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Abstract. The Chilean soccer championship follows the structure of a
compact single round robin tournament. Good schedules are of major
importance for the success of the tournament, making them more bal-
anced, profitable, and attractive. The schedules were prepared by ad hoc
procedures until 2004, when a rough integer programming strategy was
proposed. In this work, we improve the original integer programming for-
mulation. We derive valid inequalities for improving the liner relaxation
bound and we propose a new branch-and-cut strategy for the problem.
Computational results on a real-life instance illustrate the effectiveness
of the approach and the improvement in solution quality.

1 Introduction

There are 20 teams in the first division of the Chilean national soccer
championship, organized by the National Association of Professional Soc-
cer (ANFP). It is organized in two phases: qualifying and playoffs. The
qualifying phase follows the structure of a compact single round robin
tournament. The teams are evenly distributed over four groups with five
teams each. The groups are formed according to the performance of each
team in the last tournament. Each of the first four teams is placed in
one of the four groups. The teams from the 5th to the 8th places are
randomly distributed in different groups. The same happens with the
teams from the 9th to the 12th places. This procedure is repeated until
all teams are assigned to a group. At the end of the qualifying phase, the
teams that end up in the two first positions of each group qualify for the
playoffs.

The schedules of the Chilean soccer championship were prepared by ad
hoc procedures until 2004. As for most European and South American
soccer championships, the games were randomly assigned to slots in a
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predefined round sheet. There were several drawbacks with these sched-
ules that made them less attractive for fans and less profitable for teams:
(a) classical games at inconvenient rounds, (b) weak teams playing away
all their games against strong teams, (c) teams playing too many consec-
utive home games or too many consecutive away games, and (d) no games
between traditional teams and teams from tourist cities during summer
rounds, when many people are visiting the tourist regions. Weintraub
et al. [6] tackled the problem of scheduling the Chilean soccer cham-
pionship by integer programming in 2005, handling the above issues.
The model was solved by a standard branch-and-cut procedure of the
CPLEX solver. However, this procedure would take up to two hours of
computation time to find a feasible solution. The procedure would be
interrupted at this time, the set of possible home-away patterns fixed,
and the resulting simplified model solved to optimality using a limited
set of decision variables. In consequence, the model becomes easy and
solvable in a few seconds. Although the resulting schedules were better
than those obtained by the ad hoc procedures, the duality gaps could be
very large and solutions lacked of quality.

Good schedules have a major importance in the success of sports tour-
naments, making them more balanced, profitable, and attractive. Many
authors tackled the problem of tournament scheduling optimization in
different leagues and sports. Bean and Birge [2] focused on the scheduling
problem for the National Basketball Association, in which the most lim-
iting constraints concerned rest days and stadium availability. Costa [4]
considered the scheduling of the National Hockey League, for which one
of the objectives consisted in the minimization of the total distance trav-
eled by all teams. Henz [8] used constraint programming to improve the
processing times of the enumerative approach proposed in [10] to com-
pute schedules for a college basketball conference. These results were
later improved by Zhang [15], once again using constraint programming.
We refer to Henz [9] for recent advances in constraint programming for
scheduling problems in sports, as well as to Trick [13, 14] for the com-
bination of integer and constraint programming. Bartsch et al. [1] de-
veloped a branch-and-bound procedure for scheduling the professional
soccer leagues of Austria and Germany. Goossens and Spieksma [7] pro-
posed an integer programming formulation for scheduling the Belgian
soccer league, whose objective function consisted in the minimization
of the violations of soft constraints. Ribeiro and Urrutia [12] solved the
problem of scheduling the Brazilan soccer tournament by an approach
combining backtracking and integer programming, which found optimal
solutions very quickly. Croce and Oliveri [5] used a three phase strategy
based on integer programming for scheduling the Italian major soccer
league, involving round robin and television constraints and minimizing
the number of violations of home-away pattern constraints.

In this work, we tackle the problem of scheduling the highly-constrained
Chilean soccer tournament. The original integer programming formu-
lation of Weintraub et al. [6] is improved and valid inequalities are de-
rived to strengthen the linear relaxation bound. We also developed a new
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branch-and-cut strategy that finds much better results than the previous
approach.

The integer programming formulation is presented in Section 2. The
solution approach and the branching strategy are described in Section 3.
Computational results are reported in Section 4. Concluding remarks are
made in the last section.

2 Problem formulation

In this section, the problem of scheduling the Chilean soccer tournament
is stated. We present the constants, variables, and constraints of the
mathematical formulation, as well as its objective function. We first re-
mind some widely used terminology in sports scheduling. A single round
robin tournament is one in which each team plays against every other
exactly once. A round robin tournament is compact if every team plays
exactly once in each round. A home-away pattern (HAP) is a sequence
of home and away games for a given team. A break is a subsequence of
two consecutive home games or two away games.

The following subsets of teams are defined:

– POP : popular teams, which are those with more fans;
– STR: strong teams, better qualified in the last tournaments;
– TRD: traditional teams (Universidad Católica, Colo-Colo, and Uni-

versidad de Chile);
– STG: teams whose home city is Santiago; and
– TUR: teams from tourist cities, visited in summer and holidays.

Some constraints involve games and relationships between specific pairs
of teams:

– CMP : pairs of teams with complementary HAPs (whenever one of
them plays at home the other plays away, and vice-versa);

– EXC: pairs of excluding teams (whenever a third team plays against
one of them at home, then it should play away against the other,
and vice-versa); and

– GRP : pairs of teams in a same group.

Since some constraints involve some specific rounds, we also define:

– SUM : summer rounds; and
– WED: Wednesday rounds.

Chile is geographically divided into thirteen regions (numbered from 1
to 13) and three zones (North, South, and Central):

– TRG = {4, 5}: tourist regions;
– ZNS = {North, South, Central}: zones;
– FRG(r): teams whose home cities are at region r; and
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– FZN(z): teams whose home cities are at zone z.

We first define the following decision variables:

xijk =

{

1, if team i plays at home against team j in round k,
0, otherwise;

yik =

{

1, if team i has an away break in round k + 1,
0, otherwise.

Round robin constraints are those defining a timetable in which (i) each
team plays against every other team exactly once (constraints (1)) and
(ii) every team plays exactly once in each round (constraints (2)):

19
∑

k=1

(xijk + xjik) = 1 ∀i, j = 1, . . . , 20, with i < j (1)

20
∑

j=1

j<i

(xijk + xjik) = 1 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (2)

HAP constraints restrict the home-away patterns, imposing a fair bal-
ance between home and away matches: (i) each team must play at
least nine (and at most ten) games at home and the others away (con-
straints (3)), (ii) a team may never have two consecutive breaks (con-
straints (4) and (5)), (iii) a team may play at most three games at home
in any five consecutive rounds (constraints (6)), (iv) there may be no
breaks in rounds 2, 17, and 19 (beginning and end of the tournament,
constraints (7)).

9 ≤

20
∑

j=1

j 6=i

19
∑

k=1

xijk ≤ 10 ∀i = 1, . . . , 20 (3)

20,
∑

j=1

j 6=i

(xij(k−1)+xijk +xij(k+1)) ≤ 2 ∀i = 1, . . . , 20, ∀k = 2, . . . , 18 (4)

20
∑

j=1

j 6=i

(xji(k−1)+xjik +xji(k+1)) ≤ 2 ∀i = 1, . . . , 20, ∀k = 2, . . . , 18 (5)
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20
∑

j=1

j 6=i

(xij(k−2) + xij(k−1) + xijk + xij(k+1) + xij(k+2)) ≤ 3

∀i = 1, . . . , 20, ∀k = 3, . . . , 17 (6)

20
∑

j=1

j 6=i

(xij(k−1) + xijk) = 1 ∀i = 1, . . . , 20, ∀k = 2, 17, 19 (7)

Consecutive away games are very inconvenient and should be avoided.
Constraints (8) and (9) impose that every team should have at most one
away break:

20
∑

j=1

j 6=i

(xjik + xji(k+1)) ≤ 1 + yik ∀i = 1, . . . , 20, ∀k = 1, . . . , 18 (8)

18
∑

k=1

yik ≤ 1 ∀i = 1, . . . , 20 (9)

The last two HAP constraints guarantee that (i) some pairs of teams
must have complementary HAPs (constraints (10)), for security reasons
to avoid more than one game in the same city at the same time, to ensure
that there will ever be one game in this city or because they share the
same stadium, and (ii) there may be at most four teams from Santiago
playing at home in any round (constraints (11)):

20
∑

h=1

h6=i,h6=j

(xihk + xjhk) =

20
∑

h6=i,h6=j,h=1

(xhik + xhjk)

∀(i, j) ∈ CMP, ∀k = 1, . . . , 19 (10)

∑

i∈STG

20
∑

j=1

j 6=i

xijk ≤ 4 ∀k = 1, . . . , 19 (11)

Team constraints restrict the rounds in which games between special
pairs of teams can be played: (i) each team should play at least one game
between two consecutive games against popular teams (constraints (12)),
(ii) each team may have at most two consecutive games against strong
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teams (constraints (13)), (iii) each traditional team plays exactly one
classical game (i.e., a game against another traditional team) at home
(constraints (14)), and (iv) classical games must be played between
rounds 8 and 17 (constraints (15)).

∑

j∈POP\{i}

(xijk + xjik + xij(k+1) + xji(k+1)) ≤ 1

∀i = 1, . . . , 20, ∀k = 1, . . . , 18 (12)

∑

j∈STR\{i}

(xijk + xjik + xij(k+1) + xji(k+1) + xij(k+2) + xji(k+2)) ≤ 2

∀i = 1, . . . , 20, ∀k = 1, . . . , 17 (13)

19
∑

k=1

(xhik + xjik) =

19
∑

k=1

(xhjk + xijk) ∀i, j, h ∈ TRD (14)

∑

i∈TRD

∑

j∈T RD
j 6=i

(

7
∑

k=1

xijk +

19
∑

k=18

xijk) = 0 (15)

The strong teams are grouped into pairs to balance the hardness of home
and away games. Whenever a team plays at home against one of the
teams of a pair of excluding teams, then it will play away against the
other (and vice-versa), as stated by constraints (16):

19
∑

k=1

(xhik + xhjk) = 1 ∀(i, j) ∈ EXC, ∀h = 1, . . . , 20, h 6= i, h 6= j

(16)

Geographic constraints tackle Chile’s particular geography of a very long
and narrow country: a team from the Central zone cannot play away
in the same week against a team from the South and another from the
North, and vice-versa (constraints (17) and (18)). Whenever a team from
the Central zone plays against a team from the North (resp. South) on
a Wednesday, then it cannot play against a team from the South (resp.
North) in the previous or forthcoming weekend. Furthermore, we point
out that the first and last rounds are always scheduled on weekends.

∑

j∈F ZN(South)

(xji(k−1) + xji(k+1)) +
∑

j∈F ZN(North)

2 · xjik ≤ 2

∀i ∈ FZN(Central), ∀k ∈ WED (17)
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∑

j∈F ZN(North)

(xji(k−1) + xji(k+1)) +
∑

j∈F ZN(South)

2 · xjik ≤ 2

∀i ∈ FZN(Central), ∀k ∈ WED (18)

There are also constraints on tourist teams and regions: (i) each tourist
team should play at least once at home against a traditional team dur-
ing the summer rounds (constraints (19)) and (ii) each traditional team
should not play twice in the same week at the same tourist region (con-
straints (20)).

∑

k∈SUM

∑

j∈TRD\{i}

xijk ≥ 1 ∀i ∈ TUR (19)

∑

i∈F RG(r)\{j}

(xij(k−1) + 2 · xijk + xij(k+1)) ≤ 2

∀j ∈ TRD, ∀r ∈ TRG, ∀k ∈ WED (20)

Since only the teams in the two first positions of each group qualify for
the playoffs, games between teams in the same group are more attractive.
Therefore, these games should as much as possible take place at the end
of the tournament. The objective function (21) consists in maximizing
the number of games between teams in the same group in the last rounds
of the tournament:

maximize
∑

(i,j)∈GRP

19
∑

k=1

k · xijk (21)

Weintraub et al. [6] attempted to apply a standard CPLEX branch-
and-cut algorithm directly to the above formulation. However, the lower
bounds provided by its linear relaxation were very poor because of the
flow spread among the originally binary x variables. CPLEX heuristics
were not able to find primal solutions. The computation times were very
high, because the formulation is degenerated for the simplex method and
can only be solved by perturbation techniques.

3 Solution approach

The original integer programming formulation described in the previ-
ous section can be significantly improved. Valid inequalities are derived
in Section 3.1 to improve the lower bounds and a new branch-and-cut
strategy is proposed in Section 3.2 to speedup convergence.
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3.1 Improved formulation

We first the following additional binary variables:

zik =

{

1, if team i plays at home in round k;
0, otherwise.

They can be associated with the other variables by constraints (22) and
(23):

zik =

20
∑

j=1

j 6=i

xijk ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (22)

zik + zi(k+1) ≥ 1 − yik ∀i = 1, . . . , 20, ∀k = 1, . . . , 18 (23)

All HAP constraints may be rewritten in terms of the new variables by
substituting zik =

∑20

j 6=i,j=1
xijk: constraints (3) are rewritten as (24),

constraints (4) and (5) as (25), constraints (6) as (26), constraints (7)
as (27), constraints (8) as (23), constraints (10) as (28), and constraints
(11) as (29):

19
∑

k=1

zik ≥ 9 ∀i = 1, . . . , 19 (24)

1 ≤ zi(k−1) + zik + zi(k+1) ≤ 2 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (25)

zi(k−2) + zi(k−1) + zik + zi(k+1) + zi(k+2) ≤ 3

∀i = 1, . . . , 20, ∀k = 2, . . . , 19 (26)

zi(k−1) + zik = 1 ∀i = 1, . . . , 20, ∀k = 2, 17, 19 (27)

zik + zjk = 1 ∀(i, j) ∈ CMP, ∀k = 1, . . . , 19 (28)

∑

i∈STG

zik ≤ 4 ∀k = 1, . . . , 19 (29)

To strengthen the original formulation, we use an approach similar to
that proposed by Trick [13], with the exception that the rounds in which
the games will be played are not fixed. Additional variables are defined:
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si =

{

1, if team i plays at home in the first round,
0, otherwise;

hik =

{

1, if team i plays away in round k and at home in round k + 1,
0, otherwise;

wik =

{

1, if team i plays at home in round k and away in round k + 1,
0, otherwise.

Variables z, s, h, and w are related by equations (30) and (31):

zik = si +

k−1
∑

t=1

(hit − wit) ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (30)

hik + wik ≤ 1 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (31)

The original formulation can now be strengthened by the following valid
inequalities:

zik + hik ≤ 1 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (32)

zik − wik ≥ 0 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (33)

Constraints (32) and (33) do not improve the linear relaxation bound.
However, they avoid that variables z assume fractional values, speeding
up the integer programming algorithm. The new formulation (1,2,9,12–
33) is still degenerated, but its coefficient matrix is more sparse and can
be rapidly solved by an interior point algorithm [3]. Furthermore, the
variables z play a major role in the branching strategy.

3.2 Branch-and-cut

We developed a cutting plane procedure based on odd-set cuts to improve
the linear relaxation bound, as suggested by Trick [14]. Padberg and Rao
[11] showed that these cuts can be separated in polinomial time. They
come from the fact that each round can be seen as a perfect matching in
the complete graph whose node set is formed by the teams taking part
in the tournament. The odd-set constraints can be described as follows.
For each particular round k = 1, . . . , 19, let S be any subset of teams
such that |S| is odd:
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∑

i∈S,j /∈S

(xijk + xjik) ≥ 1 ∀k = 1, . . . , 19, ∀S ⊆ {1, . . . , 20}, |S| odd.

Cuts associated with odd-set constraints violated by the solution of the
linear relaxation are progressively added to the enumeration tree. The
number of times the linear relaxation is solved in each node is limited, be-
cause solving the linear relaxation is computationally demanding. After
the linear relaxation is solved, all odd-set cuts such that

∑

i∈S,j /∈S

(x∗
ijk + x

∗
jik) ≤ ∆

are determined by a separation procedure and appended to the model
(x∗

ijk denotes the value of variable xijk in the optimal solution of the
linear relaxation), with ∆ fixed at 0.1. This procedure is repeated while
the linear relaxation bound can be improved.

The experimental results showed that this procedure strongly improved
the linear relaxation bound, which was already equal to the optimal value
at the root of the enumeration tree for the 2005 edition of the Chilean
soccer tournament.

The branching strategy plays a major role in the success of a branch-
and-cut algorithm. Branching on the x variables is not efficient, since
most of them are null in integral solutions. Our branching strategy is
based on the z variables. Branching on the x variables starts only after
all the z variables are integral. This strategy implicitly decomposes the
solution in two phases. The HAPs are computed in the first phase, while
the dates of the games are established in the second. Once the z variables
are fixed, the branch-and-cut algorithm needs just a few branches on the
x variables to find a feasible solution or to prove infeasibility.

4 Computational experiments

The branch-and-cut strategy described in the previous section was im-
plemented using Visual C++ 6.0 and CPLEX 8.0. The same algorithm
without the odd-set cuts was also implemented to evaluate the effec-
tiveness of the cutting plane procedure. We refer to the first algorithm
as B&C-ANFP and to the second as B&B-ANFP. The computational experi-
ments were performed on a 3 GHz Pentium IV machine with 1 Gbyte of
RAM memory. We illustrate the results obtained for the 2005 edition of
the Chilean soccer championship, comparing them with those reported
in [6]. Table 1 shows the name of each team and its respective group, as
well as the identification used to represent each team in Tables 5 and 6.

Computation times for solving the linear programming relaxation by dif-
ferent algorithms available with CPLEX 8.0 are given in Table 2. Since
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Table 1. Teams in the 2005 edition of the Chilean soccer championship.

Group 1 Group 2 Group 3 Group 4

Colo-Colo Cobreloa U. de Concepción U. de Chile
(1) (2) (3) (0)

Audax Italiano Wanderers Unión Española U. Católica
(5) (6) (8) (4)

Huachipato Coquimbo Temuco Eeverton
(7) (9) (10) (11)

San Felipe Puerto Montt Palestino Cobresal
(13) (12) (16) (17)

Melipilla La Serena Desportes Concepción Rangers
(19) (14) (18) (15)

the problem is degenerated for both the primal and dual simplex meth-
ods, their computation times were very high. Therefore, the interior point
algorithm presented the best computation times for solving the linear re-
laxation. Table 2 shows that the new formulation considerably reduced
the computation time of the interior points algorithm, leading to an ef-
ficient implementation of the cutting plane strategy.

Table 2. Computation times in seconds for solving the linear relaxation.

Strategy time (s)

Primal simplex 27
Dual simplex 21
Interior points (original formulation) 12
Interior points (with the additional z variables) 4

Detailed results obtained with algorithms B&B-ANFP and B&C-ANFP are
given in Table 3. For each algorithm, we report the value of the ob-
jective function, the number of nodes in the enumeration tree, and the
integrality gap after some elapsed times (ranging from ten minutes to
four hours). We notice that algorithm B&B-ANFP finds good solutions
faster than B&C-ANFP in the beginning. However, the former was not able
to find the optimal solution within a 4-hour time limit. On the contrary,
the cuts used by algorithm B&C-ANFP were able to improve the linear
relaxation bound, which was already equal to the optimal value at the
root of the enumeration tree. The number of nodes is much smaller for
algorithm B&C-ANFP, that found the exact optimal solution in less than
two hours of computation time.
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Table 3. Comparison between algorithms B&B-ANFP and B&C-ANFP.

Elapsed B&B-ANFP B&C-ANFP

time objective nodes gap (%) objective nodes gap (%)

10 minutes 617 140 3.6 474 120 25.9
30 minutes 622 600 2.9 615 330 3.9

1 hour 631 1120 1.4 633 570 1.1
2 hours 633 2190 1.1 640 1560 0.0
4 hours 639 4860 0.2 — — —

In Table 4, we compare the results obtained by algorithm B&C-ANFP with
those obtained by the strategy proposed in [6]. We give the relative in-
tegrality gap from the optimal solution after 30 minutes and after two
hours of computation time (on a 2.4 GHz Pentium IV computer for [6])
for both algorithms. Algorithm B&C-ANFP not only found a better solu-
tion quickly, but also found a much better – and optimal – solution after
the same time the approach in [6] took to find a solution 9.2% away from
the optimal value.

The schedules provided by [6] and B&C-ANFP are presented in Tables 5
and 6, respectively. The lines correspond to teams and the columns to
rounds. Games between teams from the same group are underlined. Ta-
ble 5 shows that the schedule obtained by [6] has games between teams
from the same group spread along all rounds, while the schedule provided
by the new algorithm has all games between teams from the same group
in the last five rounds of the tournament.

Table 4. Comparison of algorithms B&C-ANFP and Weintraub et al [6].

Algorithm 30 minutes 2 hours

B&C-ANFP 3.9% 0.0%
Weintraub et al [6] - 9.2 %

5 Concluding remarks

We proposed a new formulation for the highly constrained Chilean soc-
cer tournament scheduling problem. Valid inequalities were derived and
appended to the formulation to improve its liner relaxation bound. A
branching strategy based on the new variables was used to speedup con-
vergence.
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Table 5. Schedule provided by [6].

T\R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 @11 13 @9 16 @12 18 @2 6 @7 5 @8 @1 14 @19 4 10 @3 15 @17

1 12 @6 17 @5 3 @14 11 @10 2 @4 9 0 @16 8 @15 @18 7 @13 19

2 @8 16 @7 @3 10 @19 0 15 @1 18 @5 13 @11 9 17 @4 14 @6 12

3 5 @14 @11 2 @1 13 @9 7 @15 8 18 @17 10 @4 12 @6 0 @18 16

4 19 @12 @10 8 @18 6 @13 5 @14 1 @16 7 @9 3 @0 2 @17 11 @15

5 @3 11 @8 1 @9 16 @15 @4 10 @0 2 @18 17 @14 19 @12 6 @7 13

6 @13 1 @15 11 17 @4 10 @0 19 @12 @14 16 @15 7 @8 3 @5 2 @9

7 14 @18 2 @10 @16 15 17 @3 0 @11 12 @4 19 @6 13 9 @1 5 @8

8 2 @15 5 @4 11 @14 14 @19 9 @3 0 @10 12 @1 6 @13 18 @16 7

9 18 @17 0 @19 5 @10 3 @11 @8 13 @1 15 4 @2 16 @7 12 @14 6

10 17 @19 4 7 @2 9 @6 1 @5 15 @11 8 @3 @13 14 @0 16 @12 18

11 0 @5 3 @6 @8 12 @1 9 @13 7 10 @19 2 @17 18 @16 15 @4 14

12 @1 4 19 @17 0 @11 @16 13 @18 6 @7 14 @8 15 @3 5 @9 10 @2

13 6 @0 @16 15 14 @3 4 @12 11 @9 17 @2 18 10 @7 8 @19 1 @5

14 @7 3 @15 18 @13 1 @8 16 4 @17 6 @12 @0 5 @10 19 @2 9 @11

15 @16 8 14 @13 19 @7 5 @12 3 @10 18 @9 6 @12 1 17 @11 @0 4

16 15 @2 13 @0 7 @5 12 @14 17 @19 4 @16 1 @18 @9 11 @10 8 @3

17 @10 2 @1 12 @6 8 @7 18 @16 14 @13 3 @5 11 @2 @15 4 @19 0

18 @9 7 6 @14 4 @0 19 @17 12 @2 @15 5 @13 16 @11 1 @8 3 @10

19 @4 10 @12 9 @15 2 @18 8 @6 16 @3 11 @7 0 @5 @14 13 17 @1

Table 6. Schedule provided by B&C-ANFP.

T\R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 16 @9 14 @3 10 @6 13 @5 @18 1 @19 12 @7 8 @17 11 @4 2 @15

1 @14 15 @2 18 @11 9 @12 17 3 @0 4 @10 6 @16 19 @13 5 @8 7

2 @5 13 1 @4 3 @15 10 16 @19 8 @18 7 @11 17 @14 @12 6 @0 9

3 @7 14 @19 0 @2 11 @17 12 @1 @13 5 @15 4 @9 6 @8 10 18 @16

4 @10 5 @16 2 @13 19 @8 18 @7 12 @1 14 @3 @6 15 @9 0 @17 11

5 2 @4 6 @10 15 16 @9 0 @12 18 @3 8 @17 14 @11 19 @1 @7 13

6 @15 10 @5 13 @16 0 @19 8 @17 11 @7 18 @1 4 @3 14 @2 @9 12

7 3 @8 17 11 @9 12 @18 @14 4 @15 6 @2 0 @10 13 16 @19 5 @1

8 @11 7 @9 19 @12 @17 4 @6 14 @2 15 @5 13 @0 10 3 @16 1 @18

9 @13 0 8 @17 7 @1 5 @10 15 @16 @11 19 @18 3 @12 4 @14 6 @2

10 4 @6 @15 5 @0 13 @2 9 @11 19 @17 1 @12 7 @8 18 @3 16 @14

11 8 @18 12 @7 1 @3 14 @13 10 @6 9 @16 2 @19 5 @0 17 15 @4

12 @17 19 @11 @15 8 @7 1 @3 5 @4 16 @0 10 @13 9 2 @18 14 @6

13 9 @2 18 @6 4 @10 @0 11 @16 3 @14 17 @8 12 @7 1 @15 19 @5

14 1 @3 @0 16 @19 18 @11 7 @8 17 13 @4 15 @5 2 @6 9 @12 10

15 6 @1 10 12 @5 2 @16 19 @9 7 @8 3 @14 18 @4 @17 13 @11 0

16 @0 17 4 @14 6 @5 15 @2 13 9 @12 11 @19 1 @18 @7 8 @10 3

17 12 @16 @7 9 @18 8 3 @1 6 @14 10 @13 5 @2 0 15 @11 4 @19

18 @19 11 @13 @1 17 @14 7 @4 0 @5 2 @6 9 @15 16 @10 12 @3 8

19 18 @12 3 @8 14 @4 6 @15 2 @10 0 @9 16 11 @1 @5 7 @13 17
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The new formulation considerably reduced the computation times needed
to solve the liner relaxation. The odd-set cuts improved the linear relax-
ation bound, which was already equal to the optimal value at the root
of the enumeration tree. The new algorithm B&C-ANFP significantly out-
performed the previous approach and found the optimal solution in less
than two hours. Future work will deal with new constraints and objec-
tive functions imposed by TV sponsors, as well as with heuristics for
providing integer feasible solutions for the model.
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