
β

n∑

i=1

[(yi − φ̂0(ti))− (xi − φ̂(ti))tβ]2.

where φ̂(t) = (φ̂1(t), . . . , φ̂p(t)). Then, the function g can be estimated as ĝ(t) = φ̂0(t) −
φ̂(t)tβ̂.
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Note that the regression functions correspond to predictors taking values in a Rieman-
nian manifold, nonparametric kernel type estimators adapted to this structure was consid-
ered in [15] and also studied in [12]. An overview of these estimators can be found in the
following Subsection.

The proposed estimators are consistent with the respective estimators when the explana-
tory variable t take values on Euclidean spaces, i.e. in this case the proposed estimators
correspond to the estimators introduced by [7].

2.2 Review of Nonparametric estimators on Riemannian manifolds

2.2.1 Preliminaries

Let (M, ξ) be a d−dimensional connected Riemannian manifold. We denote by dξ the
distance in M induced by ξ. (M, ξ) is a complete Riemannian manifold if (M, dξ) is complete
as a metric space. IRd endowed with the Euclidean metric ξd

e , the hyperbolic space (Hd, ξh),
the d-dimensional torus (T d, ξ) and the graph of a smooth function f : IRd −→ IR are
examples of complete Riemannian manifolds.

Let t ∈ (M, ξ) and TtM the tangent fiber of M at t. Let expt : TtM −→ M be the
exponential map induced by the metric ξ , see for instance [6]. Recall that expt(0t) = t,
where 0t is the null vector of TtM , and there exists a neighborhood W of 0t that satisfies
expt |W : W −→ expt(W ) is a diffeomorphism. We say that a ball Br(t) = {q ∈ M :
dξ(t, q) < r} is normal if there exists a ball Br(0t) such that

expt |Br(0t) : Br(0t) −→ Br(p)

is a diffeomorphism.

The injectivity radius of (M, ξ) is defined by

injξ(M) := inf
r>0
{Br(t) is a normal ball}.

In the case of the Euclidean or the Hyperbolic space is easy to see that injξd
e
(IRd) =

injξh
(Hd) = ∞. The surface M := {x2 + y2 − e−z = 0} ⊆ IR3 endowed with the met-

ric induced by ξ3
e is a complete Riemannian manifold without boundary with injectivity

radius equals zero. If (Sd, ξd
0) is the d-dimensional sphere with its canonical metric, then

injξd
0
(Sd) = π. Every compact Riemannian manifold has positive injectivity radius.

In this paper we are going to consider only complete Riemannian manifolds without
boundary and positive injectivity radius. The assumption about the positive injectivity
radius, it will be clear in the next subsection when we introduce the estimator proposed by
Pelletier.

Let t ∈ (M, ξ) and {v1, . . . , vd} be an orthonormal basis of TtM and let Br(t) be a
normal ball. The exponential map induced a coordinate system (U,ψ) in (M, ξ) as follows:
Let γ : TtM −→ IRd defined by

γ(v) = (z1, . . . , zd) if v =
d∑

i=1

zivi,
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then U = Br(t) and ψ : Br(t) −→ IRd is given by

ψ(s) = γ ◦ (expt |Br(0t))
−1(s).

The coordinate system (U,ψ) is called a normal charts centered at t.

If s ∈ U let us denote by {∂/∂ψ1|s, . . . , ∂/∂ψd|s} the basis of TsM induced by (U,ψ),
i.e. let q ∈ Br(0t) such that expt(q) = s, then ∂/∂ψi|s is the velocity at time 0 of the curve
αi(a) = expt(q + a.vi).

For any s ∈ M the metric ξ restricted to the tangent fiber of M at s is a symmetric
positive defined bilinear form ξs : TsM ×TsM −→ IR. If (U, ξ) is a coordinate system in M
and s ∈ U let the smooth matricial map V(U,ξ) : U −→ IRd×d given by

(V(U,ξ)(s))ij = ξs(∂/∂ψi|s, ∂/∂ψj |s).

Let t ∈ M and (U, ξ) be a normal chart centered at t. Consider the function θt : U −→ IR

θt(s) = (det(V(U,ξ)(s)))
1
2

which is not other than the volume of the parallelepiped {∂/∂ψ1|s, . . . , ∂/∂ψd|s}. This
function is called the volume density function. It is not difficult to see that θt does not
depend on the election of the normal chart and that θt(s) = θs(t), see [11] for instance.

For the Euclidean space (IRd, ξd
e ) and for the cylinder (S1 × IR, ξ1

0 + ξ1
e ), θt(s) = 1 for

all s, t where the function is well defined. In [11], we calculate the volume density on the
sphere, in this case,

θs(t) =
| sin(dξ(s, t))|

dξ(s, t)
for t 6= s,−s and θs(s) = 1.

2.2.2 The nonparametric estimators

Let (y1, t1), . . . , (yn, tn) be i.i.d random objects that take values on IR × M . In order to
estimate r(τ) = E(y|t = τ), Pelletier [15] proposed a nonparametric kernel type estimators.
The proposal introduced by Pelletier was build an analogue to the kernel type estimator
on (M, ξ) considering the distance dξ on M and the volume density function of (M, ξ) in
order to take into account the curvature of the manifold. More precisely, the nonparametric
estimator can be defined as,

rn(t) =
n∑

i=1

wn,h(t, ti)yi (3)

with wn,h(t, ti) = θ−1
t (ti)K(dξ(t, ti)/h)/[

∑n
k=1 θ−1

t (tk)K(dξ(t, tk)/h)]−1 where K : IR → IR
is a non-negative function, θt(s) the volume density function on (M, ξ) and the bandwidth
h is a sequence of real positive numbers such that limn→∞ h = 0 and h < injξM , for
all n. This last requirement on the bandwidth guarantees that (3) is well defined for all
t ∈ M . Pelletier (2006) studied some properties of this estimators such as the asymptotic
pointwise mean squared error. On the other hand, Henry and Rodriguez [11] proposed a
robust version that generalized these estimators and studied some asymptotic properties.
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3 Asymptotic behavior

We begin with the following assumptions required to derive the large sample properties of
the proposed estimators. In this section, we study the asymptotic behavior of the regression
parameter estimator and the nonparametric component of the model under the following
conditions.

H1. Let M0 be a compact set on M such that: f is a bounded function such that
inft∈M0 f(t) = A > 0 and inft,s∈M0 θt(s) = B > 0.

H2. The sequence h is such that nh4 → 0 and nhd
n/log n →∞ as n →∞.

H3. K : IR → IR is a bounded nonnegative Lipschitz function of order one, with com-
pact support [0, 1] satisfying:

∫
IRd K(‖u‖)du = 1,

∫
IRd uK(‖u‖)du = 0 and 0 <∫

IRd ‖u‖2K(‖u‖)du < ∞.

H4. For any open set U0 of M such that M0 ⊂ U0, the functions g, φj for 1 ≤ j ≤ p are of
class C2 on U0.

H5. The errors εi and ηij for 1 ≤ i ≤ n and 1 ≤ j ≤ p are independent and E|ε1|r +∑p
j=1 E|η1j |r < ∞ for r ≥ 3, σ2

ε = var(ε1) > 0 and Σ = E(ηt1 η1) is a positive definite
matrix.

We are now ready to establish the large sample properties of the estimators. The
theorem below provides the asymptotic normality of the β̂ and the rate of convergence of
the nonparametric estimator ĝ(t).

Theorem 3.1. Under H1 to H5

i)
√

n (β̂ − β) D−→ N(0, σ2
εΣ

−1).

ii) supt∈M0
|ĝ(t)− g(t)| = O(h2) + O(

√
log n/nhd).

Note that this theorem is consistent with the corresponding results in the Euclidean
case.

Remark 3.1. The fact that θt(t) = 1 for all t ∈ M guarantees that the bound of θ in H1
holds. The assumptions H2 and H3 are standard assumptions when kernel estimators are
considered.

In many practical problems it is interesting to make inference on the regression param-
eter, such as construction of confidence regions or hypothesis test. The obtained asymp-
totic distribution can be used to construct a Wald–type statistic, more precisely, to test
H0 : β = β0. It seems natural to test H0 through the Wald–type statistic

Tn =
n

σ̂2
ε

(β̂ − β)tΣ̂(β̂ − β)
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where σ̂2
ε and Σ̂ are estimates of σ2

ε and Σ, respectively. For example,

σ̂2
ε =

1
n

n∑

i=1

(yi − xt
i β̂ − ĝ(ti))2 and Σ̂ =

1
n

n∑

i=1

(xi − φ̂(t))t(xi − φ̂(t))

may be the considered estimators.

Lemma A.2 and Remmark A.5 in the Appendix, show that Σ̂ and σ̂2
ε are consistent of

Σ and σ2
ε , respectively. Therefore, under the null hypothesis Tn

D−→ χ2
p. Thus, if we test

H0 at a significance level α, the Wald–test rejects H0 when Tn > χ2
p,α where χ2

p,α is the
corresponding 1− α quantile of the χ2

p.

4 Case studies

4.1 Selection of the smoothing parameter

An important issue in any smoothing procedure is the choice of the smoothing param-
eter. Under a nonparametric regression model with carriers in an Euclidean space, i.e.,
when (M, ξ) is (IRd, ξd

e ), two commonly used approaches are L2 cross–validation and plug–
in methods. In this section, we included a cross-validation method for the choice of the
bandwidth in the case of partly linear models. The asymptotic properties of data–driven
estimators require further careful investigation and are beyond the scope of this paper.

The cross-validation method constructs an asymptotically optimal data-driven band-
width, and thus adaptive data-driven estimators, by minimizing

CV (h) =
n∑

i=1

[(yi − φ̂0,−i,h(ti))− (xi − φ̂−i,h(ti))tβ̃]2,

where φ̂0,−i,h(t) and φ̂−i,h(t) = (φ̂1,−i,h(t), . . . , φ̂p,−i,h(t)) denote the nonparametric esti-
mators computed with bandwidth h using all the data expect the i−th observation and β̃
minimize

∑n
i=1[(yi − φ̂0,−i,h(ti))− (xi − φ̂−i,h(ti))tβ]2 in β.

4.2 Simulation study

To evaluate the performance of the estimation procedure, we conduct a simulation study.
We consider two models in two different Riemannian manifolds, the sphere and the cylinder
endowed with the metric induced by the canonical metric of IR3. We performed 1000
replications of independent samples of size n = 50, 100, 150, 200 according to the following
models:

Sphere case: The variables (yi, xi, ti) for 1 ≤ i ≤ n were generated as

yi = β xi + exp {−(ti1 + 2ti2 + ti3)2}+ εi and xi = ti1 + ti2 + ti3 + ηi

6



where ti = (cos(θi) cos(γi), sin(θi) cos(γi), sin(γi)) with θi and γi follow a von Mises distribu-
tion with means 0 and π and concentration parameters 3 and 5, respectively. In this case,
the functions g(t) and φ(t) are equal to exp{[(1, 1, 1)tt]2} and (1, 1, 1)tt, respectively.

Cylinder case: The variables (yi, xi, ti) for 1 ≤ i ≤ n were generated as

yi = β xi + s2
i + sin(θi) + εi and xi = exp(θi) + ηi

where ti = (cos(θi), sin(θi), si) with the variables θi follow a von Mises distribution with
mean π and concentration parameter 3 and the variables si are uniform in (−2, 2), i.e. ti
have support in the cylinder with radius 1 and height between (−2, 2). Note that in this
model, g(t) = (et3 t)2 + sin(arctan(et2 t/et1 t)) and φ(t) = exp(arctan(et2 t/et1 t)) where ei for
i = 1, 2, 3 are the canonical vectors of IR3.

In all cases, the regression parameter β was taken equal 5 and the errors εi and ηi

are i.i.d. normal with mean 0 and standard deviation 1. In the smoothing procedure, the
kernel was taken as K(u) = 30 u2(1−u)2I(0,1)(u). Respect to the selection of the smoothing
parameter, we apply the cross validation procedure described in Section 4.1. Furthermore,
to analyzed the effect of the bandwidth in the estimation procedure, we computed the
estimators on a grid of bandwidths. We consider an equispaced grid of length 10 between
0.5 and π in the sphere case, and between 1 and 2π in the cylinder case. The distance
dξ for these manifolds can be found in [12] and [11] and the volume density function in
Section 2.2.1. Table 4.2.1 and Table 4.2.3 give the mean, standard deviations (sd), mean
square error (MSE) for the regression estimates of β and the mean of the mean square
error of the regression function g over the 1000 replications when we consider the cross
validation procedure. Table 4.2.2 and Table 4.2.4 report the mean square error (MSE)
for the regression estimates of β and the mean of the mean square error of the regression
function g over the 1000 replications for each bandwidth considered.

mean(β̂) sd(β̂) MSE(β̂) MSE(ĝ)
n = 50 5.1103 0.1411 0.0321 0.2102
n = 100 5.1147 0.0993 0.0230 0.1846
n = 150 5.1023 0.0907 0.0187 0.1709
n = 200 5.1024 0.0807 0.0170 0.1644

Table 4.2.1: Performance of β̂ and ĝ in the sphere case using cross-validation.
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bandwidth
0.5 0.793 1.087 1.380 1.674 1.967 2.261 2.554 2.848 3.141

n = 50
MSE(β̂) 0.0311 0.0248 0.0218 0.0207 0.0253 0.0256 0.0293 0.0300 0.0325 0.0337
MSE(ĝ) 0.2715 0.1698 0.1620 0.1772 0.1929 0.2038 0.2102 0.2126 0.2112 0.2130

n = 100
MSE(β̂) 0.0119 0.0116 0.0102 0.0118 0.0146 0.0164 0.0191 0.0209 0.0211 0.0233
MSE(ĝ) 0.1557 0.1134 0.1256 0.1527 0.1747 0.1861 0.1916 0.1936 0.1918 0.1891

n = 150
MSE(β̂) 0.0082 0.0071 0.0069 0.0079 0.0112 0.0143 0.0170 0.0172 0.0192 0.0202
MSE(ĝ) 0.1142 0.0932 0.1150 0.1437 0.1672 0.1792 0.1889 0.1866 0.1863 0.1832

n = 200
MSE(β̂) 0.0056 0.0052 0.0052 0.0072 0.0099 0.0127 0.0155 0.0166 0.0183 0.0196
MSE(ĝ) 0.0931 0.0820 0.1092 0.1388 0.1640 0.1768 0.1835 0.1856 0.1833 0.1818

Table 4.2.2: Performance of β̂ and ĝ in the sphere case for different bandwidths.

mean(β̂) sd(β̂) MSE(β̂) MSE(ĝ)
n = 50 4.9836 0.0166 0.0005 0.1756
n = 100 4.9866 0.0119 0.0003 0.1545
n = 150 4.9873 0.0097 0.0003 0.1473
n = 200 4.9877 0.0086 0.0002 0.1397

Table 4.2.3: Performance of β̂ and ĝ in the cylinder case using cross-validation.

bandwidth
1 1.454 1.908 2.362 2.816 3.270 3.724 4.178 4.632 5.086

n = 50
MSE(β̂) 0.0006 0.0005 0.0005 0.0006 0.0007 0.0007 0.0007 0.0008 0.0008 0.0007
MSE(ĝ) 0.9471 0.5392 0.2428 0.1936 0.2413 0.2786 0.3049 0.3122 0.3158 0.3089

n = 50
MSE(β̂) 0.0003 0.0003 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
MSE(ĝ) 0.5914 0.4312 0.2269 0.1797 0.2283 0.2622 0.2855 0.2930 0.2935 0.2987

n = 50
MSE(β̂) 0.0002 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
MSE(ĝ) 0.4983 0.3567 0.2214 0.1740 0.2232 0.2592 0.2822 0.2891 0.2903 0.2917

n = 50
MSE(β̂) 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
MSE(ĝ) 0.4476 0.3222 0.2191 0.1713 0.2210 0.2573 0.2786 0.2858 0.2857 0.2882

Table 4.2.4: Performance of β̂ and ĝ in the cylinder case for different bandwidths.

In Tables 4.2.1 and 4.2.3 we can see a good behavior of the estimators in the two
considered schemes. In both cases the mean of the mean square error of the parametric
and nonparametric estimators is small and reflect a good performance of the proposed
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estimators. As we expected, it is interesting to note that when the sample size increases
the performance of the mean square errors of β and g is even better. This effect is also
summarized in Tables 4.2.2 and 4.2.4. In these Tables we can see that the behavior of the
proposed estimator is stable across of the bandwidths considered, except, as we expected,
when the bandwidths and the samples size are small.

4.3 Application to real data

In this Subsection, we applied a partly linear model to an environment dataset in order
to study the atmospheric SO2 pollution incidents. The variables included in the study are
the direction and the speed of the wind, the temperature and the SO2 concentration in
the meteorologic station at Villalba (Lugo in Galicia, Spain). In [9] and [17], the authors
applied models to the prediction of atmospheric SO2 pollution incidents in the vicinity of
the coal/oil-fired power station at As Pontes, A Coruña, Galicia, Spain. They observed
that the prediction of the SO2 time series is challenging, because they consist in near-zero
values interrupted between a few days and several weeks by episodes lasting a few hours at
random in which values rise to high levels and then fall back to zero.

Figure 4.3.1: Location of Villalba, Galicia Spain.

Therefore, in order for predictions to be based on data representing a reasonably large
number of incidents, we reproduced the construction of the historical matrix introduced in
[17]. The authors took as samples 1000 rows of the historical matrix that was constructed
and updated as follows.

First, they determined the range of 2-hour means observed during the previous 2 years.
Then, they divided the non-near-zero region of this range into 10 strata containing approx-
imately equal numbers of values, randomly selected 100 values yl from each stratum, and
associated each with the corresponding predictor values xl and tl. The 1000 (1 + p + d)–
tuplets so formed made up the 1000 rows of the seed of the historical matrix. Thereafter,
during on-line processing, the historical matrix was updated whenever a non-near-zero yk

occurred by identifying the stratum to which yk belonged and substituting xk and tk for
the oldest row of the historical matrix a time k − 1 belonging to this stratum.
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The data was recorded daily in each minute during the year 2009 and we was considered
a 1500–row historical matrix. The variables that we considered in the model were

yi SO2 emission is measured in µg/m3

x1i SO2 emission in the instant i− 30
x2i SO2 emission difference between the instant i− 35 and i− 30
x3i the temperature in ◦C
t1i wind direction in radians from the north
t2i wind speed in m/s

Table 4.3.1: Environment variables considered in the model.

Note that the variables ti = (t1i, t2i) have support in the cylinder. The maximum of the
wind speed in this cases is 7.7 then we consider that the variable t belongs in the cylinder
of high between 0 and 10. Therefore, we modeled the response variable using the following
model yi = β1x1i + β2x2i + β3x3i + g(ti) + εi.

In the smoothing procedure, we considered the same kernel that we use in the simulation
study and we choose the bandwidth using a cross validation procedure. Because of the
computational burden of the cross-validation method, and because there is really no need
to use this method with a sample as large as 1500, we also determined h by the split sample
method, i.e. by dividing the historical matrix into a 750-member training set with odd index
and a 750-member validation set with even index, and taking for h the value minimizing

SV (h) =
[n/2]∑

i=1

[(y2i − φ̂0,E,h(t2i))− (x2i − φ̂E,h(t2i))tβ̃]2.

where φ̂E,h(t) = (φ̂1,E,h(t), . . . , φ̂p,E,h(t)) and φ̂0,E,h(t) denote the nonparametric estimators

computed with bandwidth h using the data with odd index and β̃ minimize
∑[n/2]

i=1 [(y2i −
φ̂0,E,h(t2i))− (x2i− φ̂E,h(t2i))tβ]2 in β. In this case the selected bandwidth was hsv = 2.1.
Table 4.3.2 reports the estimates values of the regression parameters. Figure 4.3.2. and
Figure 4.3.3. show the estimate of the regression function over a grid of 1200 points in the
cylinder. The graphics are quite similar. The differences arise only in the form that we plot
the function. Figure 4.3.4. shows the residuals vs. order in each case of the nonparametric
model considered. In particular, Figure a) shows the residuals x1i− φ̂1(ti) against i, b) and
c) the same plots related with x2i and x3i, respectively and d) yi − φ̂0(ti) against i. These
plots allow to verify the hypothesis of independence assumed over the errors.

β̂1 β̂2 β̂3

0.7988 0.5766 -0.0013

Table 4.3.2: Estimates of regression parameter.
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Figure 4.3.2: Estimates of the regression function over the cylinder.
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Figure 4.3.3: Estimates of the regression function projected in the plane.
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Figure 4.3.4: Residuals vs. order plot. a) x1i − φ̂1(ti) vs i, b) x2i − φ̂2(ti) vs i, c) x2i − φ̂2(ti) vs i and

d) yi − φ̂0(ti) against i.

As we mentioned in Section 3, we made a Wald–type test for the hypothesis H0 :
β = β0. If we consider the hypothesisH0 : β = (0.8, 0.6, 0), the test statistic and the
p–value were Tn = 1.59 and p–value= 0.6594, respectively. Therefore, we do not reject the
null hypothesis. Thus, we can conclude that the temperature seems not have significance
impact factor in the pollution incidents.

To evaluate the performance of the partial linear model, we consider a full nonparametric
model to explain yi based on the variables x1i, x2i and x3i through an unknown function
η. In this case we use the Naradaya-Watson estimator with quadratic kernel. In the
smoothing procedure as matrix of the bandwidth, we consider a multiple of the identity
matrix. We compare the prediction error for both models computing, in the case of the
full nonparametric model, EP (h) =

∑[n/2]
i=1 [(y2i − η̂(x1,2i, x2,2i, x3,2i))]2 for a grid of 100

equispaces bandwidth between 0.1 and 4. For the partial linear model we compute the
SV (h) for the same grid of bandwidth. As we can see in Figure 4.3.2. a), the partial linear
model has a better level of predictive than the full nonparametric model. The comparison of
the errors in the figure seems to be in different scale and the proposed method seems to be
unsensitive with respect to the bandwidth. The Figure 4.3.2. b) shows only the prediction
error of the proposed estimator. Here, we can see that the behavior for small values of
bandwidth seems more unstable but better than in the full nonparametric model.

a) b)

Figure 4.3.2: Comparative of the errors: the dotted line corresponds to the full nonparametric model and

the dashed line to the partly linear model. The vertical lines correspond to the optimal bandwidths in each

models.
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A Appendix

Lemma A.1: Let φ̃j(t) = φj(t) −
∑n

i=1 wn,h(t, ti)xij for 1 ≤ j ≤ p and φ̃0(t) = φ0(t) −∑n
i=1 wn,h(t, ti)yi. Under H1 to H4 we have that

sup
t∈M0

|γ̃(t)| = O(h2) + O

(√
log n/nhd

)
a.s

where γ̃ ∈ {φ̃j ; 0 ≤ j ≤ p}.
Proof of Lemma A.1: Let γ ∈ {φj ; 0 ≤ j ≤ p}. To fix ideas, we consider γ = φj(t) for
1 ≤ j ≤ p, the case j = 0 is similar, then

γ̃(t) = φj(t)−
n∑

i=1

wn,h(t, ti)xij

=
1

nhd

∑n
i=1

1
θt(ti)

K(dξ(t, ti)/h)(φj(t)− xij)
1

nhd

∑n
i=1

1
θt(ti)

K(dξ(t, ti)/h)

By H1, inft∈M
1
hd E

(
1

θt(t1)K(dξ(t, t1)/h)
)
≥ A > 0 and the strong uniform consistency of

f̂n(t) = (nhd)−1 ∑n
k=1 θ−1

t (tk)K(dξ(t, tk)/h) obtained in [12], we can concentrate only the
numerator of γ̃(t).

Using the results obtained in [15] and [12] we have that,

sup
t∈M0

∣∣∣∣∣E
(

1
nhd

n∑

i=1

1
θt(ti)

K(dξ(t, ti)/h)(φj(t)− xij)

)∣∣∣∣∣ = O(h2) (4)

sup
t∈M0

∣∣∣∣∣var

(
1

nhd

n∑

i=1

1
θt(ti)

K(dξ(t, ti)/h)xij

)∣∣∣∣∣ = O(nhd) (5)

Finally, the proof follows in analogous way that the proof of Lemma 3.1 in [8].

Lemma A.2: Under H1 to H4 we have that n−1 ∑n
i=1 x̃t

i x̃i
p−→ Σ where x̃i = xi − φ̂(ti).

13



Proof of Lemma A.2: The element l, s of n−1 ∑n
i=1 x̃t

i x̃i can be written as

(n−1
n∑

i=1

x̃t
i x̃i)ls = n−1

(
n∑

i=1

ηilηis +
n∑

i=1

φ̃l(ti)ηis +
n∑

i=1

φ̃s(ti)ηil +
n∑

i=1

φ̃l(ti)φ̃s(ti)

)

where φ̃j(t) = φj(t)− φ̂j(t). We need to show that all terms except the first term converge
to zero. Applying the strong law of large numbers we get that n−1 ∑n

i=1 ηilηis
p−→ Σls.

Since Lemma A.1, the fact that n−1 ∑n
i=1 η2

il
p−→ Σll and using the Cauchy-Schwartz

inequality we get the result.

Lemma A.3: Under H1 to H3, we have that sup
t∈M

max
1≤j≤n

|wn,h(t, tj)| = O((nhd)−1).

Proof of Lemma A.3:

Note that

wn,h(t, tj) =

1
nhd

1
θt(tj)

K(dξ(t, tj)/h)
[

1
hd

E

(
1

θt(t1)
K(dξ(t, t1)/h)

)]−1

1
nhd

∑n
i=1

1
θt(ti)

K(dξ(t, ti)/h)
[

1
hd

E

(
1

θt(t1)
K(dξ(t, t1)/h)

)]−1

According to [12], we have that

sup
t∈M

∣∣∣∣∣
1

nhd

n∑

i=1

1
θt(ti)

K(dξ(t, ti)/h)
[

1
hd

E

(
1

θt(t1)
K(dξ(t, t1)/h)

)]−1

− 1

∣∣∣∣∣ = o(1) a.s. (6)

inf
t∈M

1
hd

E

(
1

θt(t1)
K(dξ(t, t1)/h)

)
≥ A > 0. (7)

Then by (6) and (7) and the boundedness of K and θt, the lemma holds.

Remark A.4: Note that by Lemmas A.1 and A.3 and using Lemma A.1 in [13]; we have
that

max
1≤i≤n

|γ(ti)−
n∑

k=1

wn,h(ti, tk)γ(tk)| = O(h2) + O

(√
log n/nhd

)
a.s.

for any γ ∈ {φj ; 0 ≤ j ≤ p}.

Proof of Theorem 3.1:

i) We can write
√

n(β̂ − β) = (n−1 ∑n
i=1 x̃t

i x̃i)−1n−1/2 [A1n −A2n + A3n] where

A1n =
n∑

i=1

x̃ig
∗(ti) A2n =

n∑

i=1

x̃i

(
n∑

i=1

wn,h(ti, tj)εj

)
A3n =

n∑

i=1

x̃iεi

and g∗(t) = g(t)−∑n
i=1 wn,h(t, ti)g(ti). Using Lemmas A.1 to A.3, the asymptotic behavior

of A1n, A2n and A3n can be obtained in the same way that in [2].
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Specifically, considering the assumptions imposed on h, we can obtain

A1n = O(nh4 + h−d log2 n) + O(n1/2h2 log n + h−d/2 log2 n) + O(n1/2h2h−d/2 log n)
+ O(h−d log2 n) = o(n1/2),

A2n = O(n1/2h2h−d/2 log n + h−d log2 n) + O(h−d/2 log2 n) + O(h−d log2 n) = o(n1/2)
and

A3n = O(n1/2h2 log n) + O(h−d/2 log2 n) +
n∑

i=1

ηiεi + O(h−d/2 log2 n) =
n∑

i=1

ηiεi + o(n1/2).

Finally, the central limit theorem gives the desired result.

ii) Note that ĝ(t) − g(t) = φ̂0(t) − φ0(t) + (φ̂(t) − φ(t))tβ̂ + φ(t)t(β̂ − β). Therefore
Lemma A.1 and the part i) of this theorem allow to complete the proof.

Remark A.5: Finally, we note that Lemma A.1 and Theorem 3.1 state the consistency of
the estimator σ̂2

ε of σ2
ε defined in Section 3. More precisely, note that

σ̂2
ε =

1
n

n∑

i=1

(εi + xt
i (β − β̂) + g(ti)− ĝ(ti))2.

Thus, if we distribute the terms, all of them converge to zero by Lemma A.1 and Theorem
3.1 except 1

n

∑n
i=1 ε2

i since by the strong law of large numbers converges to σ2
ε .
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