
ON WORST-CASE AND COMPARATIVE ANALYSIS AS DESIGN PRINCIPLES
FOR EFFICIENT RECOMBINATION OPERATORS:

A GRAPH COLORING CASE STUDY

Pablo E. Coll, Guillermo A. Durán
Departamento de Computación, FCEyN, U.B.A

Ciudad Universitaria, (1428) Cap. Fed., ARGENTINA
email: pecoll{willy}@dc.uba.ar

Pablo Moscato

Faculdade de Engenharia Elétrica e de Computação
Departamento de Engenharia de Sistemas

Universidade Estadual de Campinas
 Caixa Postal 6101 - Campinas, SP - CEP: 13081-970, BRAZIL

email: moscato@densis.fee.unicamp.br
http://www.densis.fee.unicamp.br/~moscato

Introduction, Motivation and Previous Work

 In 1995, Costa, Hertz and Dubuis, introduced a new metaheuristic for graph coloring
problems [3] and they named it EDM (for Evolutionary Descent Method). Graph coloring is a
problem with many applications and it naturally arises in a variety of different areas like
scheduling, assignments and timetabling and it is associated to other problems in the NP-Hard
class. The graph coloring problem arises in classical areas of Graph Theory like finding the
minimum number of colors to color a given map, scheduling of exams in an university (see also
Ref. [20]), as well as others coming from the advances of technology like frequency assignment
of TV broadcasting stations to channels and to model problems arising in the development of
efficient compilers for computer programs.

The metaheuristic can be classified as a memetic algorithm since it is based on a
population search in which periods of local optimization are interspersed with phases in which
new configurations are created from earlier, well-developed configurations or local minima of
the previous iterative improvement process. The new population is created using crossover or
recombination operators as in genetic algorithms. In this chapter we will discuss how a
methodology inspired in Competitive Analysis and the recently introduced Comparative
Analysis can lead to tight theoretical bounds and also be relevant to the problem of the design
of recombination operators with better worst-case performance.

 The term “memetic” was introduced in 1989 [8] to encompass a class of metaheuristics
for combinatorial optimization problems which are based on the use of a population of “agents”
engaged in periods of local-search-based optimization interspersed with phases in which new
points in configuration space are created using crossover or recombination operators (see [20],
[19], [8], [9], [10], [11], and [12]). They are also known as hybrid genetic algorithms, although
the former denomination is preferred to emphasize the difference with standard genetic
algorithms. The latter do not include local search or other forms of a priori knowledge of the
problem at hand.

 Costa and coworkers remarked that their method: “differs from most of the hybrid
algorithms which have been recently developed in the sense that it uses a simple descent
method instead of a refined sequential method which accepts non-improvement moves”.
Although [7] is referenced as an example of such a method (those which accept non-

improvement moves at the local optimization phases), in Ref. [7] the binary perceptron
learning problem is first addressed with a simple descent method (see also [4]). Regardless
these minor comments, the techniques have many analogies with new “hybrid” genetic
algorithms as well as former methods like variants of Scatter Search introduced by F. Glover
([6]). New results on memetic algorithms for timetabling problems can be found in Refs. [19],
[20].

It is important to mention at this point that a WWW home page for memetic algorithms,
with links to papers and different research groups working in related issues, can be found at:
http://www.densis.fee.unicamp.br/~moscato/memetic_home.html. The
page contains links to many on-line references and papers cited in this chapter.

 The impact that a suitable, custom design of the recombination operator has on the
overall performance of memetic and genetic approaches had been previously identified and it
was well recognized in Refs. [5], [7], [8], [11], and [12]. However, we face an intrinsic
practical difficulty in evaluating the effect that the recombination has by itself and to
disassociate its benefits from the other components of a complex metaheuristic. Sometimes the
recombination is just a small part of a highly complex algorithmic framework and sometimes,
frustrating the hope for a more quantitative treatment of the issue, it seems that some
researchers even enjoy having dozens of free parameters they fix on the basis of some
preliminary computational experiments. All these facts finally conspire, they foil and disable us
from achieving a proper comparison of results. Moreover, they do not allow a clear
understanding of the key beneficial mechanisms of each implementation. This said, a good
recombination may be part of a complex algorithmic framework and it seems to be very hard to
find a reasonable way to evaluate its performance against a different recombination if we can
only rely on the results of computer experiments.

 The main problem we face is that we are making a comparison which may be biased by
many other algorithmic decisions in a memetic framework like the type of local search used, the
neighborhood definition for moves among different configurations, the different parameters
used, etc. A similar line of argument can be established for implementations of genetic
algorithms, since they are not free of other ad-hoc parameterized decisions like the rate of
mutation, probabilities for selection for recombination, mating strategies, avoidance of
inbreeding solutions, etc. Indeed, these problems are part of the still not developed
methodological procedures related to the proper performance analysis of metaheuristics
techniques. However, we should mention at least one good step forward in this direction
regarding memetic algorithms. It was the work on the Euclidean Traveling Salesman Problem
(ETSP) by Reimar Hofmann [5] followed by Nick Radcliffe and Patrick Surry [12]. Their work,
although it also relied on experimental issues, was based on the use of Forma Analysis and
correlation within formae experiments using solved instances of the ETSP. This technique,
which still relies on computational experimentation, attempted to isolate the benefits of
recombination per se. The practicality of these approaches had been anticipated in [8] and [7].

 In this chapter, we present a novel methodology for the analysis and the design strategy
of recombination operators. As a case study, which will illustrate the technique, we will
discuss the principal recombination of the algorithm for the graph coloring problem introduced
in [3]. Part of our motivation is based on the good results obtained by Costa and coworkers on
large random graphs of the class Gn,p (graphs with n vertices and density p) as well as some of
the limitations of their method. Our approach to the evaluation of the performance of a
recombination is inspired on Competitive Analysis and Comparative Analysis [21], two
techniques developed in connection with on-line algorithms. In the next section we will discuss
some of the main aspects of the heuristic proposed in [3] and with more detail the

recombination procedure we will analyze. In a later section we will discuss in some detail the
reasons which lead us to propose this approach.

The recombination procedure and associated definitions

 In order to understand the problem and the recombination procedure we need to
introduce some definitions. Our notation convention will follow that of [3] for clarity. Let
G=(V,E) be an undirected graph of vertex set V and edge set E. An independent set is a set I ⊆
V such that every pair in I is not adjacent in G, i.e. {x,y} ⊂ I ⇒ (x,y) ∉ E. A partial q-coloring
of G is a partition (V1, V2, …, Vq) of a subset V' ⊆ V in q disjoint independent sets. If we assign
a color c(x)=i to each vertex x ∈ Vi then a partial coloring with q colors can be interpreted as
the problem of coloring with q colors a set V'⊆ V such that no two adjacent vertices have the
same color. The dimension of a partial coloring with q colors is the cardinality of the set V'=V1
∪ V2 … ∪ Vq. A partial coloring with q colors of dimension n =V is known as a q- coloring
of G. The associated optimization problem is the task of finding a coloring with the minimum q.
The chromatic number of a graph is the minimum q for which a q-coloring exists.

 The algorithm introduced by Costa, Hertz and Dubuis has two phases that can be
included in a memetic framework. The first phase tries to find a partial q'-coloring. To achieve
that goal, a recombination procedure is used and combined with local search descent steps. The
second phase, which is the essential part of the algorithm, tries to find a feasible q-coloring of
the yet uncolored graph. It is this recombination procedure the one we are analyzing in this
chapter. Clearly, the algorithm would use q+q' colors to finally produce a coloring in this way.
In [3], the authors claim that they need to use the two-phase approach since they believe (based
on their own experiments and other work which exists in the literature) that they would not be
able to find a feasible q-coloring using only the second phase. At least, they find it really
improbable when addressing problems with more than 300 nodes.

 The recombination procedure we are going to analyze has as input two parent colorings
S1 and S2 of a graph G(V,E) which are not necessarily feasible. That is, it is accepted the
existence of conflicting edges, that is edges which have both extremes colored using the same
color. Let ci(v) be the color assigned to vertex v in the coloring Si and let NCEi(v,d) be the
number of conflicting edges which are at a distance d from v in Si . To each vertex v a penalty
pi(v) is associated with v which measures how “close” vertex v is to conflicting edges in Si.
More explicitly

 p v NCE v di d i
d

() (,)=
=

∑ω
0

2

 (1)

where ωd are “weights” which balance the importance of conflicting edges located at different
distances from vertex v. Costa and coworkers have decided that (ω0 > ω1 > ω2) and not to
take into account the cases where d > 2 regarding some preliminary, qualitative “cost/benefit”
computational experiments they performed. From two “parent” colorings S1 and S2, one
”child” coloring S3 will be created such that each vertex v ∈ S3 will be colored either with
c1(v) or c2(v) and preference is given to the color with the smallest penalty pi(v) in S1 or S2.
When p1(v) = p2(v), we will consider the vertices of v which have been already colored in the
current partial coloring of S3 choosing the color c ∈ {c1(v), c2(v)} which minimizes nadj(v,c),
the number of adjacent vertices to v colored c in S3. If we can not decide between c1(v) and
c2(v) then we break ties choosing between them at random with the same probability. The
following pseudocode from [3] would certainly help to clarify the procedure.

 Input: S1, S2 ∈ X; Output: S3 =(V1, …, Vq) ∈ X
 nadj(v,c)= 0; ∀v ∈ V, ∀c=1,…, q;
 Vc := ∅; ∀c=1,…, q;
 for (each vertex v ∈ V) do
 if p1(v) < p2(v) then c3(v)=c1(v)
 else if p2(v) < p1(v) then c3(v)=c2(v)
 else (* p1(v) = p2(v) and we need to break ties *)
 if nadj(v,c1(v))<nadj(v,c2(v)) then c3(v)=c1(v)
 else if nadj(v,c2(v))<nadj(v,c1(v)) then c3(v)=c2(v)
 else (* then nadj(v,c1(v))=nadj(v,c2(v)) *)
 (* now we break ties at random *)
 c3(v)=random(c1(v),c2(v),0.5);
 nadj(v’,c3(v))=nadj(v’,c3(v))+1 ∀v’ adjacent to v;
 V V vc v c v3 3() () { }= ∪

 To be fair, this randomized procedure is actually defining not one but a “family” of
recombinations since it has ω0, ω1 and ω2 as free parameters. After a series of preliminary
computational experiments with 20 graphs belonging to the class G100,0.5, Costa and co-
workers have observed that the best results have been obtained using ω0 = 100, ω1 = 3 and ω2
= 1. Undoubtedly, this selection leaves many open questions since it may be the case that this
values are instance-dependent, that is they may be optimal just for the input distributions of the
instances used in their computational study. Finite size effect associated to the use of |V|=100
might have also influentiated this selection.

A “competitive-inspired” analysis

 We will discuss two cases, where the principal recombination introduced in [3] is
studied. The analysis is inspired by the concept of Competitive Analysis which was first
introduced to analyze the performance of on-line algorithms.

 A problem is said to be on-line if it requires that irrevocable decisions which influence
the output must be made before having a complete knowledge of the entire input. Some
examples of this class of problems can be found in robot motion planning, maintaining dynamic
data structures, video on demand, network routing, etc. These problems are a real challenge to
standard worst-case analysis since, after examination of the characteristics of an algorithmic
procedure an “adversary ” can choose an input sequence which can foil the performance of the
on-line algorithm.

 One way to overcome the problem of dealing with the distribution of inputs and still
make a relevant worst-case analysis is to use the method known as Competitive Analysis,
developed by Sleator and Tarjan [13] although the concept can be found in the earlier literature
of bin packing [14], [15]. The key idea is to compare an on-line algorithm with the optimal off-
line algorithm, i.e. one that can see the entire input in advance thus it will have a complete
knowledge of the future events. This comparison is done on an input-by-input basis. If we
denote as A an on-line algorithm and ξ an input sequence we denote with A(ξ) the cost of
algorithm A on ξ. If Aopt(ξ) is the cost of the optimal off-line algorithm on input ξ then we
say that A is a k-competitive algorithm if for all ξ, A(ξ) - k Aopt(ξ) remains bounded by a
constant. The term k-competitive was coined in [16]. For a randomized algorithm A is replaced
by <A(ξ)>a, which stands for the expectation value over A's random choices. The
competitiveness of A, denoted βA is the infimum of k such that A is k-competitive.

 Under this perspective, the quality of a specific algorithm is given by the maximum
ratio between the cost of an on-line problem and the cost incurred by the optimal algorithm for
the off-line problem. Competitive analysis, although it is still a kind of worst-case analysis,
implied a conceptual break-through, since by the definition of competitiveness it liberates from
any kind of probabilistic assumptions about the input data. It allowed to view an on-line
problem as a game between an on-line player and an adversary who will chose the input of the
problem so as to maximize the ratio between the algorithm’s cost and that of the optimal off-
line algorithm [17].

 With this concepts in mind, we will give an example of the kind of analysis we propose
for recombination design; we will act as an adversary of the recombination we want to study.
We will first consider the problem of coloring K6,6, a bipartite complete graph with six vertices
in each partition. The vertices are numbered such that {v1,…,v6} and {v7,…,v12 } belong to the
first and the second partition, respectively. Note that the recombination of [3] specifies a
number of operations which are executed in an order given by the vertex numbering. This said,
thinking as a game in which we are the adversaries, we have chosen the input graph and the
sequence of events. The input to the recombination procedure will be two parent configurations
S1 and S2. with no conflicting edges, two feasible colorings. Vertices in each partition have the
same colors, and we will also require that c1(v1)=c2(v7)=B (B for Blue) and c1(v7)=c2(v1)=R
(R for Red). A natural cost measure of the performance of the recombination would be the
number of conflicting edges present in the child coloring.

 It is obvious to remark that the chromatic number for K6,6 is two, so the discussion
may look irrelevant since it may seem that it has no sense to cross two optimal solutions.
However, the example must be regarded as a subgraph of a larger graph. The decision to work
out an example case for only two colors is motivated by the fact that the subgraph can be part of
a well-developed configuration since those are the ones engaged in recombination in a memetic
algorithm. We will see for this example how the recombination generates a “child” S3 from
two “parent” colorings S1 and S2.. For all v in V, p1(v) = p2(v) = 0, so we need to take into
account nadj(v, ci(v)) to break ties. Starting from v1, clearly nadj(v1, c1(v1)) = nadj(v1,
c2(v1))=0, thus we need to arbitrarily select the color of v1 in S3. The same situation will occur
for all vertices in the same partition v1,v2,…,v6 if we follow the index order in the for loop of
the pseudocode which defines the recombination . Due to the randomized procedure, we may
end up with a worst-case scenario in which we have c3(v1) = c3(v2) = c3(v3) = B and c3(v4) =
c3(v5) = c3(v6) = R. When we attempt to color vertices v7 to v12 we note that nadj(vj,c1(vj))=
nadj(vj,c2(vj))=3 for 7 ≤ j ≤ 12, so we must break ties again to color it. Again, it may be
possible that c3(v7) = c3(v8) = c3(v9) = B and c3(v10) = c3(v11) = c3(v12) = R. In conclusion,
starting from two colorings of a graph with 36 edges without conflicts we end up having a new
coloring S3 which has 18 conflicting edges (|E|/2 in this case), (see Figure 1).

Figure 1: The figure shows two parent colorings S1 and S2 and one child coloring S3 which
can be the result by the application of the graph coloring recombination introduced in Ref. [3].
For this particular instance of the problem, two feasible colorings (without conflicting edges)
can create an output that has half of the edges in conflict.

 It is clear that the situation described above has already identified the problem of
creating new configurations which have at least |E|/2 new conflicting edges even when coming
from two well developed solutions. This may constitute a simple instance of a more general
case. Let Kj1, ,…, jk be a k-partite complete graph such that j1 = j2 = … = jk = j. To simplify
the discussion we will suppose that j and k are even. We will start again with a situation in
which S1 and S2 have no conflicting edges. Let Vi be the ith partition, (|Vi|= ji = j). Let c1(v1) =
1+ int ((l-1)/j) and c2(v1) = k+1 - c1(v1) where int(x) is the integer part of x. In this case the
chromatic number for this graph is k but again we must recall that it can be regarded as a
subgraph of a larger graph which is the one we would like to color. Again to generate S3, for all
v in V, p1(v) = p2(v) = 0, since the two parents have no conflicting edges. Starting from v1,
clearly nadj(v1, c1(v1)) = nadj(v1, c2(v1))=0 with c1(v1)=1 and c2(v1)=k, thus we need to
arbitrarily select among them. The same situation will occur for all vertices v2,…,vj ∈ V1 if we

follow the index order. Due to randomization, we may end up with a worst-case scenario in
which we have c3(v1) = c3(v2) = … = c2(v(j/2)) = c1(v1) = 1 and c2(v(j/2)+1) = … = c3(vj) =
c2(v(j/2)+1) = k. Again, due to the randomization procedure we may end up with a situation in
which the first half of the vertices of partition |Vi| are colored with color i in S3 and the second
half is colored with color k-i+1 (note that for vl with l>kj/2, the argument still holds but with
nadj(v1, ci(v1)) = j/2). In conclusion, starting with two colorings of Kj,…, j, a k-partite
complete graph with |V|=kj vertices and |E|=|V| ×(|V|-j)/2 edges which have no conflicting edges,
we end up having a new coloring S3 which has |E|/(2(k-1)) conflicting edges. This number is
O(|E|) for “small” k and O(|V|) for larger values of k. For k=2 we recover the result we
presented in the first example.

Upper bound

 In this section we will prove that the first example of the preceding section is a worst-
case example for the principal recombination of [3].

Lemma:
 Given a graph G(V,E) and two feasible q-colorings of G, S1 and S2, let S3 be the q-
coloring of G (not necessarily feasible) created by the recombination of [3]. For a node v ∈ V
we denote as NCE3 (v) the number of conflicting edges created in S3 at the moment of coloring
node v with either c1 (v) or c2 (v), the color assigned to vertex v in the colorings S1 and S2,
respectively. We will denote as |AC(v)| the number of nodes adjacent to node v in G which have
already been chosen to coloring in S3 when we are coloring node v. Then

 NCE3(v) ≤ |AC(v)| /2

Proof:
 Let c1 (v), c2 (v) the colors assigned to node v in S1 and S2 respectively. Let's suppose
without loosing generality, that node v will be colored as in parent coloring S1, that is c3 (v) = c1

(v) =R. We face two possibilities here. Let's first consider what happens when c2 (v) = c1 (v) =
R. In this case, we are sure that no other vertex adjacent to vertex v has been colored with color
R since by hypothesis we have assumed that both S1 and S2 are feasible colorings, then they
have no conflicting edges. Then NCE3 (v) = 0, and, since |AC(v)| ≥ 0 then NCE3 (v) ≤ |AC(v)|
/2 which proves the result in this case. Now let's consider what happens when c2 (v) ≠ c1 (v).
We will suppose that NCE3 (v) ≥ int (|AC(v)| /2)+1, where int (x) represents the integer part of
the argument x, and we will prove the sought result via reductio-ad-absurdum. First note that p1

(v) = p2 (v)=0, since S1 and S2 are two feasible colorings of G. Then the coloring of v in S3
was decided as a consequence of two possibilities according the recombination of [3]:

 1. nadj(v,c1 (v)) < nadj(v,c2 (v)), or

 2. nadj(v,c1 (v)) = nadj(v,c2 (v)),

and the selection of c3 (v) was made at random with probability 0.5.

 Since we have supposed that NCE3 (v) ≥ int (|AC(v)| /2)+1 then nadj(v,c1(v)) > ΣX
nadj(v,X) where X runs through all the colors. Since ΣX nadj(v,X) ≥ nadj(v,c2 (v)), we get
nadj(v,c1(v)) ≥ nadj(v,c2 (v)) which contradicts the two cases above. This finally proves the
lemma. ÿ

 Now we are in condition of proving the following worst-case upper bound.

Theorem:

 Given a graph G(V,E) and two parent colorings as defined in the lemma above, the
number of conflicting edges (NCE3) in the final coloring S3 generated by the recombination
of Ref. [3], is bounded by |E|/2.
Proof: It immediately follows from the Lemma.
 Since NCE3 = Σi=1

|V| NCE3(vi) ≤ Σi=1
|V| |AC(vi)|/2 = |E|/2. €ÿ

A weaker adversary

 In our previous analysis we have used randomization for the benefits of our thesis. We
have shown that we can get an extremely bad result due to the application of the standard
procedure given in Ref. [3]. An open question that motivates this section is: How relevant
where these random choices ? How well would the recombination procedure do if it would not
face such an extremely ``unfair’’ sequence of events ?

 In certain way, we are making an analysis with a weaker adversary, one that can not
control at will those random choices. However, the order in which the vertex are going to be
colored is at the control of the adversary and it will be the same we have used in the previous
worst-case analysis. In a certain way, we see some analogies with the relevance that knowing
the future has for certain on-line problems [18].

 In our previous analysis, the selection of colors for vertices in S3 was random, but we
were always choosing among the two possibilities the one which would be more “unfair” for
the recombination of [3]. We will now analyze what happens when the selection of which
color to use (B or R) is equiprobable (that is, it has probability of selection 0.5), whenever ties
must be broken. It is a way of relaxing the worst case scenario by reducing the “strength” of the
adversary (using jargon from Competitive Analysis).

 We will maintain the same numbering order for the vertices. We want to calculate the
expected value of conflicting edges in S3 for a K2t, 2t colored with two colors, where each node
(whenever ties must be broken) can take color c1 with probability 0.5. Colors start to be
assigned to vertices starting with v1 and following the same indexing order we used before.
This leads to the fact that the V1 = { v1 , v2 ,..., v2 t } partition can get 22t different
configurations of two colors.
 Let's denote with NCE3 the number of conflicting edges in S3.. When the first partition
is finally colored, we have to consider two different cases:

 a) The number of nodes with color c1 is different to the number of nodes with color c2.
Without losing generality, we can suppose that there are more nodes colored with c1 than with
c2, the other case is analogous. When coloring the other partition, and according the algorithm
proposed in [3], all other nodes will be assigned color c2 so the number of conflicting edges
would be 2t | c2 |(1) , where | c2 |(1) is the number of nodes with color c2 in V1.. The distribution
of the number of nodes colored with color c2 in V1 is a binomial distribution with parameters
2t and | c2 |(1) (B (2t, | c2 |(1))). Since the total number of different ways in which we can color
V1 with 2 colors is equal to 22t, then the probability of having 2kt conflicting edges is given by:

 p NCE kt
t

k
t()3

22 2
2

2= =








 − for k = 0, 1,..., t-1;

where the factor of 2 is due to the fact that k can be either | c1 | or | c2 | regarding which one is
the minimum of both.

b) The number of nodes colored with c1 and c2 is the same. Then the nodes of V2 will have

colors which will be randomly chosen, but any of the 22t final configurations of V2 will have
the same number of conflicting edges, exactly 2t2 . Then the probability of having exactly 2t2.
conflicting edges is given by

 p NCE t
t

t
t()3

2 22
2

2= =






 − .

For k> t this probability is zero. Then the expected value of conflicting edges is given by

E NCE iP CE i
i

t

() (| |)3
1

2 2

= =
=
∑ ,

then

E NCE
t

j
t

j
t

t

tt

j

t

()3
1

12
2

2
2 2

2=






+



















=

−

∑ .

Using the equality

j t

j

t t

j1
2 2

1
2 1

1













 =









−
−







 ,

we have

j
t

j
t

t

j
t

t

t

j

t

j

t

t

=

−

=

−

−

∑ ∑





 =

−
−







 =

−
−

−








1

1

1

1

2 1
22

2
2 1

1
2

2
2 1

1
2

,

and finally we reach the sought result

E NCE
t

tt t()3
2

22 1
1 2

2
= −

















.

 The relation between |E| and t is given by |E| = 4t2 which allows us to say that E(NCE3)
≥ |E|/3 for t ≥ 3, which can be easily proved by induction on t. Figure 2 shows the difference
between both functions up to |E| = 600.

 {E(NCE3), |E|/3}

|E|

 For the specific example given above (a K6,6 graph colored with two colors) the
expected value of conflicting edges in S3 is 99/8.

 This result let us claim that if the same indexing order is used, then the expected value
of conflicting edges is at least of the same order than the number of edges. We have proved that
in this average case scenario, breaking ties uniformly at random does not help significantly over
the worst-case bound.

Optimal marriages

 The previous analysis has lead us to consider the introduction of another procedure
before recombining two parent colorings S1 and S2 to create a new child coloring S3. Since the
color names are arbitrarily chosen, any given coloring with q colors is basically equivalent to q!
different assignments (coming from the q! possible permutations of the colors’ indexes). It is
quite evident from the two examples introduced above that an optimal “off -line” algorithm
would recognize that, in both cases, the two colorings are actually the same and would act
accordingly. We remark here that the previous quotation marks have been used since the
problem is definitely not an on-line problem. The characteristics of the problem faced by Costa
and coworkers let us free to design any type of recombination and for that purpose we can
benefit from the fact that the complete colorings S1 and S2 are completely known in advance. It
is the “myo pia” introduced by the sequential operations in the recombination we are currently
studying which is the core source of the inefficiency.

 We will see in the rest of this section how the previous analysis suggests the use of
another procedure. It must be a fast heuristic to address the problem of reindexing the colors in
one of the parents, say S2 , in order to maximize the number of vertices which have the same
color in both parents before using them to create a new coloring S3.

 Again, we will have as input two colorings (not necessarily feasible) S1=(V1,(1),…,
Vq,(1)) and S2=(V1,(2),…, Vq,(2)) where Vj,(i) denotes the set of vertices colored with color j in
parent Si. We will create an auxiliary graph Kq,q, a bipartite complete graph with q vertices in
each partition and with weighted edges. The first partition is the set {v1,(1),…, vq,(1)} and the
second one is {v1,(2),…, vq,(2)}. The weight (wij)of the edge identified by (vi,(1),vj,(2)) stands
for the number of vertices in common between Vi,(1) and Vj,(2) (Figure 3). This said, if we find
a maximum weighted perfect matching (in this case, it is clear that the maximum weighted
matching will be perfect because the bipartite complete graph has non negative weights in the
edges) of Kq,q, as defined above, and then we relabel the set of indexes of {Vj,(2)} according to
the best matching found, we have a way to overcome some of the problems discussed in the
previous section.

Figure 3: An auxiliary graph used for reindexing the colors before crossing two parent
colorings. It is a Kq,q, a bipartite complete graph. Each vertex of a given partition represents a
given color in one of the parents. The weight (wij)of an edge which connects vertices
representing colors i and j in partitions 1 and 2 stands for the number of vertices colored with
color i in parent 1 which are colored with color j in parent 2.

 For example, we will discuss again the first example which involved K6,6. Both parents
have two colors so we will need to construct an auxiliary graph K2,2. The first partition of K2,2
{v1,(1), v2,(1)} and the second one is {v1,(2), v2,(2)}. The weights of the edges are
(vi,(1),vi,(2)) = 0 where i = {1, 2} and the others weights have a value of 6. Clearly, there are
only two possible perfect matchings. Obviously, the one that has the maximum weight is the
one composed by the two edges with weight equal to 6 (Figure 4). This gives a proper
relabeling of the colors in S2. We left as an exercise for the reader to work out what is the
situation for the second example which involves Kj,…, j.

Figure 4: The auxiliary graph K2,2 which can be created for the case posed in Figure 1.

 In spite of the fact that the maximum weighted perfect matching problem has
polynomial-time complexity, we think that we should constrain ourselves to lower order greedy
heuristics for it. The reason is that in a memetic algorithm we expect to have a low order
complexity procedure for the recombination s, having as a natural upper bound the time-
complexity of the local search steps used. In addition, we are not seeking for the ultimate best
algorithm to solve the maximum weighted perfect matching since this is just one possible way
to deal with the problem of indexing the colors in one of the parents as we discussed in the
previous sections. In a certain way, its formulation is just a model, another heuristic to solve a
problem. On the other hand, there is a clear advantage associated to the use of a greedy
randomized heuristic for this problem since it would deliver different solutions from the same
input parents S1, S2. This, in turn, guarantees that we will efficiently explore neighboring

configurations between local minima when intensification steps are needed in the memetic
paradigm [7] [11].

Comparative analysis

 The competitive analysis of on-line algorithms has been criticized as being too crude
and unrealistic. In 1994, Koutsoupias and Papadimitriou proposed two refinements of
competitive analysis in two directions: The first restricts the power of the adversary by
allowing only certain input distributions. The second one allows for comparisons between
different information regimes for on-line decision-making. This latter refinement was used to
explore the power of lookahead in server and task systems [21].

 To understand their proposal, which they named comparative analysis, it will be good
to follow their discussion, suppose that A and B are classes of algorithms where typically but
not necessarily A ⊆ B , that is B is usually a broader class of algorithms, a more powerful
information regime, then the comparative ratio R()A ,B is defined as

R

b a

a
b

()
()
()

A ,B

B A

=
∈ ∈

max min max
ξ

ξ
ξ

,

where a(ξ) and b(ξ) are the costs of algorithms a and b on input ξ. Koutsoupias and
Papadimitriou have proposed a game-theoretic interpretation of this formula: B wants to
demonstrate to A that it is a more powerful class of algorithms. With this purpose, B choses
an algorithm b ∈ B among its own. Then, responding to this choice, A cames up with one
algorithm a ∈ A . Then B chooses an input problem ξ. After this sequence, A must pay B
the ratio a(ξ)/b(ξ). It is assumed that the larger this ratio, the more powerful B is in
comparison to A . It should be remarked that, if we let A be the class of on-line algorithms
and B be the class of all algorithms - on-line or off-line - then the equation for the comparative
ratio reduces to the standard definition of competitive ratio of a problem.

 We will now discuss our results on the graph coloring recombination problem we have
studied having in mind the definition of competitive ratio. We have analyzed the problem of
creating a new (child) coloring for a graph G(V,E), using two (parent) colorings S1 and S2 .
Since the recombination procedure to be analyzed was the one introduced by Costa and
coworkers in Ref. [3], in fact we have studied a class of algorithms A which is composed of
only one algorithm, named a which is this same recombination . Acting as an adversary of the
algorithm a (or class A) we have selected a class B composed to all possible reindexings of
colors in one of the parent colorings. Note that in this case A ⊆ B since when no reindexing
is done, we apply the same basic recombination procedure a, then a ∈ B . Using the graph-
theoretic interpretation, we have selected an algorithm b ∈ B which is composed on a
reindexing (based on a best-matching procedure for reindexing the colors in one of the parent
colorings) followed by the application of the standard recombination procedure (algorithm a).
The input problem chosen has as input to feasible colorings of a bipartite complete graph. We
have used as a measure of performance of the recombination procedures (i.e. cost) the number
of conflicting edges, which is a natural choice in the memetic framework. Our worst-case
theorem, and the fact that the class A has only one element then indicates that the comparative

ratio R(A , B) = | E | /2 (though a slightly different definition of cost should be used to avoid
the denominator to be zero).

Conclusions

 In the last years, we have witnessed a growing interest on a more scientific approach to
the usual methodology behind computational experimentation. J.N Hooker has clearly depicted
the situation in two of his most recent papers (see [22] and [23]). C.C. McGeoch (see [24] and
[25]) has also discussed issues regarding analysis of algorithms in the context of computer
experimentation. Barr and coworkers have also discussed some issues for the proper design and
analysis of computational experiments to analyze heuristics [26].

 The aim of establishing a proper methodology for the analysis of heuristics is far from
being a new interest, see for example Refs. [27] and [28]. In comparison, the theoretical
analysis of metaheuristics for combinatorial optimization problems is still in its infancy. One of
the intrinsic difficulties to be faced in order to develop a more scientific approach resides on
the fact that the more widespread methodology, being currently used, only relies on the results
of computer experiments. It is evident that this methodology has many flaws. Perhaps the most
recurring one takes place when two metaheuristics, say M1 and M2, are compared based on the
results of computer experiments on some set of instances of a problem P. Not only one of the
metaheuristics may be more suitable for P than the other, the main concern is that M1 and M2
are instantiated, i.e. we are actually comparing them after some parameterized decisions which
govern the metaheuristic behavior are chosen, we can denote that we are comparing M1(p1, ... ,
pn) against M2(q1, . . . , qm). For instance, if M1 represents standard genetic algorithms (those that
do not use local search, but are not restricted to binary representations), then, in our proposed
notation, the parameters { p1, ... , pn } can be numbers (population size, mutation rate, etc.) but
can also denote other algorithmic procedures like the recombination operators for example. If
M2 represents a memetic algorithm, some of the parameters can be the same (population size,
for instance), but others may not belong to M1 (clearly, the type of neighborhood used for the
local search technique is one outstanding example).

 This said, when the two metaheuristics are instantiated, we are comparing two heuristic
algorithms M1(p1, ... , pn) and M2(q1, ..., qm) on a particular problem P, which takes us back to
the issues of comparison of heuristics. Unfortunately this whole picture is generally not
perceived and many researchers; if M1(p1, ... , pn) performs better than M2(q1, ..., qm) in their
particular setting they just report M1 as a successful metaheuristic and M2 as a failure, which
is clearly a mistake due to the unproper, or at least unjustified, generalization. On the other
hand, the comparison between the performance of heuristics M1(p1, ... , pn) and M2(q1, ..., qm)
on problem P do not escape to the usual problems we face when comparing heuristics.

 In this chapter we have shown, using a particular example of a graph coloring
recombination, that a novel design methodology and theoretical analysis inspired in some
concepts of Competitive Analysis and Comparative Analysis may be very useful to provide
some worst-case bounds to understand the performance of at least one characteristic of
metaheuristics, the recombination or recombination operators. We should also remark that it
might be possible to extend this type of analysis to other type of recombinations between
feasible solutions, most notably the Path Relinking and Structured Weighted Combinations
procedures in Tabu Search [29]. The approach described in this chapter would be very useful
when the input distribution of instances is not known or can vary across a wide range. It will
also help in the cases where for the specific problem under study there are not many studied
instances available in the literature. In addition, tight upper and lower bounds on the
“competitiveness” of the recombination s (when properly defined) would lead to avoid
cumbersome computational experiments and doubtful comparisons. However, we must warn

the reader that we are still far from developing a complete formal theory since such an analysis
seems, at this moment, only linked with the “myopia” generated by the introduction of some
sequential processes in the design of the recombination . But we must remark again that to act
as an “adversary” , as it is generally the case in competitive and comparative analysis, would be
beneficial to design more robust recombination operators by analyzing their comparative
ratios.

 We should also mention that we envision some other alternatives to formulate what
constitutes a “best” matching to induce a reindexing before rec ombination. In this chapter we
have selected a criterion based on finding the minimum weight perfect matching. However we
would like to remark that it might be possible to use the concept of a stable marriage and use
the Proposal Algorithm due to Gale and Shapley [30] for reindexing (for a comprehensive
treatment of this problem and its applications see [31] and Knuth’s monograph [32], see also
the analysis in [33]). Instead of working with the actual value of the weights of the auxiliary
graph Kq,q we would be working with a set of preference lists indicating a partial order, a
ranking among preferences. An important result to be mentioned is that it can be shown that for
every choice of preference lists there exist at least one stable marriage and that the Proposal
Algorithm always terminates with one of them. However, it is evident that the results presented
in this chapter do not change if a reindexing based on the stable marriage formulation is used.

 Regarding the usefulness of our result for the graph coloring problem itself, in [3] we
can read: “... it is difficult, if not impossible, to find a q -coloring of a large graph G (more than
300 nodes) with q close to the chromatic number of G by applying directly a given algorithm A
on the graph G.” In connection with this statement, other algorithms are referenced that
consists in consecutively constructing color (stable) sets of G “which are as large as possible
until we are left with at most a certain number nleft of vertices. The algorithm A is then invoked
to color the remaining vertices. In this paper ([3]) we generalize this approach by removing
consecutively partial q'-colorings (1 ≤ q' ≤ q) instead of independent sets (q'=1) of G.” After
their satisfactory results and the theoretical analysis presented in this chapter, we think that the
challenge of finding such a “direct” algorithm is still wide open for future research.

Addendum – After this chapter was finally completed we received a letter from Prof. Jin-Kao
Hao calling our attention to two papers he had finished on graph coloring using a memetic
algorithm approach [34][35]. Most remarkable was the fact that Hao and co-workers have
identified the same limitations of the assignment approach for recombination procedures on
which our worst-case and comparative analysis is based. Computational experiments using
DIMACS challenge benchmark instances showed the benefits of reindexing the colours before
recombination, as we proposed in our theoretical analysis. These partition-based recombination
procedures are reported to deliver highly effective memetic algorithms outperforming previous
results with several metaheuristics.

 It has been very exiting to find out that the theoretical worst-case analysis and the
experimental results are not contradictory but also coherent. Indeed, it seems that theory can
help at its best, being a prediction tool to avoid unnecessary research efforts. It is evident that
there is hope for a better, more rational theory for the design of recombination operators for
evolutionary computation. We consider it a novel approach, being explored here for the first
time. But how new can a good idea be ? We have recently found the following excerpt from R.
Karp´s contribution in a panel discussion which appeared in the same book that contains his
seminal work [36] on NP-Completeness (see page 176):

“The so -called adversary approach in which we think of an algorithm as a dialogue
between somebody who is executing the algorithm step by step by asking questions like: ‘Is
this key bigger than that key or not ?’ and an adversary who tries to throw him off (a kind

of a game theoretic approach to this worst case analysis of algorithms) is very important
to keep in mind and very fruitful.”

We can do little more than humbly subscribe his point of view.

Acknowledgment – We would like to thank D. Costa, J.K. Hao, R. Dorne, P. Galinier, and E.
Koutsoupias for sharing with us their preprints and results before publication. P.M. wants to
thank CICPBA for supporting this work at its initial stages. He wants to acknowledge current
support by FAPESP, Brazil. This work is also supported by UBA, Argentina.

References

[1] P. Coll, G. Durán and P. Moscato, A discussion on some design principles for efficient
recombination operators for graph coloring problems, “ Anais do XXVII Simpósio Brasileiro
de Pesquisa Operacional” , Vitória-Brazil, 1995.

[2] D. Costa, On the use of some known Methods for T-colorings of Graphs, Annals of
Operations Research 41 (1993), 343-358.

[3] D. Costa, A. Hertz and O. Dubuis, Embedding of a sequential Procedure within an
evolutionary Algorithm for coloring Problems in Graphs, Journal of Heuristics, 1, 1 (1995),
105-128.

[4] L. Eshelman., The CHC Adaptive Search Algorithm: How to have safe search when
engaging in nontraditional genetic recombination, in Foundations of Genetic Algorithms
(G.J.E. Rawlins ed.). Morgan Kaufmann Publishers. San Mateo, CA, USA, (1991), 265-
283.

[5] R. Hofmann, Examinations of the Algebra of Genetic Algorithms, Diplomarbeit,
Technische Universität München (Institut für Informatik), 1993.

[6] F. Glover, Genetic Algorithms and Scatter Search: unsuspected potentials, Technical
Report, University of Colorado, School of Business, Boulder, 1993.

[7] P. Moscato, An Introduction to Population Approaches for Optimization and Hierarchical
Objective Functions: The role of Tabu Search, Annals of Operations Research, 41, (1993),
85-121.

[8] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms, Report 826, Caltech Concurrent Computation Program,
California Institute of Technology, Pasadena, USA, 1989.

[9] P. Moscato and F. Tinetti, Blending Heuristics with a Population-Based Approach: A
Memetic Algorithm for the Traveling Salesman Problem. Report 92-12, Universidad
Nacional de La Plata, C.C. 75, 1900 La Plata, Argentina, unpublished manuscript, 1992.

[10] P. Moscato and M.G. Norman, A “Memetic” Approach for the Traveling Salesman
Problem. Implementation of a Computational Ecology for Combinatorial Optimization on
Message-Passing Systems, in Proceedings of the International Conference on Parallel
Computing and Transputer Applications, Amsterdam, IOS Press, 1 (1992), 177-186.

[11] N. Radcliffe and P.D. Surry, Formal Memetic Algorithms. AISB94, 1994.

[12] N. Radcliffe, Fitness Variance of Formae and Performance Prediction. Report TR-94-17,
The University of Edinburgh, 1994. submitted to Foundations of Genetic Algorithms.

[13] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging rules.
Communications of the ACM, 28 (1985), 202-208.

[14] D.S. Johnson, Fast algorithms for bin packing, Journal of Computer and System Sciences,
8 (1974), 272-314.

[15] A. Yao, New algorithms for bin packing, Journal of the ACM, 27, (1980) 207-227.

[16] A. Karlin, M. Manasse, L. Rudolph and D. Sleator, Competitive snoopy caching,
Algorithmica, 3 (1988), pp. 79-119.

[17] M.S. Manasse, L.A. McGeoch and D.D. Sleator, Competitive algorithms for on-line
problems, in Proc. of 20th ACM Symposium on Theory of Computing, (1988), pp. 322-
333.

[18] R.M. Karp, On-line algorithms versus off-line algorithms: how much is it worth to know
the future? , Technical Report TR-92-044, ICSI, Berkeley, 1992.

[19] E.K. Burke, J.P. Newall and R.F. Weare, A Memetic Algorithm for Univerisity Exam
Timetabling, in The Practice and Theory of Automated Timetabling, (E.K. Burke and P.
Ross eds.). Springer-Verlag, Lecture Notes in Computer Science. 1153.

[20] B. Paechter, A. Cumming, M.G. Norman and H. Luchian, Extensions to a Memetic
Timetabling System, in The Practice and Theory of Automated Timetabling, (E.K. Burke
and P. Ross eds). Springer-Verlag, Lecture Notes in Computer Science. 1153, 251-265.

[21] E. Koutsoupias and C.H. Papadimitriou, Beyond competitive analysis, in Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, 394-400, Santa Fe,
New Mexico, 20-22, 1994.

 [22] J.N. Hooker, Needed: An empirical science of algorithms, Operations Research, 42
(1994), pp. 201-212.

[23] J.N Hooker, Testing heuristics: we have it all wrong, Journal of Heuristics, 1 (1996), 33-
42.

[24] C.C. McGeogh, Towards an experimental method for algorithm simulation, INFORMS
Journal on Computing, 8 (1996), pp. 1-15.

[25] C.C. McGeoch, Challenges in algorithm simulation, INFORMS Journal on Computing, 8
(1996), pp. 27-28.

[26] R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, and W. Stewart, Designing and
reporting on computational experiments with heuristic methods, Journal of Heuristics, 1
(1), (1995), pp. 9-32.

[27] D.S. Johnson and C.H. Papadimitriou, Performance guarantees for heuristics, in The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, (E.L.
Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys), John Wiley & Sons Ltd.,
Chichester, 1985, pp. 145-180.

[28] B.L. Golden and W.R. Stewart, Empirical analysis of heuristics, in The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, (E.L. Lawler, J.K.
Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys), John Wiley & Sons Ltd., Chichester,
1985, pp. 207-249.

[29] F. Glover, Búsqueda Tabú, in “ Optimización Heurística y Redes Neuronales”, (Belarmino
Adenso Diaz, ed.), Editorial Paraninfo, Madrid, 1996, pp. 105-142.

[30] D. Gale and L.S. Shapley, College admissions and the stability of marriage, American
Mathematical Monthly, 69 (1962), pp. 6-15.

[31] D. Gusfield and R.W. Irwing, The stable marriage problem: structure and algorithms,
MIT Press, Cambridge, 1989.

[32] D.E. Knuth, Marriages stables, Les Presses de l’Université de Montréal, Montréal, 1976.

[33] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, U.K., 1995.

[34] R. Dorne and J.K. Hao, A new genetic local search algorithm for graph coloring, in
Proceedings of Parallel Problem Solving from Nature (PPSN ´98), Amsterdam, 1998,
published in Lecture Notes in Computer Science 1498, pp. 745-754, (1998).

[35] P. Galinier and J.K. Hao, Hybrid Evolutionary Algorithms for Graph Coloring, submitted
to the Journal of Combinatorial Optimization.

[36] R.M. Karp, Reducibility among combinatorial problems, in R. E. Miller and J. W.
Thatcher, eds., in: Complexity of Computer Computations, Plenum Press, New York,
1972, pp. 85-103.

Figure 1: The figure shows two parent colorings S1 and S2 and one child coloring S3 which can be the
result by the application of the graph coloring recombination introduced in Ref. [3].For this particular
instance of the problem, two feasible colorings (without conflicting edges) can create an output that has
half of the edges in conflict.

 {E(NCE3),|E|/3}

|E|

Figure 2

Figure 3: An auxiliary graph used for reindexing the colors before crossing two parent colorings. It is a
Kq,q, a bipartite complete graph. Each vertex of a given partition represents a given color in one of the
parents.

Figure 4: The auxiliary graph K2,2 which can be created for the case posed in Figure 1.

