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ABSTRACT

A clique-transversal of a graph G is a subset of vertices intersecting all the
cliques of G. It is NP-hard to determine the minimum cardinality τc of a
clique-transversal of G. In this work, first we propose an algorithm for deter-
mining this parameter for a general graph, which runs in polynomial time,
for fixed τc. This algorithm is employed for finding the minimum cardina-
lity clique-transversal of 3K2-free circular-arc graphs in O(n4) time. Further
we describe an algorithm for determining τc of a Helly circular-arc graph in
O(n) time. This represents an improvement over an existing algorithm by
Guruswami and Pandu Rangan which requires O(n2) time. Finally, the last
proposed algorithm is modified, so as to solve the weighted version of the
corresponding problem, in O(n2) time.

Keywords: algorithms, circular-arc graphs, clique-transversals, Helly circular-
arc graphs, 3K2-free circular-arc graphs.
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1 Introduction

The aim of this work is to describe algorithms for finding the clique-transversal
number for general graphs and for subclasses of circular-arc graphs: Helly
circular-arc graphs and 3K2-free circular-arc graphs.

Clique transversals have been studied since the paper by Tuza (1990). See
also the early paper by Payan (1979). The first NP-hardness result for clique-
transversals is by Erdös, Gallai and Tuza (1992). The following are some
classes of graphs admitting polynomial time algorithms for the problem of
determining a minimum clique-transversal: strongly chordal graphs (Chang,
Farber and Tuza (1993), Chang, Chen, Chang and Yan (1996), Guruswami
and Pandu Rangan (2000)); chordal graphs with bounded clique size (Gu-
ruswami and Pandu Rangan (2000)); k-trees with bounded k (Chang, Chen,
Chang and Yan (1996)); dually chordal graphs (Brandstädt, Chepoi and Dra-
gan (1997)); comparability graphs (Balachandran, Nagavamsi and Pandu
Rangan (1996)); balanced graphs (Bonomo, Durán, Lin and Szwarcfiter
(2005), (Dahlhaus, Manuel and Miller (1998)); distance hereditary graphs
(Lee, Chang and Sheu (2002)); short-chorded graphs with no 3-fans nor
4-wheels (Durán, Lin and Szwarcfiter (2002)); Helly circular-arc graphs (Gu-
ruswami and Pandu Rangan (2000)).

Let G be an undirected connected graph, V (G) and E(G) its vertex and
edge sets, respectively, |V (G)| = n and |E(G)| = m. For v ∈ V (G), denote
by N(v) the set of neighbors of v, and N [v] = N(v) ∪ {v}. Write N(v) =
V (G) \ N [v]. Say that v is universal when N [v] = V (G). A complete set of
G is a set of pairwise adjacent vertices. A clique is a maximal complete set.
A dominating set of G is a set W ⊆ V (G) such that every vertex outside
W is adjacent to some vertex of W . Let V a family of subsets of V (G), and
W ⊆ V (G). Say that W is a transversal of V when W intersects each set of
V . A transversal of the set of cliques of G is called a clique-transversal of G.

We employ the following notation.

• τc(G), minimum cardinality of a clique-transversal of G,
clique-transversal number

• τ̃c(G), minimum weight of a clique-transversal of G,

• γ(G), minimum cardinality of a dominating set of G,
domination number

• γ̃(G), minimum weight of a dominating set of G
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A circular-arc (CA) model for G is a pair (C,A), where C is a circle and A
is a collection of arcs of C, such that each arc Ai ∈ A corresponds to a vertex
vi ∈ V (G), and Ai, Aj intersect precisely when vi, vj are adjacent, i 6= j. A
circular-arc (CA) graph is one admitting a CA model. When traversing the
circle C, we will always choose the clockwise direction. If s, t are points of
C, write (s, t) to mean the arc of C defined by traversing the circle from s
to t. Call s, t the extremes of (s, t), while s is the start and t the end of the
arc. For Ai ∈ A, write Ai = (si, ti). Without loss of generality, all arcs of C
are considered as open arcs, no two extremes of distinct arcs of A coincide
and no single arc entirely covers C.

A Helly circular-arc (HCA) graph G is a CA graph admitting a CA model
whose arcs satisfy the Helly property. That is, every pairwise intersecting
subfamily of arcs of A contains a common point. Such a model is called
a Helly circular-arc (HCA) model for G. Gavril (1974) has characterized
HCA graphs as exactly those admitting a clique matrix having the circular
1′s property for columns. This characterization leads to an algorithm for
recognizing HCA graphs, which builds an HCA model in O(n3) time if that
model exists.

A 3K2-free circular-arc graph is a circular-arc graph which does not contain
the graph of Figure 1 as an induced subgraph.

Figure 1: Graph 3K2.

Helly circular-arc graphs form an important class of circular-arc graphs.
Some properties of interval graphs are captured more closely by Helly circular-
arc graphs than by other classes of circular-arc graphs. On the other hand,
3K2-free circular-arc graphs contain Helly circular-arc graphs and their cliques
preserve some of the properties of the latter class.

In this work, we propose an algorithm for determining the minimum cardi-
nality clique-transversal of a general graph, which runs in polynomial time,
whenever the clique-transversal number is fixed. We also describe efficient
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algorithms for finding clique-transversals in certain subclasses of circular-
arc graphs. The considered classes are Helly circular-arc graphs and 3K2-
free circular-arc graphs. For Helly circular-arc graphs, we propose algo-
rithms for the cardinality and weighted version of this problem. For 3K2-
free circular-arc graphs, we describe an algorithm for minimum cardinality
clique-transversal. The complexity of the proposed algorithm for the car-
dinality problem in HCA graphs is O(n). This represents an improvement
over the existing algorithm by Guruswami and Pandu Rangan (2000), whose
complexity is O(n2). As usual for many algorithms on circular-arc graphs, we
assume that the graph is given by its circular-arc model, with the extremes
of the arcs circularly sorted. If they are not sorted we would need to add an
extra O(n log n) time for the sorting. All the mentioned algorithms for HCA
graphs suppose that an HCA model is given.

2 Clique-transversals in general graphs

In the sequel, we consider the question of finding the clique-transversal num-
ber for an arbitrary graph.

The theorem below describes conditions for an arbitrary graph G to have
clique-transversal number at most k.

Theorem 1 Let G be a graph and k ≥ 1. Then τc(G) ≤ k if and only if G
has k vertices v1, . . . , vk, such that the family of subsets N(v1), . . . , N(vk),⊆
V (G) admits no transversal formed by a complete set of V (G).

Proof: Assume τc(G) ≤ k and let {v1, . . . , vk} be a clique-transversal of G.
By contrary, suppose that N(v1), . . . , N(vk) has a transversal W , which is a
complete set of G. Because W is a complete set, W is contained in some clique
M of G. Since W is a transversal of N(v1), . . . , N(vk), at least one vertex of
M is not adjacent to vi, 1 ≤ i ≤ k. Consequently, M ∩{v1, . . . , vk} = ∅. The
latter contradicts {v1, . . . , vk} to be a clique-transversal of G. Consequently,
N(v1), . . . , N(vk) has no transversal formed by a complete set of G.

Conversely, by hypothesis τc(G) > k. By contradiction, assume that G has
k vertices {v1, . . . , vk} such that N(v1), . . . , N(vk) has no transversal formed
by a complete set of G. Because τc(G) > k, there exists some clique M such
that M ∩ {v1, . . . , vk} = ∅. Then M contains a vertex w ∈ N(vi), for each
i. The collection of such vertices w form a complete set W with cardinality
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at most k, and which is a transversal of N(v1), . . . , N(vk), contrary to the
assumption. Consequently, no such vertices v1, . . . , vk may exist. 4

The above theorem conducts to the following algorithm for determining
whether the clique-transversal number of an arbitrary graph G is at most
k, for a given k.

Algorithm 1 DECIDING IF THE CLIQUE-TRANSVERSAL NUMBER
OF A GENERAL GRAPH IS AT MOST k

For each k-subset V ′ = {v1, . . . , vk} ⊆ V (G), consider all subsets W ⊆
V (G)\V ′, with |W | ≤ k. For each pair V ′,W , verify (i) if W is a transversal
of N(v1), . . . , N(vk) and (ii) if W is a complete set of G. If, for some V ′, (i)
or (ii) fails for all subsets W ⊆ V (G) \ V ′, then V ′ is a clique-transversal of
G, τc(G) ≤ k and stop. Otherwise, τc(G) > k.

The complexity of the above algorithm can be determined as follows. There
are O(kn2k) pairs of subsets V ′,W to be considered. For each V ′, we can
restrict to consider only those subsets W which are already a transversal of
N(v1), . . . , N(vk), that is, which satisfy (i). To verify (ii), we require O(k2)
time. Consequently, the overall time complexity is O(k3n2k), with O(m+nk)
space.

By applying τc(G) times the above algorithm, we can compute the value of
τc(G). The complexity is therefore a polynomial in n, for fixed τc(G).

3 Intersection segments

Let G be a graph admitting a CA model (C,A). For A ∈ A, denote by
V (A) the vertex of G corresponding to A. Similarly, for A′ ⊆ A, V (A′) =
∪A∈A′V (A). If V (A) is a universal vertex then A is a universal arc. If an arc
A ∈ A contains some point p ∈ C then say that A is an arc of p. Denote by
A(p) the collection of arcs of p. Clearly, V (A(p)) is complete set of G. For
p, p′ ∈ C say that p (properly) dominates p′ when A(p) (properly) contains
A(p′). When A(p) = A(p′) then p, p′ are equivalent. Say that p ∈ C is
complete point when no point of C properly dominates p. In addition when
V (A(p)) is a clique of G then p is a clique point of C. Such a clique is called
a Helly clique. Clearly, G might contain cliques that are no Helly. However,
if (C,A) is a Helly model then all its cliques are Helly. In this case, there is
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a one-to-one correspondence between cliques of G and non equivalent clique
points of C. On the other hand, any non Helly clique contains at least three
vertices. Furthermore, among the arcs of A corresponding to the vertices of
a non Helly clique there exist always three of them which together cover the
entire circle.

We describe a method for finding sets of complete points of a CA graph.
These sets will be employed in the algorithms proposed in the later sections.
The following concepts are central for our methods.

Denote A = {A1, . . . , An} and Ai = (si, ti), 1 ≤ i ≤ n. A segment is
an arc of C formed by two consecutive extremes of the arcs of A, when
traversing C. Clearly, there are 2n segments, which exactly cover C, except
for their extreme points. Also, each arc of A corresponds to a sequence of
consecutive segments. All points belonging to a same segment are equivalent.
An intersection segment is a segment of the type (si, tj), that is, its start point
is the start point of some arc arc Ai ∈ A, while its end point is the end point
of an arc Aj ∈ A. Write Ii = (si, tj). A point pi ∈ Ii is called an intersection
point. There are at most n intersection segments.

In order to relate intersection points to complete points, we employ the fol-
lowing additional notation. An intersection segment Ii = (si, tj) is simple
when Ai ∪Aj 6= C, and universal otherwise. That is, Ii is universal when Ai

and Aj cover the entire circle. A point belonging to a simple segment is a
simple point, whereas one inside a universal segment is a universal point.

Next, we consider some special subsets of points of C which are of interest.
Define the following four subsets. A complete (simple) (universal) (clique)
point representation of C is a maximal set of complete (simple) (universal)
(clique) non equivalent points of C. Represent these sets by P, S, U,Q, re-
spectively. We describe how to construct them.

Let P ′, P ′′ ⊆ C be two subsets of points of C. Then P ′, P ′′ are isomorphic
when there exists a bijection f between these sets such that p′ and f(p′) are
equivalent, for all p′ ∈ P ′. Clearly, any two complete (intersection) (simple)
(universal) (clique) point representations are isomorphic. That is, P, S, U,Q
are all unique, up to isomorphism. Consequently, we can write P = S ∪ U ′,
where U ′ ⊆ U . Also, Q ⊆ P , with Q = P precisely when (C,A) is a Helly
model. Clearly, Q corresponds to the set of Helly cliques of G. Moreover,
the Helly cliques can be further bipartitioned, as follows. Let Mi be a Helly
clique of G and pi the clique point of Q corresponding to Mi. Then Mi is a
simple clique or universal clique, according whether pi is a simple or universal
point, respectively.
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The following algorithm proposed in (Durán, Lin, Mera and Szwarcfiter
(2005)) constructs a complete point representation P of C, given a CA model
(C,A) for a graph G. In fact, the algorithm constructs explicitly the simple
point representation S and then finds U ′ ⊆ U , such that P = S ∪ U ′. The
algorithm is divided into two steps. Step 1 constructs S and a set U ′′ ⊇ U ,
which contains U and possibly some additional equivalent points. Step 2 de-
termines U ′ by including in it one universal point (the one with lowest index),
for each collection of equivalent complete points. The algorithm employs a
list L to contain this collection.

Algorithm 2 CONSTRUCTING A COMPLETE POINT REPRESENTA-
TION OF A CA GRAPH

STEP 1: Identify the segments of C. Define S = U ′′ = ∅. For each segment
(x, y) of C, if x is the start of some arc Ai ∈ A and y the end of Aj ∈ A
then let pi be a point of (x, y) and perform the following additional test: if
Ai ∪ Aj 6= C, include pi in S, otherwise include pi in U ′′.

STEP 2: Define U ′ = ∅. For each universal point pi ∈ U ′′, let Ii = (si, tj) be
its corresponding universal segment. For each pi ∈ U ′′, apply the following
procedure. Compute A(pi). Define L = {i}. Traverse the arc (sj, ti) ⊆ C,
segment by segment, in the order as they appear. In case of an intersection
segment (sk, tl) ⊆ (sj, ti), choose a point pk ∈ (sk, tl), compute A(pk), and if
A(pi) = A(pk) then include k in L. After all segments contained in (sj, ti)
have been traversed then include pr in U ′ precisely in the case where pi is not
properly dominated by any pk, and r = min{k ∈ L}. At the end, P = S∪U ′.

Algorithm 2 constructs S and U ′′ in O(n) time and U ′ ⊆ U ′′ in O(n2) time.
Consequently, we require O(n2) time for constructing P . For determining
U , possibly we need to eliminate equivalent points from the subset U ′ con-
structed in Step 1. It can be easily performed in overall O(n2) time.

Finally, consider the determination of the clique point representation Q of
C. To obtain Q ⊆ P , we need to remove from P those points p ∈ P ,
such that V (A(p)) is not a clique. With this purpose, apply the following
algorithm, proposed in (Durán, Lin, Mera and Szwarcfiter (2005)). Given P
the algorithm constructs Q in O(m) time.

Algorithm 3 CONSTRUCTING A CLIQUE POINT REPRESENTATION
OF A CA GRAPH
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Define Q := P . For each complete point p ∈ P , perform the following
operations. Denote by (si, tj) the intersection segment corresponding to p.
Define so := sj. Traverse the arc (tj, ti), identifying the extreme points q
of the arcs Ak ∈ A, such that q is the first extreme of Ak, in the traversal.
For each such extreme q, do the following: if q = sk and tk ∈ (s0, si) then
Q := Q\{p} and terminate the iteration corresponding to p (p is not a clique
point); if q = tk and sk ∈ (s0, si) then assign s0 := sk. At the end, Q is the
required clique point representation.

4 Clique-transversals in HCA graphs

In this section, we describe a method for finding a minimum clique transversal
of an HCA, for the weighted and cardinality versions of the problem.

Let G be an HCA graph and (C,A) an HCA model for it. Let Mi be a
clique of G and pi the clique point of C corresponding to it. Denote by G′

the graph obtained from G, by adding a new vertex wi, for each clique Mi

of G, making wi adjacent exactly to the vertices of Mi. Clearly, G′ is also
an HCA graph, as an HCA model for it can be obtained from (C,A), by
including in A a new arc A′

i for each clique Mi of G. Each A′
i includes pi and

is contained in the intersection of the arcs of pi, but containing none of the
extremes of this intersection. Note that each A′

i creates a new intersection
segment in G′. Call G′ the simplicial augmentation of G.

The following theorem relates clique-transversals of G and dominating sets
of G′.

Theorem 2 Let G be an HCA graph, G′ its simplicial augmentation and
W ⊆ V (G). Then W is a clique-transversal of G if and only if W is a
dominating set of G′.

Proof: Let (C,A) be an HCA model for G. Denote by Q the clique point
representation of C. Let AQ be a family of |Q| arcs of C, each one containing
exactly one clique point of Q and no extremes of arcs of A. It follows that
(C,A ∪ AQ) is an HCA model for G′. Let AW ⊆ A be the set of arcs of A
corresponding to the vertices of W .

Assume that W is a clique-transversal of G. Then the vertices of W meet
each clique Mi of G. That is, each clique point pi ∈ Q is covered by some arc
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of AW . On the other hand, each arc of A ∪ AQ contains some clique point
pi ∈ Q. Hence, the collection AW intersects all arcs of A∪AQ, meaning that
W is a dominating set of G′.

Conversely, suppose that W ⊆ V (G) is a dominating set of G′. Then each
arc of A ∪ AQ intersects some arc of AW . In particular, for any clique
point pi ∈ Q, the arc A′

i ∈ AQ which contains pi ∈ Q intersects some
arc Aw ∈ AW . We know that any arc of A ∪ AQ which intersects A′

i must
contain A′

i. Consequently, Aw contains pi, meaning that W is indeed a clique-
transversal of G. 4

We handle separately CA graphs having two arcs covering the entire circle.

Theorem 3 Let (C,A) be a CA model of a graph G. If there are two arcs
A1, A2 ∈ A which entirely cover C then τc(G) ≤ 2.

Proof: Let M be any clique of G and A(M) = {Ai ∈ A / V (Ai) ∈ M}. If A1

or A2 contains some arc Ai ∈ A(M) different from A1 and A2, then V (A1) or
V (A2) belongs to M . If A1 and A2 do not contain any arc of A(M) different
from A1 and A2, then ∀Ai ∈ A(M), Ai ∩ A1 6= ∅ and Ai ∩ A2 6= ∅, because
A1 and A2 entirely cover C. In this case, V (A1) and V (A2) are vertices of
M . Consequently, V (A1)and V (A2) form a clique transversal of G.4

In the sequel, we apply Theorems 2 and 3 for finding the clique-transversal
number of an HCA graph G, given by its HCA model (C,A). The following
algorithm computes τc(G).

Algorithm 4 CLIQUE-TRANSVERSAL NUMBER OF AN HCA GRAPH

Start by verifying if A contains a universal arc. If affirmative, τc(G) = 1.
Otherwise, construct the simple and universal point representations S and U
of G, respectively. If U 6= ∅ then τc(G) = 2. Otherwise, find the collection of
arcs AS and the HCA model (C,A∪AS) of the simplicial augmentation G′

of G. Then τc(G) = γ(G′).

Clearly, τc(G) = 1 precisely when G has a universal arc. Otherwise and
when U 6= ∅ there are two arcs which cover C, meaning that τc(G) = 2.
Otherwise, U = ∅ implies that the clique point representation Q equals S.
This means that Q = P = S. Consequently, the construction of Q reduces
to that of S, which can be done in O(n) time, running Step 1 of Algorithm
2. The construction of AS and of the HCA model of G′ can also be done
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in linear time. In order to compute γ(G′), apply the algorithm by Hsu and
Tsai (1991) , which runs in O(n) time. Consequently, the overall complexity
is O(n).

The above algorithm can be modified for the weighted problem. Let G be
a graph given by its HCA model (C,A), and where there is a non negative
weight assigned to each of its vertices.

Algorithm 5 MINIMUM WEIGHT OF A CLIQUE-TRANSVERSAL OF
AN HCA GRAPH

Construct the clique point representation Q of C, and the family of arcs
AQ. Find the HCA model (C,A∪AQ) of the simplicial augmentation G′ of
G. Define the weights of the vertices of G′, as follows. For v ∈ V (G), the
weight of v in G′ is the same as its weight in G, while the weight of a vertex
v ∈ V (G′) \ V (G) is infinite. Then τ̃c(G) = γ̃(G′).

The infinite weights assure that the minimum dominating set of G′ is formed
solely by vertices of G. By Theorem 2, the algorithm is correct.

The construction of Q requires O(n2) time, by Algorithms 2 and 3. The
determination of γ̃(G′) can be done in O(n+m) time, applying the algorithm
by Chang (1998). The remaining operations can de implemented in O(n)
time. Therefore the algorithm terminates within O(n2) time.

5 Clique-transversals in 3K2-free CA graphs

Finally, we consider the problem of finding τc(G) for a 3K2-free CA graph
G.

Theorem 4 Let G be a graph which is not HCA, and contains no 3K2 as
induced subgraph. Then τc(G) ≤ 3.

Proof: Let (C,A) be a CA model for G. As G is not an HCA graph, there
are three arcs A1, A2, A3 ∈ A, which entirely cover C. If two of these arcs
cover C then it holds that τc(G) ≤ 3 by Theorem 5. So, we can assume
that A1, A2, A3 do not have a common point. Suppose there is some clique
M which is not covered by the subset of vertices V (A1), V (A2) and V (A3).
That is, there exists an arc A′

1, corresponding to some vertex of M , such
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that A′
1 ∩ A1 = ∅, but A′

1 ∩ A2, A′
1 ∩ A3 6= ∅. The latter can be justified as

follows: A′
1 ∩ A1 = ∅, otherwise V (A1) ∈ M , while A′

1 ∩ A2, A′
1 ∩ A3 6= ∅,

because A1, A2, A3 cover the entire circle and A′
1 can not be strictly contained

in A2 nor A3. Similarly, there exist arcs A′
2 and A′

3 also corresponding to
vertices of M , satisfying A′

2 ∩ A2 = A′
3 ∩ A3 = ∅, but A′

2 ∩ A1, A′
2 ∩ A3,

A′
3 ∩A1, A′

3 ∩A2 6= ∅. In this situation, the subset of vertices corresponding
to the arcs {A1, A2, A3, A

′
1, A

′
2, A

′
3} induces a 3K2 in G, which contradicts

the hypothesis. Consequently, M is covered by V (A1), V (A2) and V (A3).
Therefore V (A1), V (A2) and V (A3) form a clique transversal of G.4

The above proof also implies that if G is a 3K2-free CA graph and τc(G) > 3
then every CA model for G is in fact an HCA model.

Theorem 4 leads to the following algorithm for determining the clique-transver-
sal number of a 3K2-free CA graph G, with a given CA model (C,A).

Algorithm 6 CLIQUE-TRANSVERSAL NUMBER OF A 3K2-FREE CA
GRAPH

Start by verifying if G contains a universal vertex. If affirmative then τc(G) =
1. Otherwise, apply Algorithm 1 with k = 2, to verify if τc(G) ≤ 2. If
affirmative, τc(G) = 2. Otherwise, check if there are three arcs A1, A2, A3 ∈
A which cover C. If negative, then (C,A) is an HCA model and determine
τc(G) by applying Algorithm 4. When A1, A2, A3 cover C, verify if there are
other three arcs A4, A5, A6 ∈ A covering C (in this case, A1, . . . , A6 form a
3K2 in G). In the affirmative case, the algorithm exhibits such a subgraph.
Otherwise, τc(G) = 3.

This algorithm is robust, in the sense that either it determines the clique
transversal number of the graph, or it exhibits a forbidden 3K2 induced
subgraph.

As for the complexity, the dominating step is that of applying Algorithm 1
with k = 2. Consequently, the algorithm terminates in O(n4) time.

6 Conclusions

The table below summarizes the problems that have been considered in this
paper, together with the complexities of the corresponding proposed algo-
rithms.
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Problem Graph Class Version Proposed alg. Previous alg.

Clique- HCA cardinality O(n) O(n2)
transversal weighted O(n2) -
number 3K2-free CA cardinality O(n4) -

weighted ? -
general cardinality O(τ 4

c (G).n2τc(G)) -

In all cases, the algorithms determine the cardinality or the weight of the co-
rresponding minimum clique-transversal set. There is no difficulty to modify
them so as to compute the actual minimum or maximum sets.

It remains open the complexity of determining the clique-transversal number
of general CA graphs.

References

[1] Balachandran, V., Nagavamsi, P. and Pandu Rangan, C (1996).
“Clique Transversal and Clique Independence on Comparability
Graphs”, Information Processing Letters 58, 181-184.

[2] Bonomo, F., Durán, G., Lin, M. C., and Szwarcfiter, J. L. (2005). “On
Balanced Graphs”, Mathematical Programming B, to appear.
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