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Abstract

A circular-arc graph is the intersection graph of a family of arcs on a circle. A charac-
terization by forbidden induced subgraphs for this class of graphs is not known, and
in this work we present a partial result in this direction. We characterize circular-arc
graphs by a list of minimal forbidden induced subgraphs when the graph belongs
to the following classes: diamond-free graphs, P4-free graphs, paw-free graphs, and
claw-free chordal graphs.
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1 Introduction

A graph G is a circular-arc (CA) graph if it is the intersection graph of a set
S of arcs on a circle, i.e., if there exists a one-to-one correspondence between
the vertices of G and the arcs of S such that two vertices of G are adjacent
if and only if the corresponding arcs in S intersect. Such a family of arcs
is called a circular-arc (CA) model of G. CA graphs can be recognized in
linear time [6]. A graph is proper circular-arc (PCA) if it admits a CA model
in which no arc is contained in another arc. Tucker gave a characterization
of PCA graphs by minimal forbidden induced subgraphs [8]. Furthermore,
this subclass can be recognized in linear time [2]. A graph is unit circular-arc
(UCA) if it admits a CA model in which all the arcs have the same length.
Tucker gave a characterization by minimal forbidden induced subgraphs for
this class [8]. Recently, linear and quadratic time recognition algorithms for
this class were presented [5,3]. Finally, CA graphs that are complements of
bipartite graphs were characterized by forbidden induced subgraphs [7].

Nevertheless, the problem of characterizing the whole class of CA graphs
by forbidden induced subgraphs remains open. In this work we present some
steps in this direction by providing characterizations of CA graphs by minimal
forbidden subgraphs when the graph belongs to one of four different classes.

Denote by N(v) the set of neighbours of v ∈ V (G); by G|W the subgraph
of G induced by W , for any W ⊆ V (G); by G the complement of G; and by G∗

the graph obtained from G by adding an isolated vertex. If t is a nonnegative
integer, then tG will denote the disjoint union of t copies of G. A graph G is
a multiple of another graph H if G can be obtained from H by replacing each
vertex x of H by a complete graph Kx and adding all possible edges between
Kx and Ky if and only if x and y are adjacent in H.

The graph P4 is an induced path on 4 vertices. A paw is the graph obtained
from a complete K3 by adding a vertex adjacent to exactly one of its vertices.
A diamond is the graph obtained from a complete K4 by removing exactly
one edge. A claw is the complete bipartite graph K1,3. A hole is an induced
cycle of length at least 4. A graph is chordal if it does not contain any hole.

Let A,B ⊆ V (G); A is complete to B if every vertex of A is adjacent to
every vertex of B; and A is anticomplete to B if A is complete to B in G. Let
G and H be two graphs; we say that G is an augmented H if G is isomorphic
to H or if G can be obtained from H by repeatedly adding a universal vertex;
and G is a bloomed H if there exists a subset W ⊆ V (G) such that G|W is
isomorphic to H and V (G) − W induces in G a disjoint union of complete
graphs B1, B2, . . . , Bj for some j ≥ 0, and each Bi is complete to one vertex
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Fig. 1. Minimal forbidden induced subgraphs for the class of interval graphs

of H but anticomplete to the other vertices of H. If each vertex in W is
complete to at least one of B1, B2, . . . , Bj, we say that G is a fully bloomed H.
The graphs B1, . . . , Bj are the blooms. A bloom is trivial if it is composed by
only one vertex.

Special graphs needed throughout this work are depicted in Figures 1 and 2.
We use net and tent as abbreviations for 2-net and 3-tent, respectively.

Lekkerkerker and Boland determined all the minimal forbidden induced
subgraphs for the class of interval graphs, a known subclass of CA graphs.

Theorem 1.1 [4] The minimal forbidden induced subgraphs for the class of
interval graphs are: bipartite claw, n-net for every n ≥ 2, umbrella, n-tent for
every n ≥ 3, and Cn for every n ≥ 4 (cf. Figure 1).

This characterization yields some minimal forbidden induced subgraphs
for the class of CA graphs.

Corollary 1.2 [7] The following graphs are minimally non-CA graphs: bipar-
tite claw, net∗, n-net for all n ≥ 3, umbrella∗, (n-tent)∗ for all n ≥ 3, and C∗

n

for every n ≥ 4. Moreover, any other minimally non-CA graph is connected.

We call these graphs basic minimally non-CA graphs. Any other minimally
non-CA graph will be called nonbasic. The following result is a corollary of
Theorem 1.1 and Corollary 1.2, and gives a structural property for all nonbasic
minimally non-CA graphs.

Corollary 1.3 If G is a nonbasic minimally non-CA graph, then G has an
induced subgraph H which is isomorphic to an umbrella, a net, a j-tent for
some j ≥ 3, or Cj for some j ≥ 4. In addition, each vertex v of G − H is
adjacent to at least one vertex of H.

2 Partial characterizations

A cograph is a graph with no induced P4. We will call semicircular graphs to
the intersection graphs of open semicircles on a circle. By definition, semicir-
cular graphs are UCA graphs.
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Fig. 2. Some minimally non-CA graphs.

Theorem 2.1 Let G be a graph. The following conditions are equivalent:

(i) G is an augmented multiple of tK2 for some nonnegative integer t.

(ii) G is a semicircular graph.

Theorem 2.2 Let G be a cograph that contains an induced C4, and such that
all its proper induced subgraphs are CA graphs. Then, exactly one of the
following conditions holds:

(i) G is isomorphic to G1 or C∗

4
.

(ii) G is an augmented multiple of tK2 for some integer t ≥ 2.

Corollary 2.3 Let G be a cograph. Then, G is a CA graph if and only if G

contains neither G1 nor C∗

4
as induced subgraphs.

Proof. Suppose that H is a cograph minimally non-CA graph and H is not
isomorphic to G1 or C∗

4
. Since H is not an interval graph and is P4-free

then, by Theorem 1.1, H contains an induced C4. By Theorem 2.2, H is an
augmented multiple of tK2, for some t ≥ 2. Thus, by Theorem 2.1, H is a
circular-arc graph, a contradiction. 2

A paw-free graph is a graph with no induced paw.

Theorem 2.4 Let G be a paw-free graph that contains an induced C4 and
such that all its proper induced subgraphs are CA graphs. Then, at least one
of the following conditions holds:

(i) G is isomorphic to G1, G2, G7, or C∗

4
.

(ii) G is a bloomed C4 with trivial blooms.

(iii) G is an augmented multiple of tK2 for some t ≥ 2.



Theorem 2.5 Let G be a paw-free graph that contains an induced Cj for some
j ≥ 5, and such that all its proper induced subgraphs are CA graphs. Then,
exactly one of the following conditions holds:

(i) G is isomorphic to G2, G4, or C∗

j .

(ii) G is a bloomed Cj with trivial blooms.

Corollary 2.6 Let G be a paw-free graph. Then G is a CA graph if and only
if G contains no induced bipartite claw, G1, G2, G4, G7, or C∗

n (n ≥ 4).

Proof. Suppose that H is not any of those graphs but it is still a paw-free
minimally non-CA graph. In particular, H is not basic. Since H is paw-
free then, by Corollary 1.3, H contains an induced Cj for some j ≥ 4. By
Theorem 2.4 and Theorem 2.5, H is an augmented multiple of tK2 for some
t ≥ 2 or H is a bloomed Cj with trivial blooms. In both cases H would be a
CA graph, a contradiction. 2

A graph is claw-free chordal if it is chordal and contains no induced claw.

Theorem 2.7 Let G be a claw-free chordal graph that contains an induced
net, and such that all its proper induced subgraphs are CA graphs. Then,
exactly one of the following conditions holds:

(i) G is isomorphic to a net∗, G5 or G6.

(ii) G is a CA graph.

Theorem 2.8 [1] Let G be a connected graph which contains no induced claw,
net, C4, or C5. If G contains an induced tent, then G is a multiple of a tent.

Corollary 2.9 Let G be a claw-free chordal graph. Then, G is CA if and
only if G contains no induced tent∗, net∗, G5 or G6.

Proof. Suppose that H is not any of those graphs but it is still a claw-
free chordal minimally non-CA graph. In particular, H is not basic. By
Corollary 1.3, H contains an induced net or an induced tent. If H contains
an induced net then, by Theorem 2.7, H would be isomorphic to a net∗, G5 or
G6, a contradiction. Thus H contains no induced net but an induced tent. If
H is connected, by Theorem 2.8, H is a multiple of a tent and, in particular,
a CA graph. Otherwise, H contains a tent∗, a contradiction. 2

A diamond-free graph is a graph with no induced diamond.

Theorem 2.10 Let G be a diamond-free graph that contains a hole, and such
that all its proper induced subgraphs are CA graphs. Then, exactly one of the
following conditions holds:



(i) G is isomorphic to G1, G2, G3, G4, G7, G8, G9, or C∗

j for some j ≥ 4.

(ii) G is a CA graph.

Theorem 2.11 Let G be a diamond-free chordal graph that contains an in-
duced net, and such that all its proper induced subgraphs are CA graphs. Then,
exactly one of the following conditions holds:

(i) G is isomorphic to a net∗, G5, or G6.

(ii) G is a fully bloomed triangle, and in consequence, it is a CA graph.

Corollary 2.12 Let G be a diamond-free graph. G is CA if and only if G

contains no induced bipartite claw, net∗, G1, G2, G3, G4, G5, G6, G7, G8, G9,
or C∗

n for every n ≥ 4.

Proof. Suppose that H is not isomorphic to any of those graphs but it is still
a diamond-free minimally non-CA graph. Since H is not an interval graph and
it is diamond-free, by Theorem 1.1, H contains either a hole or an induced
net. If H contains a hole, it contradicts Theorem 2.10. If H is chordal, it
contains an induced net, and so H contradicts Theorem 2.11. 2
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