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Abstract: Clique graphs of several classes of graphs have been already characterized. Trees, 
interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no 
characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In 
this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and 
prove that this subclass of circular-arc graphs is contained in the intersection between proper 
circular-arc graphs, clique-Helly circular-arc graphs and Helly circular-arc graphs. Furthermore, we 
prove properties about the 2-nd iterated clique graph of this family of graphs. 
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1- Introduction 
 
   Consider a finite family of non-empty sets. The intersection graph of this family is obtained by 
representing each set by a vertex, two vertices being connected by an edge if and only if the 
corresponding sets intersect. Intersection graphs have received much attention in the study of 
algorithmic graph theory and their applications [6]. Well-known special classes of intersection 
graphs include interval graphs, chordal graphs, circular-arc graphs, permutation graphs, circle 
graphs, and so on.  
 
   In this paper a characterization of clique graphs of Helly circular-arc graphs is presented. We 
prove that clique graphs of this subclass of circular-arc graphs are contained in the intersection of 
three subclasses of circular-arc graphs and we analize properties about the 2-nd iterated clique 
graph of Helly circular-arc graphs.  
 
   We shall denote the graph G by a pair (V(G),E(G)), where V(G) denotes a finite set of vertices of 
G and E(G) the set of edges connecting vertices of G. Let n = |V(G)| and m = |E(G)|. The 
neighborhood of a vertex v is the set N(v) consisting of all the vertices which are adjacent to v. The 
closed neighborhood of v is N[v] = N(v) ∪ {v}. A vertex v is an universal vertex if N[v] = V(G). 
 
  A clique in a graph G is a maximal complete subgraph of G. The clique graph K(G) of G is the 
intersection graph of the cliques of G. We can define Kj (G) as the  j-th iterated clique graph of G, 
where K1(G) = K(G) and Kj(G) = K(Kj-1(G)), j ≥ 2. A characterization for the class of clique graphs 
has been formulated by Roberts and Spencer [14], based on Hamelink‘s paper [7]. However, no 
efficient algorithm for the recognition problem is known. In fact, it is an open question whether or 
not this problem is NP-complete. A problem of interest, in the context of intersection graph theory 
and specially in the study of clique graphs, is to characterize clique graphs of special classes of 
graphs. This task has already been performed for trees [9], interval graphs [10], clique-Helly graphs 
[4], disk-Helly graphs [1], chordal graphs [17], and so on. However, no characterization of clique 



graphs of circular-arc graphs and their subclasses is known.  
 
   A graph G is called a circular-arc graph if there exists a set of arcs on a circle and a one-to-one 
correspondence between vertices of G and arcs such that two distinct vertices are adjacent if and 
only if their corresponding arcs intersect. That is, a circular-arc graph is the intersection graph of a 
set of arcs on a circle. This set of arcs is called the circular-arc representation of G. Without loss of 
generality, we may suppose that the arcs are open. 
 
   Circular-arc graphs admit some interesting subclasses: 
 
1) Proper circular-arc graphs: a graph G is a proper circular-arc (PCA) graph if there is a circular-
arc representation of G such that no arc is properly contained in any other. Tucker [18] proposed a 
characterization and an efficient algorithm, using matrix characterizations, for recognizing PCA 
graphs. He also gave a characterization for this subclass by forbidden subgraphs [19]. 
 
2) Unit circular-arc graphs: a graph G is a unit circular-arc (UCA) graph if there is a circular-arc 
representation of G such that all arcs are of the same length. Clearly, it can be easily proved that 
UCA ⊆ PCA. In [19], it is shown that this inclusion is proper and a characterization for the UCA 
subclass by forbidden subgraphs is presented. Golumbic also showed in [6] a graph which belongs 
to PCA and does not belong to UCA. 
 
3) Helly circular-arc graphs: first, we define the Helly property. A family of subsets S satisfies the 
Helly property when every subfamily of it consisting of pairwise intersecting subsets has a common 
element. Then, a graph G is a Helly circular-arc (HCA) graph if there is a circular-arc representation 
of G such that the arcs satisfy the Helly property. Gavril [5] gave a characterization of these graphs 
using the clique matrix of a graph. This characterization leads to an efficient algorithm for 
recognizing HCA graphs. 
 
4) Clique-Helly circular-arc graphs: a graph G is a clique-Helly circular-arc (CH-CA) graph if G is 
a circular-arc graph and a clique-Helly graph. A graph is clique-Helly when its cliques satisfy the 
Helly property. Recently, Szwarcfiter [16] described a characterization of clique-Helly graphs 
leading to a polynomial time algorithm for recognizing them. This method together with a 
polynomial algorithm for circular-arc graphs [13,20] results in an efficient algorithm for 
recognizing CH-CA graphs. 
 
   We have shown in [3] minimal examples belonging to all possible intersections of these 
subclasses, except in one region, which is empty. 
 
   This paper is organized in the following way. In Section 2, some theorems about circular-arc 
graphs are reviewed. In Section 3, we present a characterization theorem of clique graphs of HCA 
graphs and prove that clique graphs of Helly circular-arc graphs are contained in the intersection 
between proper circular-arc graphs, clique-Helly circular-arc graphs and Helly circular-arc graphs. 
Furthermore, we analize properties about K2(G) when G is a HCA graph.  
 
   Definitions not given here can be found in [6] or [8]. 
 
 
2- Preliminaries 



  
   First, a characterization of connected proper circular-arc graphs by local tournaments [2,11,12] 
and round orientations [2] is reviewed.  
 
   A tournament is an orientation of a complete graph. A local tournament is a directed graph in 
which the out-set as well as the in-set of every vertex are tournaments. 
 
   A round enumeration of a directed graph D is a circular ordering S = {v0,...,vn-1} of its vertices 
such that for each i there exist non-negative integers ri,si such that the vertex vi has an inset NS

in = 
{vi-1,vi-2,...,vi-ri} and an outset  NS

out = {vi+1,vi+2,...,vi+si} (additions and subtractions are modulo n). A 
directed graph which admits a round enumeration is called round. An undirected graph is said to 
have a round orientation if it admits an orientation which is a round directed graph. 
 
Theorem 1 [2,15]: The following statements are equivalent for a connected graph G 
 
(1) G is orientable as a local tournament. 
(2) G has a round orientation. 
(3) G is a proper circular arc graph. 
 
  
   A characterization of Helly circular-arc graphs is reviewed [5]. A matrix has a circular 1’s form if 
the 1’s in each column appear in a circular consecutive order. A matrix has the circular 1’s property 
if by a permutation of the rows it can be transformed into a matrix with a circular 1’s form. Let G be 
a graph and M1,M2,...,Mk the cliques of G. We will denote by AG the k x n clique matrix, that is the 
entry (i,j) is 1 if the vertex vj ∈ Mi and 0, otherwise. 
 
Theorem 2 [5]: A graph G is a Helly circular-arc graph if and only if AG has the circular 1’s 
property. 
 
 
 
3- Clique graphs of Helly circular-arc graphs 
 
   A characterization theorem of clique graph of Helly circular-arc graphs is formulated. Let G be a 
graph and SG a circular ordering of its vertices. We define a circular complete subgraph in a circular 
ordering SG as a set of consecutive vertices of SG, which form a complete subgraph of G. A family 
of subgraphs of G, F =  {F1,...,Fr}, covers G if every vertex and edge of G lies in any Fi. 
 
 
Theorem 3: A graph H ∈ K(HCA) if and only if H admits a circular ordering SH such that there 
exists a family of circular complete subgraphs of SH, F = {F1,...,Fr}, which satisfies: 
 
1) F covers H.  
2) F verifies the Helly property. 
 
Proof: 
 
⇒⇒)  Let H be a connected graph belonging to K(HCA), then there is a graph G in HCA so that K(G) 



= H. Let |V(G)| = k and |V(H)| = n. We call R the Helly circular-arc representation of G and 
A1,…,Ak the arcs of R corresponding to the vertices v1,…,vk of G. In R, the n cliques of G are 
represented by intersection points pi on the circle. A clockwise ordering of these points defines a 
circular ordering SH of the vertices of H, SH = {p1,…,pn}. The set of intersection points which are 
covered by an arc Ai of R represents a set of vertices of H which induces a complete subgraph of H. 
We denote this set of intersection points by C(Ai)={pi1,pi1+1,…,pi1+i2} and these points are 
consecutive in the circular ordering SH. So, the complete subgraph induced by C(Ai) in H is a 
circular complete subgraph of S and Ai covers all the intersection points of C(Ai) (this fact is 
denoted by C(Ai) ⊆ Ai). Let F={C(A1),C(A2),…, C(Ak)} be a family of circular complete subgraphs 
of SH. We are going to prove that F verifies properties 1 and 2. 
  
   Clearly, F satisfies the property 1. Let wi be the vertex of H corresponding to pi and Aj be an arc 
which represents a vertex of G lying in the clique of G correspoding to pi, then pi∈C(Aj). Now, let 
wi  and wj be adjacent vertices of H corresponding to pi and pj, so there is an arc At, which 
represents a vertex of G lying in the cliques of G corresponding to pi and pj. Then pi and pj ∈ C(At). 

 
   It remains to verify that F satisfies the Helly property. Let F’ be a subfamily of F / ∀ C(Ai),C(Aj) 
∈ F’, C(A i) ∩ C(Aj) ≠ ∅ and A ={Am /  C(Am) ∈ F’}. Then, ∀ Ai,Aj ∈ A, C(Ai) ∩ C(Aj) ⊆ Ai ∩ Aj 

≠ ∅. So, the arcs of A form a complete subgraph in G. This complete subgraph is contained in a 
clique of G, the clique corresponding, for example, to the intersection point pt. Then, pt ∈ Am, ∀Am 

∈ A. In consequence, pt ∈ ∩ C(Am), C(Am)∈F’, and so F verifies the Helly property.  
  
   Clearly, the subfamily of F, F*={C(Ai) ∈ F / C(Ai) ⊄ C(Aj), ∀C(Aj) such that C(Ai)≠C(Aj)}, also 
verifies properties 1 and 2.  
 
⇐) Let SH={v1,v2,…,vn} be a circular ordering of the vertices of H and F={F1,F2,…,Fr} a family of  
circular complete subgraphs of SH that verifies 1 and 2. We are going to construct a HCA 
representation R of some graph G such that K(G)=H: 
  
   First, we draw {v1,v2,…,vn} as a set of points situated in the positions {2π/n,4π/n,…,2π} of the 
circle (vertex vj is situated in the position 2πj/n). 
 
   By each Fi={vi1,vi1+1,…,vi1+i2}, we draw in R an arc Ai=[2πi1/n, 2π(i1+i2)/n] on the circle (if Fi is 
composed by a single vertex vi1, we may suppose that Ai=[2πi1/n, (2πi1/n) + ε], with ε a small 
positive real number). By each vj, we draw an arc Bj=[2πj/n-π/2n, 2πj/n+π/2n] on the circle. 
  
   First, we must verify that this circular arc representation R of G is Helly. 
  
   Let F’ be a subfamily of  arcs A i such that for every pair Ai,Aj∈F’,  Ai ∩ Aj ≠∅ and F’’={F i∈F / 
Ai∈F’}. Clearly, for each pair F i ,Fj ∈ F”, Fi  ∩ Fj  ≠ ∅ because Ai ∩ Aj  ≠ ∅. As F verifies Helly 
(property 2),  ∩ Fj ≠ ∅  ∀ Fj ∈ F”. It means that there is a vertex vt in every Fj ∈ F” and vt lies in 
every Aj ∈ F’.  
 
   Then  ∩ A j ≠ ∅ ∀ Aj∈F’, so F’ is Helly.  
  
   Now, let F’ be a subfamily of arcs that contains an arc B j and for every pair of arcs of F’, they 
have a nonempty intersection. Particularly, every arc has a common intersection with Bj. Then vj  



lies in every arc and vj  belongs to the intersection of all the arcs of F’, which implies that F’ is also 
Helly. Both results imply that the circular arc representation R of G satisfies the Helly property.  
  
   It remains to verify that K(G) is isomorphic to H, where G is the graph with R as its HCA 
representation. We have to prove that {v1,v2,…,v n} are the intersection points corresponding to the 
cliques of G. All of them are needed because every arc Bj just contains one vertex vk. And no other 
intersection point is needed because the endpoints of every arc Ai are vertices vk. If vi and vj are 
adjacents in H then they belong to the same Fk (property 1). By construction, vi and vj  are both in 
Ak, and so, their respective cliques in G have a vertex in common. Clearly, the converse is true by 
the same argument. 
 
Notes: 
1) In a sense, the above characterization is similar to Roberts and Spencer’s general characte rization 
of clique graphs [14]. In that case, they only ask the condition of a family of complete subgraphs 
which satisfies 1 and 2. 
2) It is important to mention that this characterization apparently does not lead to determining the 
complexity of the corresponding recognition problem. 
 
Definition: A family of circular complete subgraphs of SH, F*={C(A1),C(A2),…, C(A k)} is a 
dominant family if C(Ai) ⊄ C(Aj), ∀ i ≠ j. 
 
   We are going to prove the following lemma which identifies the cliques of a graph H ∈ K(HCA). 

 
   Let G be a Helly circular-arc graph; A1,...,Ak  the arcs of a circular-arc representation of G and H 
= K(G). Let F={C(A1),C(A2),…, C(A k)} be a family of circular complete subgraphs of SH and F* = 
{F1,...,Fr} = {C(Ai) ∈ F / C(Ai) ⊄ C(Aj), ∀C(Aj) such that C(Ai) ≠ C(Aj)} a dominant family of 
circular complete subgraphs of SH as we have defined in Theorem 3. Let U = {u1,...,up} be a set of 
universal vertices of H.  
 
Lemma 1: The sets C’(A i) = C(Ai)  ∪  U, for each C(Ai) ∈ F*, induce the only cliques of H. 
 
Proof: Let C’(A i) = C(Ai)  ∪  U, for C(Ai) ∈ F*. We know that C’(A i) is a complete subgraph of H. 
It remains to verify the maximality. Let pt be an intersection point not belonging to C’(A i) such that 
pt (as a vertex of H) is adjacent to every vertex of C’(A i). So, there are two arcs Aj and Ak as in the 
Figure 1 because F* is a dominant family and the arcs Ai, Aj and Ak must verify the Helly property. 
Hence, pt is a universal vertex of H, which is a contradiction. 

 
 

Figure 1 
 

Then  C’(A i) = C(Ai)  ∪  U, for each C(Ai) ∈ F*, induces a clique of H. Let us verify that there is 
not another clique in H. Suppose that there is a clique C in H, such that C’ = C \ U  and  C’ ⊄  
C(Ai), for any C(Ai) ∈ F*. As  C’ ⊄  C(Ai), the intersection points of C’ can be drawn as in Figure 



2. 
 

 
 
 

                                  Figure 2 
 
   If Aj and Ak cover all the circle, then pr is an universal vertex of H, which is a contradiction. 
Otherwise, there is an arc Am joining ps with pt. Then, Aj, Ak and Am do not verify the Helly 
property, or we have one of the situations of Figure 3, which imply that ps or pt are universal 
vertices of H. Both cases lead again to a contradiction. 
 

          
  

Figure 3 
 
Corollary 1: Let G be a Helly circular-arc graph. Then K(G) is a Helly circular-arc graph, a clique-
Helly circular-arc graph and a proper circular-arc graph 
 
Proof:  
 
a) K(G) is a Helly circular-arc graph. 
 
   Let F* = {F1,...,Fr} = {C(Ai) ∈ F / C(Ai) ⊄ C(Aj), ∀C(Aj) such that C(Ai) ≠ C(Aj)} be a dominant 
family of circular complete subgraphs of SK(G) as we defined in Theorem 3, and U,  the set of 
universal vertices of H. We are going to analize the matrix B with the members of F* in the rows 
(ordering them in the consecutive way given by the circular-arc representation), and {p1,...,pn} the 
vertices of K(G) in the columns. In each row, we write 1 if pj belongs to the corresponding C(Ai), 
and 0, otherwise. By construction, the matrix B has a circular 1’ s form. As we need the cliques in 
the rows to construct AG, by Lemma 1 we have to add 1's in the columns corresponding to the 
vertices of U. Clearly, AG preserves the circular 1’s form (it is possible that two rows represent the 
same clique of K(G); in that case we have to eliminate one of them but the property of  circular 1's 
is still valid for AG). Then, by Theorem 2, K(G) is a Helly circular-arc graph. 
 
b) K(G) is a clique-Helly circular-arc graph. 
 
   As K(G) is a circular-arc graph, we must show that it is clique-Helly. Let us divide the proof in 
two cases: 
 
1) If G is clique-Helly, then K(G) is clique-Helly too [4].  



2) If G is not clique-Helly, let M1,...,Mk be a family of cliques of G minimally non Helly and 
p1,...,pk the corresponding intersection points. As this family is minimally non Helly, for every 
subset of j intersection points (j < k) we have an arc in the circular-arc representation of G which 
covers all the intersection points in the subset. But the graph G lies in HCA, then we cannot have 
the situation of Figure 4.  
 

 

Figure 4 

   So, we have two arcs which cover all the circle and there is a clique Mt which intersects with any 
clique in G (Figure 5). Hence, the vertex wt in K(G) (corresponding to clique Mt in G and the 
intersection point pt in the representation) is a universal vertex and we know that every graph with a 
universal vertex is a clique-Helly graph. 

 

 
 

Figure 5 
 
 
c) K(G) is a proper circular-arc graph 
 
   We may assume that K(G) is connected. If it is not connected, this means that G is an interval 
graph. So, K(G) is a proper interval graph [10], which is a subclass of proper circular-arc graph. 
 
   Let F* = {F1,...,Fr} = {C(Ai) ∈ F / C(Ai) ⊄ C(Aj), ∀C(Aj) such that C(Ai) ≠ C(Aj)} be a dominant 
family of circular complete subgraphs of SK(G). Let {p1,...,pn} be the vertices of SK(G). We define 
F+(pi) as the largest subsequence {pi,pi+1,...} of the circular ordering such that there exists only one 
Fj of F* which contains it (F+ is well defined because it covers K(G) and is a dominant family). 
Similarly, we define F-(pi) as the largest subsequence {...,pi-1,pi} of the circular ordering such that 
there exists only one Fj of F* which contains it. As F* covers K(G), N[pi] = F+(pi)  ∪ F-(pi).  For 
each pi, we orient the edge pi → pk, if pk belongs to F+(pi) \ F-(pi) and pk → pi, if pk belongs to F-(pi) 
\ F+(pi) (each edge is oriented in only one direction). It remains to orient the edges (pi,pk), when pk 
belongs to F+(pi)  ∩ F-(pi). These edges may be oriented in an arbitrary way. Clearly, the inset of 
each pi is contained in F-(pi) and the outset, is contained in F+(pi). So, this orientation transforms the 
graph in a local tournament because F+(pi) and F-(pi)  are complete subgraphs of K(G). Then, K(G) 
is a proper circular-arc graph (Theorem 2). 
 
 



Remark: 
 
It is interesting to analyze the relation between K(HCA) and UCA because both are subclasses of 
PCA. In figure 6, we show a graph G in K(HCA) \ UCA, another graph  H in UCA \ K(HCA) and 
the trivial graph (only one vertex), which lies in K(HCA) ∩ UCA.  
 

 
 

Figure 6 
 
Let us verify that H, the graph of figure 7, does not belong to K(HCA). 
 

 
 
                                             Figure 7 
    

 
 Suppose the contrary, let G be a HCA graph and K(G) = H. We select a Helly circular-arc 
representation of G. Let A1,...,An be the arcs of this representation  and v1,...,vn the respective 
vertices of G. Each clique Ci of G is represented (because G ∈ HCA) by a set of arcs which have a 
common intersection. There is a point of the circle pi which lies in this intersection, we call it 
intersection point. We identify each intersection point pi with a vertex wi of  H and a clique Ci of G. 
The edge (wi,wj) ∈ E(H) if and only if the cliques Ci and Cj have some arc At in common. In the 
Helly circular-arc representation of G, we first draw the intersection points p1, p3, p4 and p5, 
corresponding to the cliques C1, C3, C4 and C5 of G, respectively (Figure 8). 

 
 

Figure 8 
 
Now the clique C6 must intersect C1, C3, C4 and C5. We need that the arcs A and A´ cover all the 
circle because the graph G belongs to HCA (Figure 9). 

 



 
 

Figure 9 
 
 
   We cannot draw the intersection point p2 in the representation so that the clique C2 does not 
intersect C6. Clearly, this fact shows us a contradiction because w6 is not adjacent to w2 in H. 
 
 
Corollary 2: If G is a Helly circular-arc graph, then either K2(G) is an induced subgraph of G or 
K2(G) is a complete graph.  
 
Proof: Suppose that K(G) has a universal vertex u. Then, any clique of K(G) contains u, which 
implies that K2(G) is a complete graph. Otherwise, let K(G) be a graph without universal vertices. 
Let F* = {F1,...,Fr} = {C(Ai) ∈ F / C(Ai) ⊄ C(Aj), ∀C(Aj) such that C(Ai) ≠ C(Aj)} be a dominant 
family of circular complete subgraphs of SK(G) as we have defined in Theorem 3.  By Lemma 1, 
{C(Ai)}, the members of F*, are the only cliques of K(G), so they represent the vertices of K2(G). It 
is clear that for any C(Ai), C(Aj) ∈ F* (i ≠ j),   C(Ai) ∩ C(Aj) ≠ ∅ if and only if Ai ∩ Aj ≠ ∅, where 
Ai and Aj are the arcs of the circular-arc representation, corresponding to the vertices vi and vj of G. 
Hence, K2(G) is an induced subgraph of G.  
 
Note: Escalante [4] proved a similar result for clique-Helly graphs. He showed that if G is a clique-
Helly graph, then K2(G) is an induced subgraph of G. 
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