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Introduction, Motivation and Previous Work 

 
 In 1995, Costa, Hertz and Dubuis, introduced a new metaheuristic for graph coloring 
problems [3] and they named it EDM (for Evolutionary Descent Method). Graph coloring is a 
problem with many applications and it naturally arises in a variety of different areas like 
scheduling, assignments and timetabling and it is associated to other problems in the NP-Hard 
class. The graph coloring problem arises in classical areas of Graph Theory like finding the 
minimum number of colors to color a given map, scheduling of exams in an university (see also 
Ref. [20]), as well as others coming from the advances of technology like frequency assignment 
of TV broadcasting stations to channels and to model problems arising in the development of 
efficient compilers for computer programs. 

The metaheuristic can be classified as a memetic algorithm since it is based on a 
population search in which periods of local optimization are interspersed with phases in which 
new configurations are created from earlier, well-developed configurations or local minima of 
the previous iterative improvement process. The new population is created using crossover or 
recombination operators as in genetic algorithms. In this chapter we will discuss how a 
methodology inspired in Competitive Analysis and the recently introduced Comparative 
Analysis can lead to tight theoretical bounds and also be relevant to the problem of the design 
of recombination operators with better worst-case performance.  

 The term “memetic” was introduced in 1989 [8] to encompass a class of metaheuristics 
for combinatorial optimization problems which are based on the use of a population of “agents” 
engaged in periods of local-search-based optimization interspersed with phases in which new 
points in configuration space are created using crossover or recombination operators (see [20], 
[19], [8], [9], [10], [11], and [12]). They are also known as hybrid genetic algorithms, although 
the former denomination is preferred to emphasize the difference with standard genetic 
algorithms. The latter do not include local search or other forms of a priori knowledge of the 
problem at hand.  

 Costa and coworkers remarked that their method: “differs from most of the hybrid 
algorithms which have been recently developed in the sense that it uses a simple descent 
method instead of a refined sequential method which accepts non-improvement moves”. 
Although [7] is referenced as an example of such a method (those which accept non-



improvement moves at the local optimization phases), in Ref. [7] the binary perceptron 
learning problem is first addressed with a simple descent method (see also [4]). Regardless 
these minor comments, the techniques have many analogies with new “hybrid”  genetic 
algorithms as well as former methods like variants of Scatter Search introduced by F. Glover 
([6]). New results on memetic algorithms for timetabling problems can be found in Refs. [19], 
[20].  

It is important to mention at this point that a WWW home page for memetic algorithms, 
with links to papers and different research groups working in related issues, can be found at:  
http://www.densis.fee.unicamp.br/~moscato/memetic_home.html. The 
page contains links to many on-line references and papers cited in this chapter.  

 The impact that a suitable, custom design of the recombination operator has on the 
overall performance of memetic and genetic approaches had been previously identified and it 
was well recognized in Refs. [5], [7], [8], [11], and [12]. However, we face an intrinsic 
practical difficulty in evaluating the effect that the recombination has by itself and to 
disassociate its benefits from the other components of a complex metaheuristic. Sometimes the 
recombination is just a small part of a highly complex algorithmic framework and sometimes, 
frustrating the hope for a more quantitative treatment of the issue, it seems that some 
researchers even enjoy having dozens of free parameters they fix on the basis of some 
preliminary computational experiments. All these facts finally conspire, they foil and disable us 
from achieving a proper comparison of results. Moreover, they do not allow a clear 
understanding of the key beneficial mechanisms of each implementation. This said, a good 
recombination may be part of a complex algorithmic framework and it seems to be very hard to 
find a reasonable way to evaluate its performance against a different recombination if we can 
only rely on the results of computer experiments.  

 The main problem we face is that we are making a comparison which may be biased by 
many other algorithmic decisions in a memetic framework like the type of local search used, the 
neighborhood definition for moves among different configurations, the different parameters 
used, etc. A similar line of argument can be established for implementations of genetic 
algorithms, since they are not free of other ad-hoc parameterized decisions like the rate of 
mutation, probabilities for selection for recombination, mating strategies, avoidance of 
inbreeding solutions, etc. Indeed, these problems are part of the still not developed 
methodological procedures related to the proper performance analysis of metaheuristics 
techniques. However, we should mention at least one good step forward in this direction 
regarding memetic algorithms. It was the work on the Euclidean Traveling Salesman Problem 
(ETSP) by Reimar Hofmann [5] followed by Nick Radcliffe and Patrick Surry [12]. Their work, 
although it also relied on experimental issues, was based on the use of Forma Analysis and 
correlation within formae experiments using solved instances of the ETSP. This technique, 
which still relies on computational experimentation, attempted to isolate the benefits of 
recombination per se.  The practicality of these approaches had been anticipated in [8] and [7]. 

 In this chapter, we present a novel methodology for the analysis and the design strategy 
of recombination operators. As a case study,  which will illustrate the technique, we will 
discuss the principal recombination of the algorithm for the graph coloring problem introduced 
in [3]. Part of our motivation is based on the good results obtained by Costa and coworkers on 
large random graphs of the class Gn,p  (graphs with n vertices and density p) as well as some of 
the limitations of their method. Our approach to the evaluation of the performance of a 
recombination is inspired on Competitive Analysis and Comparative Analysis [21], two 
techniques developed in connection with on-line algorithms. In the next section we will discuss 
some of the main aspects of the heuristic proposed in [3] and with more detail the 



recombination procedure we will analyze. In a later section we will discuss in some detail the 
reasons which lead us to propose this approach.  

 
The recombination  procedure and associated definitions  

 
 In order to understand the problem and the recombination procedure we need to 
introduce some definitions. Our notation convention will follow that of [3] for clarity. Let 
G=(V,E) be an undirected graph of vertex set  V and edge set E. An independent set is a set I ⊆ 
V such that every pair in I is not adjacent in G, i.e. {x,y} ⊂ I  ⇒ (x,y) ∉ E. A partial q-coloring 
of G is a partition (V1, V2, …, Vq) of a subset V' ⊆ V in q disjoint independent sets. If we assign 
a color c(x)=i to each vertex x ∈ Vi then a partial coloring with q colors can be interpreted as 
the problem of coloring with q colors a set V'⊆ V such that no two adjacent vertices have the 
same color. The dimension of a partial coloring with q colors is the cardinality of the set V'=V1 
∪ V2 … ∪ Vq. A partial coloring with q colors of dimension n =V is known as a q- coloring 
of G. The associated optimization problem is the task of finding a coloring with the minimum q. 
The chromatic number of a graph is the minimum q for which a q-coloring exists.  

 The algorithm introduced by Costa, Hertz and Dubuis has two phases that can be 
included in a memetic framework. The first phase tries to find a partial q'-coloring.  To achieve 
that goal, a recombination procedure is used and combined with local search descent steps. The 
second phase, which is the essential part of the algorithm, tries to find a feasible q-coloring of 
the yet uncolored graph. It is this recombination procedure the one we are analyzing in this 
chapter. Clearly, the algorithm would use q+q' colors to finally produce a coloring in this way. 
In [3], the authors claim that they need to use the two-phase approach since they believe (based 
on their own experiments and other work which exists in the literature) that they would not be 
able to find a feasible q-coloring using only the second phase. At least, they find it really 
improbable when addressing problems with more than 300 nodes.  

 The recombination procedure we are going to analyze has as input two parent colorings 
S1 and S2 of a graph G(V,E) which are not necessarily feasible. That is, it is accepted the 
existence of conflicting edges, that is edges which have both extremes colored using the same 
color. Let ci(v) be the color assigned to vertex v in the coloring Si and let NCEi(v,d) be the 
number of conflicting edges which are at a distance d from v in Si .  To each vertex v a penalty 
pi(v) is associated with v which measures how “close”  vertex v is to conflicting edges in Si. 
More explicitly 
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where ωd are “weights”   which balance the importance of conflicting edges located at different 
distances from vertex v. Costa and coworkers have decided that  ( ω0 > ω1 > ω2 )  and not to 
take into account the cases where d > 2 regarding some preliminary, qualitative “cost/benefit” 
computational experiments they performed. From two “parent”  colorings S1 and S2, one 
”child”  coloring S3 will be created such that each vertex v ∈ S3 will be colored either with 
c1(v) or c2(v) and preference is given to the color with the smallest penalty pi(v) in S1 or S2. 
When p1(v) = p2(v), we will consider the vertices of v which have been already colored in the 
current partial coloring of S3  choosing the color c ∈ {c1(v), c2(v)} which minimizes nadj(v,c), 
the number of adjacent vertices to v colored c in S3. If we can not decide between c1(v) and 
c2(v) then we break ties choosing between them at random with the same probability. The 
following pseudocode from  [3] would certainly help to clarify the procedure. 



 
  Input: S1, S2 ∈ X; Output: S3 =(V1, …, Vq) ∈  X  
  nadj(v,c)= 0; ∀v ∈ V, ∀c=1,…, q;  
  Vc := ∅;  ∀c=1,…, q; 
  for (each vertex v ∈ V) do 
   if p1(v) < p2(v) then c3(v)=c1(v) 
   else if p2(v) < p1(v) then c3(v)=c2(v) 
          else (* p1(v) = p2(v) and we need to break ties *) 
    if nadj(v,c1(v))<nadj(v,c2(v)) then c3(v)=c1(v) 
    else if nadj(v,c2(v))<nadj(v,c1(v)) then c3(v)=c2(v) 
            else (* then nadj(v,c1(v))=nadj(v,c2(v)) *) 
                                                               (* now we break ties at random *)  
                    c3(v)=random(c1(v),c2(v),0.5); 
   nadj(v’,c3(v))=nadj(v’,c3(v))+1         ∀v’ adjacent to v; 
   V V vc v c v3 3( ) ( ) { }= ∪  
 
 To be fair, this randomized procedure is actually defining not one but a “family” of 
recombinations since it has  ω0, ω1 and ω2 as free parameters. After a series of preliminary 
computational experiments with 20 graphs belonging to the class G100,0.5, Costa and co-
workers have observed that the best results have been obtained using ω0 = 100, ω1 = 3 and ω2 
= 1. Undoubtedly, this selection leaves many open questions since it may be the case that this 
values are instance-dependent, that is they may be optimal just for the input distributions of the 
instances used in their computational study. Finite size effect associated to the use of  |V|=100 
might have also influentiated this selection.  
 

A “competitive-inspired” analysis 
 

 We will discuss two cases, where the principal recombination introduced in [3] is 
studied. The analysis is inspired by the concept of Competitive Analysis which was first 
introduced to analyze the performance of on-line algorithms.  

 A problem is said to be on-line if it requires that irrevocable decisions which influence 
the output must be made before having a complete knowledge of the entire input. Some 
examples of this class of problems can be found in robot motion planning, maintaining dynamic 
data structures, video on demand, network routing, etc. These problems are a real challenge to 
standard worst-case analysis since, after examination of the characteristics of an algorithmic 
procedure an “adversary ” can choose an input sequence which can foil the performance of the 
on-line algorithm. 

  One way to overcome the problem of dealing with the distribution of inputs and still 
make a relevant worst-case analysis is to use the method known as Competitive Analysis, 
developed by Sleator and Tarjan [13] although the concept can be found in the earlier literature 
of bin packing [14], [15]. The key idea is to compare an on-line algorithm with the optimal off-
line algorithm, i.e. one that can see the entire input in advance thus it will have a complete 
knowledge of the future events. This comparison is done on an input-by-input basis. If we 
denote as A an on-line algorithm and ξ an input sequence we denote with A(ξ) the cost of 
algorithm A on ξ. If    Aopt(ξ) is the cost of the optimal off-line algorithm on input ξ then we 
say that A is a k-competitive algorithm if for all ξ, A(ξ) - k Aopt(ξ) remains bounded by a 
constant. The term k-competitive was coined in [16]. For a randomized algorithm A is replaced 
by <A(ξ)>a, which stands for the expectation value over A's random choices. The 
competitiveness of A, denoted βA is the infimum of  k such that A is k-competitive. 



 Under this perspective, the quality of a specific algorithm is given by the maximum 
ratio between the cost of an on-line problem and the cost incurred by the optimal algorithm for 
the off-line problem. Competitive analysis, although it is still a kind of worst-case analysis, 
implied a conceptual break-through, since by the definition of competitiveness it liberates from 
any kind of probabilistic assumptions about the input data. It allowed to view an on-line 
problem as  a game between an on-line player and an adversary who will chose the input of the 
problem so as to maximize the ratio between the algorithm’s cost and that of the optimal off-
line algorithm [17].  

 With this concepts in mind, we will give an example of the kind of analysis we propose 
for recombination design; we will act as an adversary of the recombination we want to study. 
We will first consider the problem of coloring K6,6, a bipartite complete graph with six vertices 
in each partition. The vertices are numbered such that {v1,…,v6} and {v7,…,v12 } belong to the 
first and the second partition, respectively. Note that the recombination of [3] specifies a 
number of operations which are executed in an order given by the vertex numbering. This said, 
thinking as a game in which we are the adversaries, we have chosen the input graph and the 
sequence of events. The input to the recombination procedure will be two parent configurations 
S1 and S2. with no conflicting edges, two feasible colorings. Vertices in each partition have the 
same colors, and we will also require that c1(v1)=c2(v7)=B (B for Blue) and c1(v7)=c2(v1)=R 
(R for Red). A natural cost measure of the performance of the recombination would be the 
number of conflicting edges present in the child coloring.  

 It is obvious to remark that the chromatic number for K6,6 is two,  so the discussion 
may look irrelevant since it may seem that it has no sense to cross two optimal solutions. 
However, the  example must be regarded as a subgraph of a larger graph. The decision to work 
out an example case for only two colors is motivated by the fact that the subgraph can be part of 
a well-developed configuration since those are the ones engaged in recombination  in a memetic 
algorithm. We will see for this example how the recombination  generates a “child”  S3 from 
two “parent”  colorings S1 and S2.. For all v in V, p1(v) = p2(v) = 0, so we need to take into 
account nadj(v, ci(v)) to break ties. Starting from v1, clearly nadj(v1, c1(v1)) = nadj(v1, 
c2(v1))=0, thus we need to arbitrarily select the color of v1 in S3. The same situation will occur 
for all vertices in the same partition v1,v2,…,v6  if we follow the index order in the for loop of 
the pseudocode which defines the recombination . Due to the randomized procedure, we may 
end up with a worst-case scenario in which we have c3(v1) = c3(v2) = c3(v3) = B and c3(v4) = 
c3(v5) = c3(v6) = R. When we attempt to color vertices v7 to v12 we note that nadj(vj,c1(vj))= 
nadj(vj,c2(vj))=3 for 7 ≤  j ≤ 12, so we must break ties again to color it. Again, it may be 
possible that c3(v7) = c3(v8) = c3(v9) = B and c3(v10) = c3(v11) = c3(v12) = R. In conclusion, 
starting from two colorings of a graph with 36 edges without conflicts we end up having a new 
coloring S3  which has 18 conflicting edges (|E|/2 in this case), (see Figure 1). 

 



 
  

Figure 1: The figure shows two parent colorings S1 and S2 and one child coloring S3  which  
can be the result by the application of the graph coloring recombination  introduced in Ref. [3].  
For this particular instance of the problem, two feasible colorings (without conflicting edges) 
can create an output that has half of the edges in conflict. 

 
 It is clear that the situation described above has already identified the problem of 
creating new configurations which have at least |E|/2 new conflicting edges even when coming 
from two well developed solutions. This may constitute a simple instance of a more general 
case. Let Kj1, ,…, jk be a k-partite complete graph such that j1 = j2 = … = jk = j. To simplify 
the discussion we will suppose that j and k are even. We will start again with a situation in 
which S1 and S2 have no conflicting edges. Let Vi be the ith partition, (|Vi|= ji = j). Let c1(v1) = 
1+ int ((l-1)/j) and c2(v1 ) = k+1 - c1(v1) where int(x) is the integer part of x. In this case the 
chromatic number for this graph is k but again we must recall that it can be regarded as a 
subgraph of a larger graph which is the one we would like to color. Again to generate S3, for all 
v in V, p1(v) = p2(v) = 0, since the two parents have no conflicting edges. Starting from v1, 
clearly nadj(v1, c1(v1)) = nadj(v1, c2(v1))=0 with c1(v1)=1 and c2(v1)=k, thus we need to 
arbitrarily select among them. The same situation will occur for all vertices v2,…,vj ∈ V1 if we 



follow the index order. Due to randomization, we may end up with a worst-case scenario in 
which we have c3(v1) = c3(v2) = … = c2(v(j/2)) = c1(v1) = 1 and c2(v(j/2)+1) = … = c3(vj) = 
c2(v(j/2)+1) = k. Again, due to the randomization procedure we may end up with a situation in 
which the first half of the vertices of partition |Vi| are colored with color i in S3 and the second 
half is colored with color k-i+1 (note that for vl with l>kj/2, the argument still holds but with 
nadj(v1, ci(v1)) = j/2). In conclusion, starting with two colorings of Kj,…, j, a k-partite 
complete graph with |V|=kj vertices and |E|=|V| ×(|V|-j)/2 edges which have no conflicting edges, 
we end up having a new coloring S3 which has |E|/(2(k-1)) conflicting edges. This number is 
O(|E|) for “small” k and O(|V|) for larger values of  k. For k=2 we recover the result we 
presented in the first example. 

 
Upper bound  

 
 In this section we will prove that the first example of the preceding section is a worst-
case example for the principal recombination  of [3]. 
 
Lemma:  
 Given a graph G(V,E) and two feasible q-colorings of G, S1  and S2, let S3  be the  q-
coloring of G (not necessarily feasible) created  by the recombination  of  [3]. For a node v ∈ V 
we denote as NCE3  (v) the number of conflicting edges created in S3  at the moment of coloring 
node v with either c1 (v) or c2 (v), the color assigned to vertex v in the colorings S1  and S2, 
respectively. We will denote as |AC(v)| the number of nodes adjacent to node v in G which have 
already been chosen to coloring in S3 when we are coloring node v. Then 

 
 NCE3(v)  ≤  |AC(v)| /2 

 
Proof:  
 Let c1  (v), c2  (v) the colors assigned to node v in S1  and S2  respectively. Let's suppose 
without loosing generality, that node v will be colored as in parent coloring S1, that is c3  (v) = c1  

(v) =R. We face two possibilities here. Let's first consider what happens when c2  (v) = c1  (v) = 
R. In this case, we are sure that no other vertex adjacent to vertex v has been colored with color 
R since by hypothesis we have assumed that both S1  and S2  are feasible colorings, then they 
have no conflicting edges. Then NCE3  (v) = 0, and, since |AC(v)| ≥ 0  then NCE3  (v) ≤ |AC(v)| 
/2 which proves the result in this case. Now let's consider what happens when c2  (v) ≠ c1  (v). 
We will suppose that NCE3  (v) ≥  int (|AC(v)| /2)+1, where int (x) represents the integer part of 
the argument x, and we will prove the sought result via reductio-ad-absurdum. First note that p1 

(v) = p2 (v)=0, since S1  and S2  are two feasible colorings of G. Then the coloring of v in S3  
was decided as a consequence of two possibilities according the recombination  of [3]: 

 1. nadj(v,c1  (v)) < nadj(v,c2  (v)), or 

 2. nadj(v,c1  (v)) = nadj(v,c2  (v)),  

and the selection of c3  (v) was made at random with probability 0.5. 

 Since we have supposed that NCE3  (v) ≥  int (|AC(v)| /2)+1 then nadj(v,c1(v)) > ΣX  
nadj(v,X) where X runs through all the colors. Since ΣX  nadj(v,X ) ≥ nadj(v,c2 (v)), we get 
nadj(v,c1(v)) ≥ nadj(v,c2 (v)) which contradicts the  two cases above. This finally proves the 
lemma. ÿ   

 Now we are in condition of proving the following worst-case upper bound. 

Theorem: 



 Given a graph G(V,E) and two parent colorings as defined in the lemma above, the 
number of conflicting edges ( NCE3 ) in the final coloring S3  generated by the recombination  
of Ref. [3], is bounded by |E|/2.  
Proof: It immediately follows from the Lemma.  
 Since NCE3 = Σi=1

|V| NCE3(vi) ≤ Σi=1
|V| |AC(vi)|/2 = |E|/2. €ÿ  

 
A weaker adversary  

 
 In our previous analysis we have used randomization for the benefits of our thesis.  We 
have shown that we can get an extremely bad result due to the application of the standard 
procedure given in Ref. [3]. An open question that motivates this section is: How relevant 
where these random choices ? How well would the recombination procedure do if it would not 
face such an extremely ``unfair’’ sequence of events ?  

 In certain way, we are making an analysis with a weaker adversary, one that can not 
control at will those random choices. However, the order in which the vertex are going to be 
colored is at the control of the adversary and it will be the same we have used in the previous 
worst-case analysis. In a certain way, we see some analogies with the relevance that knowing 
the future has for certain on-line problems [18].  

 In our previous analysis, the selection of colors for vertices in S3  was random, but we 
were always choosing among the two possibilities the one which would be more “unfair” for 
the recombination  of [3]. We will now analyze what happens when the selection of which 
color to use (B or R) is equiprobable (that is, it has probability of selection 0.5), whenever ties 
must be broken. It is a way of relaxing the worst case scenario by reducing the “strength” of the 
adversary (using jargon from Competitive Analysis).  

 We will maintain the same numbering order for the vertices.  We want to calculate the 
expected value of conflicting edges in S3  for a K2t, 2t  colored with two colors, where each node 
(whenever ties must be broken) can take color c1  with probability 0.5. Colors start to be 
assigned to vertices starting with v1  and following the same indexing order we used before. 
This leads to the fact that the V1   = { v1  , v2  ,..., v2 t  } partition  can get 22t  different 
configurations of two colors.  
 Let's denote with NCE3  the number of conflicting edges in S3.. When the first partition 
is finally colored, we have to consider two different cases: 
 
 a) The number of nodes with color c1  is different to the number of  nodes with color c2.   
Without losing generality, we can suppose that there are more nodes colored with c1   than with  
c2,  the other case is analogous.  When coloring  the other partition, and according the algorithm 
proposed in [3], all other nodes will be assigned color c2   so the number of conflicting  edges 
would be 2t | c2   |(1) , where | c2   |(1)  is the number of nodes with color c2  in V1.. The distribution 
of the number of nodes colored with color c2  in V1   is a binomial distribution with parameters  
2t and | c2   |(1) ( B (2t, | c2   |(1) )).  Since  the total number of different ways in which we can color 
V1  with 2 colors is equal to 22t, then the probability of having 2kt conflicting edges is given by:  
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where the factor of 2 is due to the fact that k can be either  | c1   | or | c2  | regarding which one is 
the minimum of both.  
 
b) The number of nodes colored with c1  and c2   is the same. Then the nodes of V2  will have 



colors which will be randomly chosen, but any of the 22t  final configurations of V2 will have 
the same number of conflicting edges, exactly 2t2 . Then the probability of having exactly 2t2. 
conflicting edges is given by 
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For k> t this probability is zero. Then the expected value of conflicting edges is given by   
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Using the equality   
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and finally we reach the sought result          
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 The relation between |E| and t is given by |E| = 4t2 which allows us to say that E(NCE3 )   
≥ |E|/3 for t ≥ 3,  which can be easily proved by induction on t. Figure 2 shows the difference 
between both functions up to  |E| = 600.  
 
 
 
 
     
 
 



           {E(NCE3), |E|/3} 

|E| 
 
 

 For the specific example given above (a K6,6 graph colored with two colors) the 
expected value of conflicting edges in S3 is 99/8.  

 This result let us claim that if the same indexing order is used, then the expected value 
of conflicting edges is at least of the same order than the number of edges. We have proved that 
in this average case scenario, breaking ties uniformly at random does not help significantly over 
the worst-case bound. 
 

Optimal marriages 
 
 The previous analysis has lead us to consider the introduction of another procedure 
before recombining two parent colorings S1 and S2 to create a new child coloring S3. Since the 
color names are arbitrarily chosen, any given coloring with q colors is basically equivalent to q! 
different assignments (coming from the q! possible permutations of the colors’ indexes). It is 
quite evident from the two examples introduced above that an optimal “off -line” algorithm 
would recognize that, in both cases, the two colorings are actually the same and would act 
accordingly. We remark here that the previous quotation marks have been used since the 
problem is definitely not an on-line problem. The characteristics of the problem faced by Costa 
and coworkers let us free to design any type of recombination and for that purpose we can 
benefit from the fact that the complete colorings S1 and S2 are completely known in advance. It 
is the “myo pia” introduced by the sequential operations in the recombination we are currently 
studying which is the core source of the inefficiency.  

   We will see in the rest of this section how the previous analysis suggests the use of 
another procedure. It must be a fast heuristic to address the problem of reindexing the colors in 
one of the parents, say S2 , in order to maximize the number of vertices which have the same 
color in both parents before using them to create a new coloring S3. 

 Again, we will have as input two colorings (not necessarily feasible) S1=(V1,(1),…, 
Vq,(1)) and S2=(V1,(2),…, Vq,(2)) where Vj,(i) denotes the set of vertices colored with color j in 
parent Si. We will create an auxiliary graph Kq,q, a bipartite complete graph with q vertices in 
each partition and with weighted edges. The first partition is the set {v1,(1),…, vq,(1)} and the 
second one is {v1,(2),…, vq,(2)}. The weight (wij)of the edge identified by (vi,(1),vj,(2)) stands 
for the number of vertices in common between Vi,(1) and Vj,(2) (Figure 3). This said, if we find 
a maximum weighted perfect matching (in this case, it is clear that the maximum weighted 
matching will be perfect because the bipartite complete graph has non negative weights in the 
edges) of Kq,q, as defined above, and then we relabel the set of indexes of {Vj,(2)} according to 
the best matching found, we have a way to overcome some of the problems discussed in the 
previous section. 



 
Figure 3: An auxiliary graph used for reindexing the colors before crossing two parent 
colorings. It is a Kq,q, a bipartite complete graph. Each vertex of a given partition represents a 
given color in one of the parents. The weight (wij)of an edge which connects vertices 
representing colors i and j in partitions 1 and 2 stands for the number of vertices colored with 
color i in parent 1 which are colored with color j in parent 2.  

 

 For example, we will discuss again the first example which involved K6,6. Both parents 
have two colors so we will need to construct an auxiliary graph K2,2. The first partition of K2,2 
{v1,(1), v2,(1)} and the second one is {v1,(2), v2,(2)}. The weights of the edges are 
(vi,(1),vi,(2)) = 0  where i = {1, 2} and the others weights have a value of 6. Clearly, there are 
only two possible perfect matchings. Obviously, the one that has the maximum weight is the 
one composed by the two edges with weight equal to 6 (Figure 4). This gives a proper 
relabeling of the colors in S2. We left as an exercise for the reader to work out what is the 
situation for the second example which involves Kj,…, j. 

 

 
Figure 4: The auxiliary graph K2,2 which can be created for the case posed in Figure 1.  

 

 In spite of the fact that the maximum weighted perfect matching problem has 
polynomial-time complexity, we think that we should constrain ourselves to lower order greedy 
heuristics for it. The reason is that in a memetic algorithm we expect to have a low order 
complexity procedure for the recombination s, having as a natural upper bound the time-
complexity of the local search steps used. In addition, we are not seeking for the ultimate best 
algorithm to solve the maximum weighted perfect matching since this is just one possible way 
to deal with the problem of indexing the colors in one of the parents as we discussed in the 
previous sections. In a certain way, its formulation is just a model, another heuristic to solve a 
problem. On the other hand, there is a clear advantage associated to the use of a greedy 
randomized heuristic for this problem since it would deliver different solutions from the same 
input parents S1, S2. This, in turn, guarantees that we will efficiently explore neighboring 



configurations between local minima when intensification steps are needed in the memetic 
paradigm [7] [11]. 

  
Comparative analysis 

 

  The competitive analysis of on-line algorithms has been criticized as being too crude 
and unrealistic. In 1994, Koutsoupias and Papadimitriou proposed two refinements of 
competitive analysis in two directions: The first restricts the power of the adversary by 
allowing only certain input distributions. The second one allows for comparisons between 
different information regimes for on-line decision-making. This latter refinement was used to 
explore the power of lookahead in server and task systems [21].  

 To understand their proposal, which they named comparative analysis, it will be good 
to follow their discussion, suppose that A  and B  are classes of algorithms where typically but 
not necessarily A  ⊆ B , that is B  is usually a broader class of algorithms, a more powerful 
information regime, then the comparative ratio R( )A ,B is defined as   

R

b a

a
b

( )
( )
( )

A ,B

B A

=
∈ ∈

max min max
ξ

ξ
ξ

,  

where a(ξ) and b(ξ) are the costs of algorithms a and b on input ξ.  Koutsoupias and 
Papadimitriou have proposed a game-theoretic interpretation of this formula: B  wants to 
demonstrate to A   that it is a more powerful class of algorithms. With this purpose, B  choses 
an algorithm b ∈ B  among its own. Then, responding to this choice, A  cames up with one 
algorithm a ∈ A . Then B  chooses an input problem ξ. After this sequence, A  must pay B  
the ratio a(ξ)/b(ξ). It is assumed that the larger this ratio, the more powerful B  is in 
comparison to A . It should be remarked that, if we let A  be the class of on-line algorithms 
and B  be the class of all algorithms - on-line or off-line - then the equation for the comparative 
ratio reduces to the standard definition of competitive ratio of a problem.  

 We will now discuss our results on the graph coloring recombination problem we have 
studied having in mind the definition of competitive ratio. We have analyzed the problem of 
creating a new (child) coloring for a graph G(V,E), using two (parent) colorings S1  and S2 .  
Since the recombination procedure to be analyzed was the one introduced by Costa and 
coworkers in Ref. [3], in fact we have studied a class of algorithms A  which is composed of 
only one algorithm, named  a which is this same recombination . Acting as an adversary of the 
algorithm a (or class A ) we have selected a class B  composed to all possible reindexings of 
colors in one of the parent colorings. Note that in this case A  ⊆ B  since when no reindexing 
is done, we apply the same basic recombination procedure a, then a ∈ B . Using the graph-
theoretic interpretation, we have selected an algorithm b ∈ B  which is composed on a 
reindexing (based on a best-matching procedure for reindexing the colors in one of the parent 
colorings) followed by the application of the standard recombination procedure (algorithm a ). 
The input problem chosen has as input to feasible colorings of a bipartite complete graph. We 
have used as a measure of performance of the recombination procedures (i.e. cost) the number 
of conflicting edges, which is a natural choice in the memetic framework. Our worst-case 
theorem, and the fact that the class A  has only one element then indicates that the comparative 



ratio R(A , B ) = | E | /2 (though a slightly different definition of cost should be used to avoid 
the denominator to be zero).  

Conclusions 
 

 In the last years, we have witnessed a growing interest on a more scientific approach to 
the usual methodology behind computational experimentation. J.N Hooker has clearly depicted 
the situation in two of his most recent papers (see [22] and [23]). C.C. McGeoch  (see [24] and 
[25]) has also discussed issues regarding analysis of algorithms in the context of computer 
experimentation. Barr and coworkers have also discussed some issues for the proper design and 
analysis of computational experiments to analyze heuristics [26].  

 The aim of establishing a proper methodology for the analysis of heuristics is far from 
being a new interest, see for example Refs. [27] and [28]. In comparison, the theoretical 
analysis of metaheuristics for combinatorial optimization problems is still in its infancy. One of 
the intrinsic difficulties to be faced in order to develop a more scientific approach resides on 
the fact that the more widespread methodology, being currently used, only relies on the results 
of computer experiments. It is evident that this methodology has many flaws. Perhaps the most 
recurring one takes place when two metaheuristics, say M1 and M2, are compared based on the 
results of computer experiments on some set of instances of a problem P. Not only one of the 
metaheuristics may be more suitable for P than the other, the main concern is that M1 and M2 
are instantiated, i.e. we are actually comparing them after some parameterized decisions which 
govern the metaheuristic behavior are chosen, we can denote that we are comparing M1( p1, ... , 
pn) against M2(q1, . . . , qm). For instance, if  M1 represents standard genetic algorithms (those that 
do not use local search, but are not restricted to binary representations), then, in our proposed 
notation,  the parameters { p1, ... , pn  } can be numbers (population size, mutation rate, etc.) but 
can also denote other algorithmic procedures like the recombination operators for example. If 
M2 represents a memetic algorithm, some of the parameters can be the same (population size, 
for instance), but others may not belong to M1 (clearly, the type of neighborhood used for the 
local search technique is one outstanding example).  

 This said, when the two metaheuristics are instantiated, we are comparing two heuristic 
algorithms M1( p1, ... , pn) and  M2(q1,  ..., qm) on a particular problem P, which takes us back to 
the issues of comparison of heuristics. Unfortunately this whole picture is generally not 
perceived and many researchers; if M1( p1, ... , pn) performs better than M2(q1,  ..., qm) in their 
particular setting they just report M1 as a successful metaheuristic and  M2 as a failure, which 
is clearly a mistake due to the unproper, or at least unjustified, generalization. On the other 
hand, the comparison between the performance of heuristics M1( p1, ... , pn) and  M2(q1,  ..., qm) 
on problem P do not escape to the usual problems we face when comparing  heuristics. 

 In this chapter we have shown, using a particular example of a graph coloring 
recombination, that a novel design methodology and theoretical analysis inspired in some 
concepts of Competitive Analysis and Comparative Analysis may be very useful to provide 
some worst-case bounds to understand the performance of at least one characteristic of 
metaheuristics, the recombination or recombination operators. We should also remark that it 
might be possible to extend this type of analysis to other type of recombinations between 
feasible solutions, most notably the Path Relinking and Structured Weighted Combinations 
procedures in Tabu Search [29]. The approach described in this chapter would be very useful  
when the input distribution of instances is not known or can vary across a wide range. It will 
also help in the cases where for the specific problem under study there are not many studied 
instances available in the literature. In addition, tight upper and lower bounds on the 
“competitiveness” of the recombination s (when properly defined) would lead to avoid 
cumbersome computational experiments and doubtful comparisons. However, we must warn 



the reader that we are still far from developing a complete formal theory since such an analysis 
seems, at this moment, only linked with the “myopia” generated by the introduction of some 
sequential processes in the design of the recombination . But we must remark again that to act 
as an “adversary” , as it is generally the case in competitive and comparative analysis, would be 
beneficial to design more robust recombination  operators by analyzing their comparative 
ratios. 

 We should also mention that we envision some other alternatives to formulate what 
constitutes a “best” matching to induce a reindexing before rec ombination. In this chapter we 
have selected a criterion based on finding the minimum weight perfect matching. However we 
would like to remark that it might be possible to use the concept of a stable marriage and use 
the Proposal Algorithm due to Gale and Shapley [30] for reindexing (for a comprehensive 
treatment of this problem and its applications see [31] and Knuth’s monograph [32], see also 
the analysis in [33]). Instead of working with the actual value of the weights of the auxiliary 
graph Kq,q  we would be working with a set of preference lists indicating a partial order, a 
ranking among preferences. An important result to be mentioned is that it can be shown that for 
every choice of preference lists there exist at least one stable marriage and that the Proposal 
Algorithm always terminates with one of them. However, it is evident that the results presented 
in this chapter do not change if a reindexing based on  the stable marriage formulation is used. 

 Regarding the usefulness of our result for the graph coloring problem itself, in [3] we 
can read: “... it is difficult, if not impossible, to find a q -coloring of a large graph G (more than 
300 nodes) with q close to the chromatic number of G by applying directly a given algorithm A 
on the graph G.”  In connection with this statement, other algorithms are referenced that 
consists in consecutively constructing color (stable) sets of G “which are as large as possible 
until we are left with at most a certain number nleft of vertices. The algorithm A is then invoked 
to color the remaining vertices. In this paper ([3]) we generalize this approach by removing 
consecutively partial q'-colorings (1 ≤  q' ≤ q) instead of independent sets (q'=1) of G.”  After 
their satisfactory results and the theoretical analysis presented in this chapter, we think that the 
challenge of finding such a “direct”  algorithm is still wide open for future research.  

 

Addendum – After this chapter was finally completed we received a letter from Prof. Jin-Kao 
Hao calling our attention to two papers he had finished on graph coloring using a memetic 
algorithm approach [34][35]. Most remarkable was the fact that Hao and co-workers have 
identified the same limitations of the assignment approach for recombination procedures on 
which our worst-case and comparative analysis is based. Computational experiments using 
DIMACS challenge benchmark instances showed the benefits of reindexing the colours before 
recombination, as we proposed in our theoretical analysis. These partition-based recombination 
procedures are reported to deliver highly effective memetic algorithms outperforming previous 
results with several metaheuristics.  

 It has been very exiting to find out that the theoretical worst-case analysis and the 
experimental results are not contradictory but also coherent. Indeed, it seems that theory can 
help at its best, being a prediction tool to avoid unnecessary research efforts. It is evident that 
there is hope for a better, more rational theory for the design of recombination operators for 
evolutionary computation. We consider it a novel approach, being explored here for the first 
time. But how new can a good idea be ? We have recently found the following excerpt from R. 
Karp´s contribution in a panel discussion which appeared in the same book that contains his 
seminal work [36] on NP-Completeness (see page 176):    

“The so -called adversary approach in which we think of an algorithm as a dialogue 
between somebody who is executing the algorithm step by step by asking questions like: ‘Is 
this key bigger than that key or not ?’ and an adversary who tries to throw him off (a kind 



of a game theoretic approach to this worst case analysis of algorithms) is very important 
to keep in mind and very fruitful.”  

We can do little more than humbly subscribe his point of view.  
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Figure 1: The figure shows two parent colorings S1 and S2 and one child coloring S3  which can be the 
result by the application of the graph coloring recombination  introduced in Ref. [3].For this particular 
instance of the problem, two feasible colorings (without conflicting edges) can create an output that has 
half of the edges in conflict. 
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Figure 3: An auxiliary graph used for reindexing the colors before crossing two parent colorings. It is a 
Kq,q, a bipartite complete graph. Each vertex of a given partition represents a given color in one of the 
parents. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The auxiliary graph K2,2 which can be created for the case posed in Figure 1.  

 


