
 

 

 

 
 

COMPUTATIONAL COMPLEXITY OF CLASSICAL PROBLEMS FOR 
HEREDITARY CLIQUE-HELLY GRAPHS 

 
 

Flavia Bonomo1 
Departamento de Computación 
Facultad de Ciencias Exactas y Naturales 
Universidad de Buenos Aires 
Buenos Aires, Argentina 
fbonomo@dc.uba.ar 
 
Guillermo Durán2 
Departamento de Ingeniería Industrial 
Facultad de Ciencias Físicas y Matemáticas 
Universidad de Chile 
Santiago, Chile 
gduran@dii.uchile.cl 

 

Abstract 
A graph is clique-Helly when its cliques satisfy the Helly property. A graph is hereditary clique-Helly 
when every induced subgraph of it is clique-Helly. The decision problems associated to the stability, 
chromatic, clique and clique-covering numbers are NP-complete for clique-Helly graphs. In this note, we 
analyze the complexity of these problems for hereditary clique-Helly graphs. Some of them can be 
deduced easily by known results. We prove that the clique-covering problem remains NP-complete for 
hereditary clique-Helly graphs. Furthermore, the decision problems associated to the clique-transversal 
and the clique-independence numbers are analyzed too. We prove that they remain NP-complete for a 
smaller class: hereditary clique-Helly split graphs. 

 
Keywords: computational complexity; hereditary clique-Helly graphs; split graphs.  

 

 

 

                                                 
1 Partially supported by UBACyT Grant X184, PICT ANPCyT Grant 11-09112 and PID CONICET 
Grant 644/98, Argentina and “International Scientific Cooperation Program CONICyT/SETCIP”, Chile-
Argentina. 
2 Partially supported by FONDECyT Grant 1030498 and Millennium Science Nucleus “Complex 
Engineering Systems”, Chile and “International Scientific Cooperation Program CONICyT/SETCIP”, 
Chile-Argentina. 

 



1.  Introduction 

 

All graphs in this paper are finite, without loops or multiple edges. For a graph G we denote by 
V(G) and E(G) the vertex set and the edge set of G, respectively.  

A graph is complete if every pair of vertices is connected by an edge. A complete in a graph G 
is a subset of pairwise adjacent vertices of G. A clique in a graph is a complete maximal under 
inclusion. The clique number of a graph G is the cardinality of a maximum clique of G and is 
denoted by ( )Gω . 

The chromatic number ( )Gχ  of a graph G is the smallest number of colours that can be 
assigned to the vertices of G in such a way that no two adjacent vertices receive the same 
colour. 

A clique cover of a graph G is a subset of cliques covering all the vertices of G. A clique-
transversal is a set of vertices intersecting all the cliques of G. The clique-covering number 
k(G) and the clique-transversal number ( )C Gτ  are the cardinalities of a minimum clique cover 
and a minimum clique-transversal of G, respectively. 

A stable set in a graph G is a subset of pairwise non-adjacent vertices of G. A clique-
independent set is a subset of pairwise disjoint cliques of G. The stability number ( )Gα  and 
the clique-independence number ( )C Gα  are the cardinalities of a maximum stable set and a 
maximum clique-independent set of G, respectively. 

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by 
representing each set by a vertex, two vertices being connected by an edge if and only if the 
corresponding sets intersect. The clique graph K(G) of G is the intersection graph of the cliques 
of G.  

A family S of subsets satisfies the Helly property when every subfamily of S consisting of 
pairwise intersecting subsets has a common element. A graph is clique-Helly (CH) when its 
cliques satisfy the Helly property. A graph G is hereditary clique-Helly (HCH) when H is 
clique-Helly for every induced subgraph H of G. These graphs have been characterized in 
[Pr93] as the graphs which contains none of the four graphs in Figure 1 as an induced subgraph. 
This characterization leads to a polynomial time recognition algorithm for hereditary clique-
Helly graphs. 

An interesting survey on clique-Helly and hereditary clique-Helly graphs appears in [Fa02]. 

 

 

Figure 1. Hajös graphs 

 

A graph is split if its vertices can be partitioned into a clique and a stable set. 

The neighborhood of a vertex v in a graph G is the set N(v) consisting of all the vertices that are 
adjacent to v. The closed neighborhood of v is [ ] ( ) { }N v N v v= ∪ . A vertex v of G is called 
simplicial when N[v] is a complete of G, and universal when N[v]=V(G).  



It is easy to see that the decision problems associated to the stability, chromatic, clique and 
clique-covering numbers are NP-complete for clique-Helly graphs. The reduction is trivial: we 
have to add a universal vertex to the general graph G in order to generate a clique-Helly graph 
G+ . 

However, ( )Gω  can be obtained in polynomial time for HCH graphs. The number of cliques is 
bounded by the number of edges [Pr93] and all the cliques can be generated in O(nmk), where 
m is the number of edges, n the number of vertices and k the number of cliques of the graph 
[TIAS77]. 

The stable set and the colorability problems remain NP-complete for HCH graphs. These 
results are direct corollaries of the NP-completeness of these problems for triangle-free graphs 
[Pol74],[MP96]. For triangle-free graphs, a subclass of HCH graphs, the clique-covering 
number can be obtained in polynomial time [GJ79]. 

So, the following question arises naturally: what happens with the complexity of the clique-
cover problem for hereditary clique-Helly graphs? 

The decision problems associated to the problems of finding the clique-independence number 
and the clique-transversal number are NP-complete [CFT93] and NP-hard [EGT92], 
respectively. This last problem is not known to be in NP, in fact the problem of determining if a 
subset of vertices is a clique-transversal is NP-hard [DLS02]. 

The clique-transversal problem is NP-complete for HCH graphs. Again, this result is a 
consequence of the NP-completeness of this problem for triangle-free graphs. In this class of 
graphs, the clique-transversal problem is equivalent to vertex cover, and vertex cover is NP-
complete for triangle-free graphs [Pol74]. Remember that in this case the problem is in NP for 
the property of HCH graphs above mentioned. This problem remains NP-complete for split 
graphs [GP00]. 

However, the clique-independence number can be obtained in polynomial time for triangle-free 
graphs, because it is equivalent in this case to maximum matching. This problem is NP-
complete for split graphs [GP00] but, to our knowledge, it was not known its complexity for 
clique-Helly graphs. 

Again, the following question appears naturally: what happens with the complexity of the 
clique-independence problem for hereditary clique-Helly graphs? 

In this note, we prove that clique-cover and clique-independence problems remain NP-
complete for HCH graphs. Additionally, it is proved that clique-transversal and clique-
independence problems remain NP-complete for a smaller class: the intersection between HCH 
and split graphs. 

 

2.  Preliminaries 

 

There are some relations between the parameters defined in the introduction in a graph G and 
its clique graph K(G). 

 

Theorem 2.1 Let G be a graph. Then: 

(i) ( ) ( ( ))C G K Gα α= . 

(ii) If G is a clique-Helly graph then ( ) ( ( ))C G k K Gτ = . 

 



Proof: (i) It follows from the fact that independent cliques of G correspond to non adjacent 
vertices in K(G), and conversely, non adjacent vertices in K(G) correspond to independent 
cliques in G. 

(ii) Let 1 ( ), ,
C Gv vτ…  be a clique-transversal set of G. For each i, analyze the vertices in K(G) 

corresponding to the cliques in G that contain the vertex iv . They form a complete of K(G). 
This complete must be included in some clique iL  of K(G). Observe that these cliques iL  
( 1, , ( )Ci Gτ= … ) are not all necessarily different. Let us see that these at most ( )C Gτ  cliques 
are a clique cover of K(G). Let w be a vertex of K(G). Then w corresponds to some clique wM  
of G. As the set 1 ( ), ,

C Gv vτ…  intersects all the cliques of G, there is some vertex jv  that belongs 

to wM . This means that the corresponding vertex of wM  in K(G) belongs to the clique jL , i.e, 

jw L∈ . Then, the size of the minimum clique cover of K(G) is at most the size of this clique 
cover which is at most ( )C Gτ .  

All we need to prove is that if G is clique-Helly, then ( ) ( ( ))C G k K Gτ ≤ . By the Helly property, 
each clique L of K(G) has an associated vertex Lv  in G such that Lv  belongs to all the cliques of 
G corresponding to the vertices of L in K(G). 

Let 1 ( ( )), , k K GL L…  be a clique cover of K(G). Let 
1 ( ( ))
, ,

k K GL Lv v…  be the vertices in G associated 

to those k(K(G)) cliques. Let us see that they form a clique-transversal set of G. Let M be a 
clique of G and Mw  its corresponding vertex in K(G). Then there is an index j such that Mw  
belongs to the clique jL  in K(G). It follows that 

jLv  belongs to M in G. � 

 

Let 1, , kM M… and 1, , nv v…  be the cliques and vertices of a graph G, respectively. A clique 
matrix k n

GA ×∈\  of G is a 0-1 matrix whose entry ija  is 1 if j iv M∈ , and 0, otherwise. 

Another characterization of HCH graphs is the following [Pr93]: a graph G is HCH if and only 
if GA  does not contain a vertex-edge incidence matrix of a triangle as a submatrix. 

Let 1, , kM M… and 1, , nv v…  be the cliques and vertices of a graph G, respectively. Define the 
graph H(G) where V(H(G)) = 1 1{ , , , , , }k nq q w w… … , each iq  corresponds to the clique iM  of G, 
and each jw  corresponds to the vertex jv  of G. The edges of H(G) are the following: the 
vertices 1, , kq q…  induce the graph K(G), the vertices 1, , nw w…  are a stable set and jw  is 

adjacent to iq  if and only if jv  belongs to the clique iM  in G.  

Let n mA ×∈\  and n kB ×∈\  be two matrices. We define the matrix ( )| n m kA B × +∈\  as 
( | )( , ) ( , )A B i j A i j=  for i=1,…,n, j=1,…,m and ( | )( , ) ( , )A B i m j B i j+ =  for i=1,…,n, j=1,…,k. 
Let nI be the n n×  identity matrix. 

 

Theorem 2.2 [Ham68] Let G be a clique-Helly graph and H(G) as it is defined above. Then the 
cliques of H(G) are [ ]iN w  for each i, iw  is a simplicial vertex of H(G) for every i, and 
K(H(G)) = G.  

 

Corollary 2.1 Let G be a clique-Helly graph, |V(G)| = n. Then ( ) |t
H G G nA A I= . 



Proof: It follows directly from the fact that [ ]iN w  (i=1,…,n) are the cliques of H(G) and each 
clique contains the vertex iw  and the vertices jq  whose corresponding cliques jM  contain the 
vertex iv  in G. � 

 

This corollary leads us to prove the following result: 

 

Theorem 2.3 Let G be an HCH graph. Then H(G) is HCH. 

 

Proof: Let G be an HCH graph, |V(G)| = n. By Corollary 2.1, ( ) |t
H G G nA A I= . Let us suppose 

that ( )H GA  contains a vertex-edge incidence matrix of a triangle as a submatrix. Since it has two 

1's in each column, it must be a submatrix of t
GA , but then GA  contains a vertex-edge incidence 

matrix of a triangle as a submatrix, which is a contradiction. � 

 

3.  Clique cover 

 

The decision problem associated to the problem of finding the clique-covering number of a 
graph is the following: 

CLIQUE COVER 
INSTANCE: A graph G = (V,E), a positive integer K V≤ . 
QUESTION: Are there k K≤  cliques of G covering all the vertices of G ? 

To prove that CLIQUE COVER is NP-complete for HCH graphs, we will use that the 
following problem is NP-complete [GJ79]:  

EXACT COVER BY 3-SETS (X3C)  
INSTANCE: A set X such that |X|=3q and a collection C of 3-element subsets of X. 
QUESTION: Does C contain an exact cover (by q sets) of X ?  

 

Theorem 3.1 The problem CLIQUE COVER is NP-complete for HCH graphs. 

 

Proof: The transformation from X3C to CLIQUE COVER on HCH graphs is based on the 
transformation given in [GJ79] from X3C to PARTITION INTO TRIANGLES and is the 
following: let the set X with |X|=3q and the collection C of 3-element subsets of X be an 
arbitrary instance of X3C. We will construct an HCH graph G=(V,E), with |V|=3q’, such that G 
has a clique cover of size at most q’ if and only if C contains an exact cover of X. 

We will replace each subset { , , }i i i ic x y z=  in C by the graph of Figure 2. Let iE  be the set of 
18 edges of the graph corresponding to { , , }i i ix y z .  



 
Figure 2. Local replacement for c={x,y,z} in C for transforming X3C to CLIQUE COVER. 

 

Thus G=(V,E) is defined by  

 
1 1

{ [ ] :1 9},
C C

i i
i i

V X a j j E E
= =

= ∪ ≤ ≤ =∪ ∪  

It is easy to see that G does not contain any graph of Figure 1 as an induced subgraph, thus G is 
an HCH graph, |V| = |X| + 9|C| (q’ = q + 3|C|) and the transformation can be made in polynomial 
time. Figure 3 shows an example of this transformation from an instance of X3C to an instance 
of CLIQUE COVER. 

 
Figure 3. Transformation from an instance of X3C to an instance of CLIQUE COVER. 

 

Let us suppose that C contains an exact cover of X, then we construct a clique cover of G of 
size q’, by taking for each 1 i C≤ ≤  

 { [1], [2], },{ [4], [5], },{ [7], [8], },{ [3], [6], [9]},i i i i i i i i i i i ia a x a a y a a z a a a  

x y z 

a[1] 
a[2] a[4] 

a[5] 
a[7] 

a[8] 

a[6] 

a[9] a[3] 

u v w

a2[6] 

a2[9] a2[3] 

a2[1] 
a2[2] 

a2[8] 
a2[7] a2[4] 

a2[5] 

x y z 

a1[6] 

a1[9] a1[3] 

a1[1] 
a1[2] 

a1[8] 
a1[7] a1[4] 

a1[5] 

a3[6] 

a3[9] a3[3] 

a3[1] 
a3[2] a3[7] 

a3[8] a3[4] 
a3[5] 

X={u,v,w,x,y,z} 
C={{x,y,z},{u,v,w},{v,w,x}} 



whenever { , , }i i i ic x y z=  is in the exact cover and  

 { [1], [2], [3]},{ [4], [5], [6]},{ [7], [8], [9]},i i i i i i i i ia a a a a a a a a  

otherwise. 

Let us now suppose that G has a clique cover of size at most q’. Since the cliques of G are 
triangles, the number of cliques in the clique cover must be q’ and each vertex of G must be 
covered exactly once.  

In the graph of Figure 2, the only two ways of covering by triangles each vertex [ ]ia j  
(j=1,…,9) exactly once are the above mentioned, covering or not ix , iy  and iz , respectively. 
Then the exact cover of X is given by choosing those ic C∈  such that { [3], [6], [9]}i i ia a a  
belongs to the clique cover of G. 

Finally, the membership in NP for the restricted problem follows from that for the general 
problem. � 

 

4.  Clique transversal and clique-independent set 

 

The decision problems associated to the problems of finding the clique-independence number 
and the clique-transversal number of a graph, respectively, are the following: 

CLIQUE-INDEPENDENT SET  
INSTANCE: A graph G = (V,E), a positive integer K V≤ .  
QUESTION: Is there a set of K or more pairwise disjoint cliques of G ? 

CLIQUE-TRANSVERSAL 
INSTANCE: G = (V,E), a positive integer K V≤ . 
QUESTION: Is there a set of K or fewer vertices of G intersecting all the cliques of G ? 

 

Theorem 4.1 The problems CLIQUE-TRANSVERSAL and CLIQUE-INDEPENDENT SET 
are NP-complete for HCH split graphs. 

 

Proof: We will show a polynomial time transformation from CLIQUE COVER on HCH graphs 
(by Theorem 3.1 it is NP-complete) to CLIQUE-TRANSVERSAL on HCH split graphs. 

Define the graph G+  where ( ) ( ) { }V G V G u+ = ∪ , V(G) induces the graph G and u is a 
universal vertex. Since for any graph G all the cliques of G+  share the vertex u, the graph 

( )K G+  is complete and thus the graph ( )H G+  is a split graph. 

Let G be an HCH graph. As the set of cliques of an HCH graph has polynomial size and can be 
computed in polynomial time, ( )H G+  can be built in polynomial time. By Theorem 2.3, since 
G+  is an HCH graph, ( )H G+  is an HCH graph. By Theorem 2.2 ( ( ))K H G G+ += , and by 
Theorem 2.1 ( ) ( ) ( ( ))Ck G k G H Gτ+ += = . Finally, the problem of determining if a subset of 
vertices is a clique-transversal is solvable in polynomial time for HCH graphs, and therefore 
CLIQUE-TRANSVERSAL is NP-complete for HCH split graphs. 



In a similar way, using the equality ( ) ( ) ( ( ))CG G H Gα α α+ += =  instead of 
( ) ( ) ( ( ))Ck G k G H Gτ+ += = , and the NP-completeness of the STABLE SET problem for HCH 

graphs, CLIQUE-INDEPENDENT SET is NP-complete for HCH split graphs. � 

 

Corollary 4.1 The problem CLIQUE-INDEPENDENT SET  is NP-complete for HCH graphs. 
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