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Abstract: The intersection graph of a family of arcs on a circle is called a circular-arc 
graph. This class of graphs admits some interesting subclasses: proper circular-arc graphs, 
unit circular-arc graphs, Helly circular-arc graphs and clique-Helly circular-arc graphs. In 
this paper, all possible intersections of these subclasses are studied. There are thirteen 
regions. Twelve of these are nonempty, and we construct a minimal graph in each of them. 
Our main result is that the thirteenth region is empty, namely we prove that among proper 
but no unit circular-arc graphs, every clique-Helly circular-arc graph is also a Helly 
circular-arc graph. 
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1- Introduction 
  
 Consider a finite family of non-empty sets. The intersection graph of this family is 
obtained by representing each set by a vertex, two vertices being connected by an edge if 
and only if the corresponding sets intersect. Intersection graphs have received much 
attention in the study of algorithmic graph theory and their applications [3]. Well-known 
special classes of intersection graphs include interval graphs, chordal graphs, circular-arc 
graphs, permutation graphs, circle graphs, and so on. A circular-arc (CA) graph is the 
intersection graph of a family of arcs on a circle. We say that these arcs are a circular-arc 
representation of the graph. We may suppose that they are open. We shall denote a graph G 
by a pair (V(G),E(G)), where V(G) denotes the set of vertices of G and E(G) the set of 
edges of G. Let n = |V(G)| and m = |E(G)|. The neighborhood of a vertex v is the set  N(v) 
consisting of all the vertices which are adjacent to v. The closed neighborhood of v is N[v] 
= N(v) ∪ {v}. A clique in a graph G is a set of vertices which induces a maximal complete 
subgraph of G. 
 
 Circular-arc graphs have applications in genetic research [8], traffic control [9], 
compiler design [14] and statistics [6]. This class of graphs admits some interesting 
subclasses: 
 
(1) Proper circular-arc graphs: a graph G is a proper circular-arc (PCA) graph if there is a 
circular-arc representation of G such that no arc is properly contained in any other.  
 
(2) Unit circular-arc graphs: a graph G is a unit circular-arc (UCA) graph if there is a 



circular-arc representation of G such that all arcs are of the same length. Clearly, it can be 
easily proved that UCA ⊆ PCA. In [13], the author showed that this inclusion is strict. An 
example of a PCA graph which is not a UCA graph has also been given by Golumbic [3]. 
 
(3) Helly circular-arc graphs: first, we define the Helly property. A family of subsets S 
satisfies the Helly property when every subfamily of it consisting of pairwise intersecting 
subsets has a common element. So, a graph G is a Helly circular-arc (HCA) graph if there 
is a circular-arc representation of G such that the arcs satisfy the Helly property. 
 
(4) Clique-Helly circular-arc graphs: a graph G is a clique-Helly circular-arc (CH-CA) 
graph if G is a circular-arc graph and a clique-Helly graph. A graph is clique-Helly when its 
cliques satisfy the Helly property. 
 
 The proposal of this paper is to analize the existence of graphs that belong to exactly 
k of these four subclasses (k = 0,1,2,3,4). The region R is defined as being any combination 
of the four subclasses. R is empty if there are not graphs that belong to the k subclasses 
defined by R and that do not belong to the other 4 - k subclasses. If  k = 0, two regions are 
defined: one of them lying in CA and the other one, out of CA. Then, it has been defined 
seventeen regions. Four of them are trivially empty because UCA is a subclass of PCA. So, 
we have thirteen regions that could be non empty. First, we prove the following surprising 
result: the region defined by the subclasses CH-CA and PCA is empty. Furthermore, the 
paper shows the existence of minimal members in the other twelve regions (see Figure 8). 
The minimality of the examples implies that any proper induced subgraph of them belongs 
to some other region. 
 
 This paper is organized in the following way. In Section 2, some theorems that we 
need in the next section are reviewed. In Section 3, we prove that the region defined by the 
subclasses CH-CA and PCA is empty and minimal members belonging to the other regions 
are shown. 
 
 Definitions not given here can be found in [3]. 
 
 
2- Preliminaries 
 
 In order to characterize the PCA \ UCA region, we need a definition due to Tucker 
[13]. Let CI(j,k) ( j > k ) be a circular-arc graph whose representation in circular arcs is 
built in the following way: let ε be a small positive real number and r=1 the radius of  the 
circle. Draw j arcs  (A0,A1,...,Aj-1) of length l1=2πk/j + ε such that each arc Ai begins in 
2πi/j and finishes in 2π(i+k)/j + ε (Ai = (2πi/j, 2π(i+k)/j + ε)) . Then, draw j new arcs 
(B0,B1,...,Bj-1) of length l2=2πk/j - ε, such that each arc Bi begins in (2πi + πk)/j and finishes 
in (2π(i+k)+πk)/j - ε (Bi = ((2πi + πk)/j, (2π(i+k) + πk)/j - ε)). For example, the 
representation of Figure 1 generates CI(4,1) (Figure 2). 
 



               
 

Figure 1                                                   Figure 2 
 
 By construction, these graphs are proper circular-arc graphs [13]. 
 
Theorem 1 [13]: Let G be a proper circular-arc graph. Then G is a unit circular-arc graph if 
and only if  G contains no CI(j,k) as an induced subgraph, where j,k are relatively prime 
and j > 2k. 
 
 The following is a characterization of connected proper circular-arc graphs by local 
tournaments [1,4,5] and round orientations [1].  
 
  A tournament is an orientation of a complete graph. A local tournament is a 
directed graph in which the out-set as well as the in-set of every vertex is a tournament. 
 
 A round enumeration of a directed graph D is a circular ordering S = {v0,...,vn-1} of 
its vertices such that for each i there exist non-negative integers ri,si such that the vertex vi 
has inset NS

in = {vi-1,vi-2,...,vi-ri} and outset  NS
out = {vi+1,vi+2,...,vi+si} (additions are 

subtractions are modulo n). A directed graph which admits a round enumeration is called 
round. An undirected graph is said to have a round orientation if it admits an orientation 
which is a round directed graph. 
 
Theorem 2 [1,7]: The following statements are equivalent for a connected graph G 
 
(1) G is orientable as a local tournament. 
(2) G has a round orientation. 
(3) G is a proper circular arc graph. 
 
 We now review a characterization of Helly circular-arc graphs [3]. A matrix has a 
circular 1’s form if the 1’s in each column appear in a circular consecutive order. A matrix 
has the circular 1’s property if by a permutation of the rows it can be transformed into a 
matrix with a circular 1’s form. Let G be a graph and C1,C2,...,Ck the cliques of G. We will 
denote by µ(C1,...,Ck) the k x n clique matrix, that is the entry (i,j) is 1 if the vertex vj ∈ Ci 
and 0, otherwise. 
 
Theorem 3 [2]: A graph G is a Helly circular-arc graph if and only if  µ(C1,...,Ck) has the 
circular 1’s property. 



 
3- Circular-arc graphs and their subclasses 
 
3.1 - The empty region 
 
 Let us see that the region defined by CH-CA and PCA is empty.  
 Recall that CI(j,k) ( j > k ) is a circular-arc graph whose representation in circular 
arcs is built as we defined in Section 2. In order to make the construction independent of ε, 
we can suppose that the arcs Ai are closed and the arcs Bi are open. We say that there is a 1-
1 correspondence between the arc Ai with the vertex ai and the arc Bi with the vertex bi of 
G. So, ai (i=0,...,j-1) is adjacent to ai-k,bi-k,...,ai-1,bi-1, bi,ai+1,bi+1,...,bi+k-1,ai+k and bi is adjacent 
to ai-k+1,bi-k+1,...,ai-1,bi-1,ai,ai+1,bi+1,...,bi+k-1,ai+k (additions and subtractions have to be 
understood modulo j). 
 The following lemma proves that the graph CI(j,k) (j,k relatively prime and j > 2k) 
has only two possible round orientations. 
 
Lemma 1: Let H = CI(j,k) be the graph defined in Theorem 1, with j,k relatively prime and 
j > 2k. Then, H has only two possible round orientations, each one the reverse of the other. 
 
Proof:  We say that v dominates w if  N[w] ⊆ N[v]. In our case, we can see easily that the 
only vertices dominated by ai are bi and bi-1 (and they are strictly dominated). 
 
 We will prove that there is only one possible circular ordering S = {a0,b0,a1,b1,..., 
aj-1,bj-1} and hence, two possible orientations: either ai has inset NS

in(ai) = {ai-k,bi-k,..., 
ai-1,bi-1} and outset NS

out(ai) = {bi,ai+1,...,bi+k-1,ai+k}, and bi has inset NS
in (bi) = 

{ai-k+1,bi-k+1,...,ai-1,bi-1,ai} and outset NS
out (bi) = {ai+1,bi+1,ai+2,...,bi+k-1,ai+k}; or the reverse 

orientation. 
 
 Let R be a possible circular ordering, R = {v0,v1,,...,v2j-2,v2j-1}. We want to see that 
R = S. If  vp = ai  for any p and i, it will be enough to prove that {vp-1,vp+1} = {bi-1,bi} so that 
R = S. Recall that NR

out (vp) = {vp+1,vp+2,...,vp+s} and NR
in(vp) = {vp-r,...,vp-2,vp-1} because it 

is a round orientation (now, additions and subtractions have to be understood modulo 2j). 
Suppose that bi ∉ {vp-1,vp+1}; but bi is adjacent to ai, so either bi ∈{vp+2,...,vp+s} or bi ∈ {vp-r, 
...,vp-2}. We analize both possibilities: 
 
(1) bi ∈ {vp+2,...,vp+s}. We divide the proof into two cases: 
a) vp+1 = bi-1: as ai+k is adjacent to ai but it is not adjacent to bi-1, ai+k ∈ {vp-r,...,vp-1}. But ai+k 
is adjacent to bi, so either ai+k ∈  NR

out (bi) (in that case, ai would be an universal vertex 
because ai dominates bi) or ai+k ∈  NR

in (bi) (then, ai+k is adjacent to bi-1). In both cases, a 
contradiction arises. 
b) vp+1 ≠ bi-1: vp+1 is not dominated by ai because ai only dominates bi and bi-1. Then vp+1 has 
an adjacent vertex  w  which is adjacent neither to ai nor to bi. But, if w  ∈ NR

in (vp+1) then 
w is adjacent to ai, and if  w ∈  NR

out (vp+1) then w is adjacent to bi. Again, in both cases, a 
contradiction arises.      
 
(2) bi ∈ {vp-r,...,vp-2}. It is an analogous proof to the case (1). 



 So, bi ∈ {vp-1,vp+1}. The proof of  bi-1 ∈ {vp-1,vp+1} is similar. 
 
 Now, we can prove the following theorem which asserts that the region defined by 
CH-CA and PCA is empty 
 
Theorem 4: Let G be a graph ∈ PCA \  UCA. If G ∈ CH-CA, then  G ∈ HCA. 
 
Proof:  By Theorem 1, G contains CI(j,k) as an induced subgraph, where j,k are relatively 
prime and j > 2k.. We analyze two different cases. In i), we suppose that  2k <  j  ≤  3k and 
prove that G is not clique-Helly. In ii), we analize the other case (j > 3k) and prove that G is 
a Helly circular-arc graph.  
 
i) Let G be a PCA graph such that G contains H = CI(j,k) as an induced subgraph with 2k < 
j ≤ 3k. We will show that the graph G is not clique-Helly. 
a) Let G be isomorphic to H. Clearly, Cai = {ai,...,ai+k} ∪  {bi,...,bi+k-1} is a clique of G. Let 
us see that the cliques Ca0,Cak and Ca2k do not verify the Helly property: 
Ca0  ∩  Cak  ∩  Ca2k  =   ∅   (because j > 2k and k  ≥ 1), 
Ca0  ∩  Cak = {ak} ≠  ∅,    
Cak  ∩  Ca2k = {a2k} ≠  ∅    (j > 2k), 
Ca2k  ∩  Ca0  ≠  ∅   (a0 ∈ Ca2k  ∩  Ca0 because j ≤ 3k). 
b) Let G be not isomorphic to H. As H is a connected PCA graph, it has a round orientation 
(Theorem 2). By Lemma 1, there are only two possible round orientations, each one the 
reverse of the other. We use one of them (Figure 3) 
 

   
 

Figure 3 
 
 By a), H contains the cliques Ca0,Cak and Ca2k and they do not verify the Helly 
property. We extend the complete subgraphs Ca0,Cak and Ca2k  to cliques in G (and call 
them C’ a0,C’ ak and C’ a2k). Suppose that G is clique-Helly, then there is a vertex v ∈ V(G) \ 
V(H) such that v ∈ C’ a0  ∩  C’ ak  ∩   C’ a2k. As Ca0, Cak and Ca2k cover all the vertices in H, 
the vertex v is adjacent to w, for any w ∈ V(H). If we add the vertex v to H, the new graph 
is a connected PCA too. Then, by Theorem 2, there is a round orientation of  the subgraph 
induced by the vertices of H and v (we use the round orientation of the Figure 3 and add the 
vertex v). We can suppose, without loss of generality, that v is added between a0 and bo 



(Figure 4). By inspection, we can see that vertex v is not adjacent to bk, otherwise it would 
not be a round orientation. So, a contradiction arises because v is adjacent to w, for any w 
∈ V(H). 
 

 
 

Figure 4 
 
ii) Let G be a PCA graph such that G contains H = CI(j,k) as an induced subgraph with 3k < 
j. We will prove that G is a HCA graph. Suppose that G is not a Helly circular-arc graph. 
Then, any circular-arc representation does not verify the Helly property. Let v1,...,vt be a 
minimal subset of vertices of G whose corresponding arcs are not Helly in a given 
representation. Each vi may belong or not to H. We analyze two cases: 

a) t = 3: the arcs A’
1, A’

2 and A’
3 (correspoding to the vertices v1,v2 and v3) minimally non 

Helly are depicted in Figure 5. 
 

 
 

Figure 5 
 
 Then v1,v2 and v3 induce a triangle and every vertex of G is adjacent to either v1 or 
v2 or v3. As G is a connected PCA graph, the subgraph G’ induced by the vertices of H and 
v1,v2 and v3 is a connected PCA graph too. Then, by Theorem 2, there is a round orientation 
of G’. We use the round orientation of Figure 4 (one of the two possible round orientations) 
and add v1, v2 and v3 if they are not in H. As j > 3k and v1,v2,v3 form a triangle, these three 
vertices must be located in the round orientation between ai and ai+k. We may suppose, 



without loss of generality, that i = 0 (see Figure 6). 
 

 
 

Figure 6 
 
 Hence, there is a vertex bt (b2k, in this case) which is adjacent neither to v1, v2 nor  
v3, contradicting the above assertion. 
 
b) t  ≥  4: as these arcs are minimally non Helly, there are two of them (A’

1 and A’
2) which 

cover all the circle (Figure 7). Hence, every vertex of G is adjacent to either v1 or v2, with 
v1 adjacent to v2. So, the same contradiction of the case a) arises.                              
 
 

 
 

Figure 7 
 
Corollary: The region defined by CH-CA and PCA is empty 
 
Proof: It is a trivial consequence of Theorem 4.     
 
 



                                                 
            
 

Figure 8: A minimal member for each region 
 
  



3.2 - Minimal examples for each region 
 
 The proofs that the graphs of Figure 8 belongs to the corresponding region and the 
minimality of these examples can be verified easily by the reader using characterization 
theorems of circular-arc graphs and their subclasses [2,10,11,12,13].  We present here only 
two proofs of minimal members belonging to the respective regions. 
 
Proposition 1: Graph H1 (Figure 9) belongs to the region defined by PCA. 

   
 
 
 
 
 
 
 
 
 
 

Figure 9: H1 is Tucker’s CI(5,2) graph  
 
Proof: 
 
(1) H1 is a proper circular-arc graph but it is not a unit circular-arc graph: by [13], CI(5,2) ∈  
PCA \ UCA. 
 
(2) H1 is not a clique-Helly circular-arc graph: the subfamily of cliques C1={v2,v3,v4,v5,v6}, 
C2={v1,v3,v4,v5,v7}, C3={v1,v2,v4,v5,v8}, C4={v1,v2,v3,v5,v9}, C5={v1,v2,v3,v4,v10} does not 
verify the Helly property. 
 
(3) H1 is not a Helly circular-arc graph: suppose the contrary. In order to draw a circular-arc 
representation of the induced cycle C formed by vertices v6,v7,v8,v9,v10, we need to cover 
all the circle (Figure 10). Furthermore, the arcs representing the vertices of each clique 
must have a common intersection because the graph is a Helly circular-arc graph. Both 
properties imply that each clique contains any vertex of the induced cycle C. Then, the 
clique K5 induced by vertices {v1,v2,v3,v4,v5} leads us to a contradiction. 
 

 
 

Figure 10 

 



  
 In order to verify the minimality of this example, we are going to prove that any 
proper induced subgraph H of H1 is UCA. So, let us see that H does not contain CI(j,k) as 
an induced subgraph, where j,k are relatively prime and j > 2k. It is enough to prove this 
fact for CI(4,1) and CI(3,1) because they are the only graphs of this family with at most 
nine vertices. But H has a maximum independent set of size at most two and these two 
graphs have maximum independent set of cardinality 4 and 3, respectively. 
 
 
Proposition 2: Graph H2 (Figure 11) belongs to the region defined by CH-CA, PCA and 
UCA. 

 
 

Figure 11 
 
Proof: 
 
(1) H2 is a unit circular-arc graph: let r=1 be the radius of the circle and l=3/4 π the 
common length of each arc, corresponding to each vertex of the graph. Figure 12 shows a 
unit circular-arc representation of it.  
 

 
 

Figure 12 
 
(2) H2 is a clique-Helly circular-arc graph: by (1), H2 is a circular-arc graph. We want to 
prove that it is a clique-Helly graph. But H2 contains an universal vertex (v7), then we can 
assert that it is a clique-Helly graph. 
 



(3) H2 is not a Helly circular-arc graph: let us see that the subgraph induced by the set of 
vertices {v1,v2,v3,v4,v5,v6} is not a Helly circular-arc graph. Suppose the contrary; as v1, v2, 
v5 and v6 induce a cycle C4, the respective arcs in the circular-arc representation must be 
drawn as in the Figure 13. Furthermore, the vertex v3 is adjacent to all of them. So, in a 
Helly representation, A3 (arc corresponding to v3) must intersect A1 ∩ A2, A2 ∩ A5, A5 ∩ 
A6 and A6 ∩ A1. This fact implies that A3 contains at least one of the other arcs. Without 
loss of generality, it can be supposed that this arc is A5 (Figure 13). Now, it is not possible 
that A4 (arc corresponding to v4) is added to the Helly circular-arc representation such that 
it has non-empty intersection with A5 and an empty intersection with A3. 
 

 
 

Figure 13 
 
 So, H2 is not a Helly circular-arc graph because this is an hereditary property.. 
 
 
 Let us verify the minimality of H2.  If a proper induced subgraph H does not contain 
either v1, v2, v3, v4, v5 or v6, a circular 1’s clique matrix can be easily found, so H is a HCA 
graph (Theorem 3). On the other hand, the only proper induced subgraph that contains all 
these vertices is the subgraph induced by the set of vertices {v1,v2,v3,v4,v5,v6}, which 
belongs to another region (see Figure 8). 
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