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Abstract

A graph is clique-perfect if the cardinality of a maximum clique-independent set
equals the cardinality of a minimum clique-transversal, for all its induced sub-
graphs. A graph G is coordinated if the chromatic number of the clique graph
of H equals the maximum number of cliques of H with a common vertex, for every
induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs.
The complete lists of minimal forbidden induced subgraphs for the classes of clique-
perfect and coordinated graphs are not known, but some partial characterizations
have been obtained. In this paper, we characterize clique-perfect and coordinated
graphs by minimal forbidden induced subgraphs when the graph is either paw-free
or {gem,W4,bull}-free, two superclasses of triangle-free graphs.
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1 Introduction

A graph G is perfect if the chromatic number equals the clique number
for every induced subgraph H of G. A graph G is perfect if and only if no
induced subgraph of G is an odd hole or an odd antihole [7]. This class of
graphs can be recognized in polynomial time [6].

A graph G is clique-Helly (CH) if its cliques satisfy the Helly property,
and it is hereditary clique-Helly (HCH) if H is clique-Helly for every induced
subgraph H of G. The clique graph K(G) of G is the intersection graph of
the cliques of G. A graph G is K-perfect if K(G) is perfect.

A paw is a triangle with a leaf attached to one of its vertices. A gem is
a graph of five vertices, such that four of them induce a chordless path and
the fifth vertex is universal. A bull is a triangle with two leafs attached to
different vertices of it. A wheel Wj is a graph of j + 1 vertices, such that j of
them induce a chordless cycle and the last vertex is universal. We say that a
graph is anticonnected if its complement is connected. An anticomponent of
a graph is a connected component of its complement.

A clique-transversal of a graph G is a subset of vertices that meets all
the cliques of G. A clique-independent set is a collection of pairwise vertex-
disjoint cliques. The clique-transversal number of G, τC(G), and the clique-

independence number of G, αC(G), are the sizes of a minimum clique-trans-
versal and a maximum clique-independent set of G, respectively. Clearly,
αC(G) ≥ τC(G), for any graph G. A graph G is clique-perfect [10] if τC(H) =
αC(H) for every induced subgraph H of G. The only clique-perfect graphs
which are minimally imperfect are the odd antiholes of length 6j + 3, for any
j ≥ 1 [4]. The complexity of the recognition problem for clique-perfect graphs
is still not known.

A K-coloring of a graph G is a coloring of K(G). A Helly K-complete

of a graph G is a collection of cliques of G with common intersection. The
K-chromatic number and the Helly K-clique number of G, denoted by F (G)
and M(G), are the sizes of a minimum K-coloring and a maximum Helly K-
complete of G, respectively. It is easy to see that F (G) ≥ M(G) for any
graph G. A graph G is C-good if F (G) = M(G). A graph G is coordinated if
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every induced subgraph of G is C-good. Coordinated graphs were defined and
studied in [3], where it was proved that they are a subclass of perfect graphs.
The recognition problem for coordinated graphs is NP-hard and remains NP-
complete when restricted to some subclasses of graphs with M(G) = 3 [18].

A class of graphs C is hereditary if for every G ∈ C, every induced subgraph
of G also belongs to C.

Finding the complete lists of minimal forbidden induced subgraphs for the
classes of clique-perfect and coordinated graphs turns out to be a difficult
task ([1,17]). However, some partial characterizations have been obtained in
previous works (see [1,2,5,11]). In this paper, we characterize clique-perfect
and coordinated graphs by minimal forbidden induced subgraphs when the
graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-
free graphs. In particular, we prove that in these cases clique-perfect and
coordinated graphs are equivalent to perfect graphs and, in consequence, the
only forbidden subgraphs are the odd holes. As a direct corollary, we can
deduce polynomial time algorithms to recognize clique-perfect and coordinated
graphs when the graph belongs to these classes.

2 Main results

Triangle-free graphs were widely studied in the literature, usually in the
context of graph coloring problems (see for example [12,13]). It is easy to see
that if a graph is triangle-free then it is perfect if and only if it is clique-perfect,
if and only if it is coordinated. We shall extend this result by analyzing two
superclasses of triangle-free graphs: paw-free and {gem,W4,bull}-free graphs.

Paw-free graphs were studied in [14]. In this work we prove that the
characterization mentioned above for clique-perfect and coordinated graphs
on triangle-free graphs also holds on paw-free graphs.

Lemma 2.1 [14] Let G be a paw-free graph. If G is not anticonnected then

the anticomponents of G are stable sets. If G is connected and anticonnected

then G is triangle-free.

We first prove the following auxiliary results.

Theorem 2.2 Let G be a paw-free, connected and anticonnected graph. Then

G is perfect if and only if G is bipartite.

Theorem 2.3 Let G be a paw-free graph. If G is not anticonnected, then G

is coordinated.

Now we can prove the main result for paw-free graphs.



Theorem 2.4 Let G be a paw-free graph. The following statements are equiv-

alent:

(i) G is perfect.

(ii) G is clique-perfect.

(iii) G is coordinated.

Proof:

(i) ⇒ (ii)) Since the class of paw-free perfect graphs is hereditary, it is
enough to see that αc(G) = τc(G). We can assume that G is connected. If
G is anticonnected, then by Theorem 2.2, G is bipartite, and so G is clique-
perfect. If G is not anticonnected, then by Lemma 2.1, G has A1, . . . , As

anticomponents with Ai being an stable set, for all 1 ≤ i ≤ s. Without
loss of generality, we can assume that |A1| ≤ |Ai| (2 ≤ i ≤ s). Denote
a = |A1|. Every clique of G is composed by exactly one vertex of each Ai.
Let vi

1, . . . , v
i
|Ai|

be an enumeration of the vertices of Ai (for 1 ≤ i ≤ s). For

each j (1 ≤ j ≤ a), let Kj = {v1
j , . . . , v

s
j}. Clearly, Kj is a clique and for

1 ≤ i < j ≤ a, Kj ∩ Ki = ∅. Therefore, K1, . . . , Ka is a clique-independent
set, which implies that αc(G) ≥ a. On the other hand, since every clique has
a vertex of A1, then A1 is a clique-transversal of G. Therefore τc(G) ≤ a. So,
a ≤ αc(G) ≤ τc(G) ≤ a, and hence αc(G) = τc(G).

(ii) ⇒ (iii)) We can assume that G is connected. If G is not anticonnected,
then by Theorem 2.3, G is coordinated. If G is anticonnected, then by Lemma
2.1, G has no triangles and therefore G does not have odd antiholes with length
greater than 5. On the other hand, since odd holes are not clique-perfect, G

has no odd holes. We conclude that G is perfect. Let G′ be an induced
subgraph of G. To see that G′ is C-good, it is enough to prove that every
connected component of G′ is C-good. Let H be a connected component of
G′. If H is not anticonnected, then by Theorem 2.3, H is coordinated; in
particular it is C-good. If H is anticonnected, since it is also connected and
perfect, by Theorem 2.2 it follows that H is bipartite. Then H is C-good.

(iii) ⇒ (i)) Coordinated graphs are a subclass of perfect graphs. 2

Corollary 2.5 Clique-perfect and coordinated graphs can be recognized in lin-

ear time when the graph is paw-free.

Bull-free graphs were studied in the context of perfect graphs [8,16], and
{gem,W4}-free graphs in the context of clique-perfect graphs [9]. It is not
difficult to build examples of {gem,W4}-free perfect graphs which are neither
clique-perfect nor coordinated. So, the equivalence of Theorem 2.4 does not



hold on this class. But we can prove the same equivalence if we also forbid
bulls.

First we will show that if {gem,W4,bull}-free graphs are perfect, they are
K-perfect. We prove the following auxiliary results.

Theorem 2.6 If G is a {gem,W4}-free graph then K(G) is a {gem,W4}-free
graph, hence K(G) contains no odd antihole of length greater than 5.

Let G be a graph. A K-hole Q1, . . . , Qk (k ≥ 4) is a set of cliques of G

which induces a hole in K(G) (i.e., Qi ∩Qj 6= ∅ ⇔ i = j or i ≡ j± 1 mod k).
An intersection cycle of a K-hole Q1, . . . , Qk is a cycle v1, . . . , vk of G such
that vi ∈ Qi ∩ Qi+1 for every i, 1 ≤ i ≤ k. Let C be a cycle of a graph G. An
edge (v, w) of C is improper if there is a vertex z ∈ C such that v, w, z is a
triangle. An edge of C is proper if it is not improper.

Lemma 2.7 Let G be a perfect {gem,W4,bull}-free graph and C = v1, . . . ,

v2k+1 (k ≥ 2) an intersection cycle of a K-hole Q1, . . . , Q2k+1. Then C con-

tains neither two consecutive improper edges nor two consecutive proper edges.

Now we can prove that a perfect {gem,W4,bull}-free graph is K-perfect.

Theorem 2.8 If G is a perfect {gem,W4,bull}-free graph then G is K-perfect.

Proof: Suppose G is not K-perfect. By Theorem 2.6, K(G) contains no
odd antihole of length greater than 5. Therefore, K(G) contains an odd hole,
so there is an odd-length intersection cycle v1, . . . , v2k+1 (k ≥ 2) in G. Call
ei = (vi, vi+1) for every i, 1 ≤ i ≤ 2k + 1. By Lemma 2.7 we may assume that
e1 is an improper edge and e2 is a proper edge. By a repeated application of
the same lemma (note that the cycle is odd) we obtain that e2k+1 is improper
and therefore e1 is proper, which is a contradiction. 2

By the characterization of HCH graphs by forbidden subgraphs [15],
{gem,W4,bull}-free graphs are also HCH. It is known that if C is an hereditary
class of K-perfect clique-Helly graphs, every graph in C is clique-perfect and
coordinated [1,5]. So, since {gem,W4,bull}-free graphs is an hereditary class
of graphs, we obtain as a corollary of Theorem 2.8 the following equivalence.

Theorem 2.9 Let G be a {gem,W4,bull}-free graph. Then G is perfect, if

and only if G is clique-perfect, if and only if G is coordinated.

Corollary 2.10 Clique-perfect and coordinated graphs can be recognized in

polynomial time when the graph is {gem,W4,bull}-free.

It remains as an open problem to determine the “biggest” superclass of
triangle-free graphs where perfect, clique-perfect and coordinated graphs are
equivalent.
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