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Abstract A graph G is coordinated if the minimum number of colors that
can be assigned to the cliques of H in such a way that no two cliques with
non-empty intersection receive the same color is equal to the maximum
number of cliques of H with a common vertex, for every induced subgraph
H of G. Coordinated graphs are a subclass of perfect graphs. The list of
minimal forbidden induced subgraphs for the class of coordinated graphs
is not known. In this paper, we present a partial result in this direction,
that is, we characterize coordinated graphs by minimal forbidden induced
subgraphs when the graph is either a line graph, or the complement of a
forest.
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1 Introduction

Let G be a simple finite undirected graph, with vertex set V (G) and
edge set E(G). Denote by G the complement of G. A graph with only one
vertex is known as a trivial graph. Given two graphs G and G′ we say that
G contains G′ if G′ is isomorphic to an induced subgraph of G. When we
need to refer to the non-induced subgraph containment relation, we will say
so explicitly.

A class of graphs C is hereditary if for every G ∈ C, every induced
subgraph of G also belongs to C.

The neighborhood of a vertex v is the set N(v) consisting of all the
vertices which are adjacent to v. The closed neighborhood of v is N [v] =
N(v) ∪ {v}. A vertex v of G is universal if N [v] = V (G). Two vertices v
and w are true twins in G if N [v] = N [w], and false twins if they are true
twins in G.

A complete set or just a complete of a graph is a subset of vertices
pairwise adjacent. Denote by Kj the complete with j vertices. A clique is a
complete set not properly contained in any other. We may also use the term
clique to refer to the corresponding complete subgraph. Given a graph G
and a vertex v in V (G), we denote by m(v) the number of cliques to which
v belongs.

A stable set in a graph G is a subset of pairwise non-adjacent vertices
of G. A graph is bipartite if its vertex set can be partitioned into two stable
sets.

Let X and Y be two sets of vertices of G. We say that X is complete
to Y if every vertex in X is adjacent to every vertex in Y , and that X is
anticomplete to Y if no vertex of X is adjacent to a vertex of Y .

Consider a finite family of non-empty sets. The intersection graph of this
family is obtained by representing each set by a vertex, two vertices being
adjacent if and only if the corresponding sets intersect.

The line graph L(G) of G is the intersection graph of the edges of G. A
graph H is a line graph if there exists a graph G such that L(G) = H.

A star is a graph with one vertex adjacent to every other vertex of the
graph and no other adjacencies. The universal vertex is called the center of
the star.

A diamond is the graph isomorphic to K4 \ {e}, where e is an edge of
K4.

A tree is a connected graph with no cycles. A forest is a graph with no
cycles.

A hole is a chordless cycle of length at least 4. An antihole is the com-
plement of a hole. A hole or antihole is said to be odd if it consists of an
odd number of vertices. A hole of length n is denoted by Cn. Denote by Pk

the induced path of k vertices.
The chromatic number of a graph G is the smallest number of colors

that can be assigned to the vertices of G in such a way that no two adjacent
vertices receive the same color, and it is denoted by χ(G). An obvious lower
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Fig. 1 Forbidden induced subgraphs for the family of HCH graphs

bound is the maximum cardinality of the cliques of G, the clique number of
G, denoted by ω(G).

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H
of G. It has been proved recently that a graph G is perfect if and only if
no induced subgraph of G is an odd hole or an odd antihole [4], and that
perfect graphs can be recognized in polynomial time [3]. Complete graphs,
bipartite graphs, line graphs of bipartite graphs and their complements are
perfect [6].

A family of sets S is said to satisfy the Helly property if every subfamily
of it, consisting of pairwise intersecting sets, has a common element.

A graph G is clique-Helly (CH) if its cliques satisfy the Helly property,
and it is hereditary clique-Helly (HCH) if H is clique-Helly for every in-
duced subgraph H of G. A graph G is HCH if and only if G does not
contain any of the graphs in Figure 1 as an induced subgraph [12]. These
graphs are called 0-pyramid, 1-pyramid, 2-pyramid and 3-pyramid, respec-
tively. A trinity is the complement of a 0-pyramid, and it is the only graph
whose line graph is a 0-pyramid, as well.

The clique graph K(G) of G is the intersection graph of the cliques of
G. A graph G is K-perfect if K(G) is perfect.

A clique-transversal of a graph G is a subset of vertices that meets all
the cliques of G. A clique-independent set is a collection of pairwise vertex-
disjoint cliques. The clique-transversal number and clique-independence num-
ber of G, denoted by τC(G) and αC(G), are the sizes of a minimum clique-
transversal and a maximum clique-independent set of G, respectively. A
graph G is clique-perfect if τC(H) = αC(H) for every induced subgraph H
of G. Clique-perfect graphs have been implicitly studied in several works
but the terminology “clique-perfect” has been introduced in [7].

A K-coloring of a graph G is an assignment of colors to the cliques of
G in such a way that no two cliques with non-empty intersection receive
the same color (equivalently, a K-coloring of G is a coloring of K(G)). A
Helly K-complete of a graph G is a collection of cliques of G with common
intersection. The K-chromatic number and Helly K-clique number of G,
denoted by F (G) and M(G), are the sizes of a minimum K-coloring and
a maximum Helly K-complete of G, respectively. It is easy to see from the
definition that F (G) = χ(K(G)) and that M(G) = maxv∈V (G) m(v). Also,
F (G) ≥ M(G) for any graph G. A graph G is coordinated if F (H) = M(H)
for every induced subgraph H of G. Coordinated graphs were defined and
studied in [2], where it was proved that they are a subclass of perfect graphs.
Bipartite graphs are clique-perfect and coordinated graphs [8,9].
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The coordinated graph recognition problem is NP-hard and it is NP-
complete even restricted to some subclasses of graphs with M = 3 [14].
On the other hand, finding the complete list of minimal forbidden induced
subgraphs for coordinated graphs turns out to be a difficult task [13]. In
this paper, we present partial results in this direction, that is, we character-
ize coordinated graphs by minimal forbidden induced subgraphs when the
graph is either a line graph, or the complement of a forest. As corollaries
of these characterizations and structural properties proved in this work, we
can deduce linear time algorithms to recognize coordinated graphs when
the graph belongs to these classes.

2 Partial characterizations

2.1 Line graphs

In this section we give a characterization by forbidden induced subgraphs
for coordinated graphs within the class of line graphs, that is, we describe
all the minimal non-coordinated graphs which are line graphs. Besides, we
characterize the structure of those graphs whose line graph is coordinated.
This last characterization leads to a linear time recognition algorithm for
coordinated graphs when the input graph is a line graph.

This study relies on the known structural properties of line graphs [5,
10,15] and clique-perfect line graphs [1].

First we need some preliminary results. The family of clique-Helly graphs
are of particular interest in the study of clique-perfect and coordinated
graphs. The following results show some properties of clique-Helly graphs
and their relationships with the operator K and parameters M and F .

Lemma 1 [1] Let G be an hereditary class of K-perfect clique-Helly graphs.
Then every graph in G is clique-perfect.

Using the following lemma, we can prove a similar result for coordinated
graphs.

Lemma 2 [2] Let G be a graph. Then:

(i) F (G) = χ(K(G)).
(ii) M(G) ≤ ω(K(G)).
(iii) If G is clique-Helly then M(G) = ω(K(G)).

Lemma 3 Let G be an hereditary class of K-perfect clique-Helly graphs.
Then every graph in G is coordinated.

The following theorem was proved in [1] in order to characterize clique-
perfect line graphs.

Theorem 1 [1] If H is a line graph which contains neither an odd hole nor
an induced 0-pyramid, then K(H) is perfect.
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Joining this result with Lemma 3, a characterization (by forbidden in-
duced subgraphs) for coordinated hereditary clique-Helly line graphs is eas-
ily obtained. In this section we extend this result avoiding the hypothesis
of hereditary clique-Helly. That is, we will prove that given a line graph H,
H contains neither an odd hole nor an induced 0-pyramid if and only if H
is coordinated.

The idea of the proof is to analyze the non-Helly subfamilies of the
cliques of H = L(G) that induce cliques in K(H). We divide the non-Helly
subfamilies into two types and study them in Lemma 7 and Lemma 8.

Towards the end of the section, we rewrite this characterization in terms
of the inverse image of a line graph (Theorem 5). This new characterization
leads to linear time recognition algorithms for recognizing a coordinated
line graph and for determining M(H) when H = L(G) is coordinated (The-
orem 6).

Let G be a graph and E ⊆ E(G) a set of edges. Let W be the set of
vertices that are incident to some edge of E. We define G[E] as the graph
with vertex set W and edge set E. Let E be a family of sets of edges. We
define G[E ] = G[

⋃
E∈E E]. Note that given a set of edges E of a graph G,

L(G[E]) is the subgraph of L(G) induced by the set of vertices corresponding
to E in L(G).

Let T be a triangle, T = {v1, v2, v3}. We denote by ET the set of edges
{(v1, v2), (v2, v3), (v3, v1)}. If T is a family of triangles, we define ET =⋃

T∈T ET .
Two edges of a graph are said to be adjacent if they are incident to a

common vertex. Note that if G is a graph then a clique of L(G) corresponds
to a maximal set of pairwise adjacent edges of G.

The following lemmas are easy results about completes and cliques of
line graphs.

Lemma 4 Let G be a graph and E ⊆ E(G). Then L(G[E]) is a complete if
and only if G[E] is a star or a triangle.

Lemma 5 Let G be a graph and let Q1, Q2 be two different cliques of L(G).
Then |Q1∩Q2| = 2 if and only if G[Q′

1] is a triangle and G[Q′
2] is a maximal

star with center in some vertex of G[Q′
1] (or viceversa), where Q′

1 and Q′
2

are the set of edges of G corresponding to the cliques Q1 and Q2 of L(G),
respectively.

Lemma 6 Let G be a graph and let Q1, Q2 be two different cliques of L(G).
Then |Q1 ∩ Q2| < 3.

Let G be a graph and let Q = {Q1, . . . , Qk} a family of cliques of L(G)
pairwise intersecting. We say that Q is maximal if there is no other clique
of L(G) that intersects all cliques of Q. In other words, Q is maximal if
the vertices of K(L(G)) corresponding to the cliques of Q induce a clique
in K(L(G)). Besides, we say that Q is type 2 if there exist i and j, 1 ≤
i < j ≤ k, such that |Qi ∩ Qj | = 2; and Q is type 1 if for every i, j with
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1 ≤ i < j ≤ k, |Qi ∩ Qj | = 1. Note that, by Lemma 6, every set of pairwise
intersecting cliques of a line graph is either type 1 or type 2.

The following two lemmas analyze the type 1 and type 2 families of
cliques that do not verify the Helly property.

Lemma 7 Let G be a graph such that L(G) contains no odd hole; Q =
{Q1, . . . , Qk} a maximal family of cliques of L(G); Q′

1, . . . , Q
′
k the sets of

edges of G corresponding to the cliques Q1, . . . , Qk of L(G), respectively;
and Q′ = {Q′

1, . . . , Q
′
k}. Then Q is type 2 and does not verify the Helly

property if and only if k = 4 and one of the following statements holds:

(i) For some i, G[Q′
i] is a triangle and for each l, 1 ≤ l ≤ 4 with l 6= i,

G[Q′
l] is a maximal star with center in a vertex of G[Q′

i],
(ii) G[Q′] contains a K4 where for some i, G[Q′

i] is a star with center in a
vertex v ∈ K4 and for every l, 1 ≤ l ≤ 4 with l 6= i, G[Q′

l] is a triangle
of K4 that contains v.

Proof ⇐) Trivial.
⇒) Since Q is type 2, then are two distinct cliques of Q, suppose Q1 and

Q2, such that |Q1∩Q2| = 2. By Lemma 5, without loss of generality we can
suppose that G[Q′

1] is a triangle T = {v1, v2, v3} and G[Q′
2] is a maximal

star with center in some vertex of T , suppose v1.
Since Q does not verify the Helly property, there is a clique of Q, suppose

Q3, such that (v1, v3) /∈ Q′
3.

Suppose (v1, v2) 6∈ Q′
3. Since the cliques of Q are pairwise intersecting,

Q′
3 has a common edge with Q′

1 and another with Q′
2. Then, since (v1, v3) 6∈

Q′
3 and (v1, v2) 6∈ Q′

3, it follows that (v2, v3) ∈ Q′
3. But then, since (v2, v3) 6∈

Q′
2, Q′

3 must have an edge e that is incident with v1 (because all edges of
Q′

2 are incident with v1) and with v2 or v3 (because all edges of Q′
3 are

adjacent). Then, (v1, v2) ∈ Q′
3 or (v1, v3) ∈ Q′

3, which is a contradiction.
Therefore, (v1, v2) ∈ Q′

3.
Using a similar argument, there is another clique of Q, suppose Q4, such

that (v1, v2) 6∈ Q′
4 and (v1, v3) ∈ Q′

4.
Now, let us prove that Q = {Q1, . . . , Q4}. By Lemma 6, |Q1 ∩ Q3| ≤ 2

and |Q1 ∩ Q4| ≤ 2. Therefore, there are four cases.
Case 1: |Q1 ∩ Q3| = 1 and |Q1 ∩ Q4| = 1. Then, by Lemma 5, G[Q′

3]
and G[Q′

4] are not the maximal stars with center v2 and v3 respectively.
Therefore, by Lemma 4 G[Q′

3] is a triangle T2 = {v1, v2, w} and G[Q′
4] is

a triangle T3 = {v1, v3, z}. If w 6= z, then C = {v1, w, v2, v3, z} is an odd
cycle in G and the edges of C induce an odd hole in L(G), which is a
contradiction. Therefore w = z and we name v4 = w = z. Note that the
family {Q′

1, Q
′
2, Q

′
3, Q

′
4} satisfies the sentence (ii) of the lemma with i = 2.

Let us see now that k ≤ 4. Suppose there is a clique Q5 ∈ Q with
Q5 6= Qi for every i, 1 ≤ i ≤ 4. By Lemma 4, G[Q′

5] is a triangle or a
maximal star. If G[Q′

5] is the maximal star with center vi (2 ≤ i ≤ 4),
suppose i = 2, then Q5∩Q4 = ∅, which is a contradiction. Therefore, G[Q′

5]
is a triangle.
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Since Q5 ∩ Q2 6= ∅, then v1 ∈ V (G[Q′
5]). Since Q5 ∩ Q1 6= ∅, then we

can suppose without loss of generality that v2 ∈ V (G[Q′
5]). Since Q5∩Q4 6=

∅ and v3 6∈ V (G[Q′
5]), then v4 ∈ V (G[Q′

5]). It follows that V (G[Q′
5]) =

{v, v2, v4}, that is, Q5 = Q3, which is a contradiction. Therefore, k = 4.
Case 2: |Q1 ∩ Q3| = 2 and |Q1 ∩ Q4| = 1. By Lemma 5, G[Q′

4] is a
triangle T3 = {v1, v3, z} and G[Q′

3] is the maximal star with center in v2.
But then Q4 ∩ Q3 = ∅, which is a contradiction.

Case 3: |Q1 ∩Q3| = 1 and |Q1 ∩Q4| = 2. This case is analogous to Case
2.

Case 4: |Q1 ∩ Q3| = 2 and |Q1 ∩ Q4| = 2. Then, by Lemma 5, G[Q′
3] is

the maximal star with center v2 and G[Q′
4] is the maximal star with center

v3. Note that the family {Q′
1, Q

′
2, Q

′
3, Q

′
4} satisfies the sentence (i) of the

lemma with i = 1.
Suppose that k > 4. Then, there is a clique Q5 ∈ Q with Q5 6= Qi for

every i, 1 ≤ i ≤ 4. By Lemma 4, G[Q′
5] is a maximal star or a triangle.

If G[Q′
5] is a triangle, then, since for every i, 2 ≤ i ≤ 4, G[Q′

i] is the
maximal star with center vi−1 and Q5 ∩ Qi 6= ∅. It follows that G[Q′

5] is
the triangle {v1, v2, v3}, which contradicts that Q5 6= Q1. Therefore, G[Q′

5]
is a maximal star. Since Q1 ∩ Q5 6= ∅, then G[Q′

5] is the maximal star with
center in some vertex of T . But then Q5 = Qi for some i, 2 ≤ i ≤ 4, which
is a contradiction. ut

Lemma 8 Let G be a graph such that L(G) contains no odd hole; Q =
{Q1, . . . , Qk} a maximal family of cliques of L(G); Q′

1, . . . , Q
′
k the sets of

edges of G corresponding to the cliques Q1, . . . , Qk of L(G), respectively;
and Q′ = {Q′

1, . . . , Q
′
k}. Then Q is type 1 and does not verify the Helly

property if and only if k = 4 and one of the following statements holds:

(i) For every i, 1 ≤ i ≤ 4, G[Q′
i] is the maximal star with center vi and

the set {v1, v2, v3, v4} induces K4.
(ii) G[Q′] = K4 and for every i, 1 ≤ i ≤ 4, G[Q′

i] is a triangle of G[Q′].

Proof ⇐) Trivial.
⇒) Since Q is type 1, then for every pair of different cliques Qa, Qb ∈ Q,

|Qa ∩ Qb| = 1.
Let Q1 ∩Q2 = {e1}. Since Q does not verify the Helly property, there is

a clique Q3 ∈ Q such that e1 6∈ Q3. Let Q1∩Q3 = {e2} and Q2∩Q3 = {e3}.
Clearly, the set of vertices {e1, e2, e3} induces a complete in L(G). There-

fore there is a clique Q of L(G) such that {e1, e2, e3} ⊆ Q (and let Q′ be
the corresponding set of edges of G).

Since for every i, 1 ≤ i ≤ 3, |Q ∩ Qi| = 2, then by Lemma 5 either
G[Q′] is a triangle or every G[Q′

i] is a triangle of G. In both cases, since Q
is type 1, then Q 6∈ Q.

Case 1: G[Q′] is a triangle T = {v1, v2, v3} and every G[Q′
i] is the maxi-

mal star with center vi (1 ≤ i ≤ 3).
Since Q is maximal, there must be a clique Q4 ∈ Q such that Q4∩Q = ∅,

otherwise Q could be added to Q. Since |Q4 ∩ Q1| = 1, then by Lemma 5,
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G[Q′
4] is not a triangle and by Lemma 4, G[Q′

4] is a maximal star with center
w ∈ V (G). Clearly, since for every i, 1 ≤ i ≤ 3, Q4 6= Qi, then w 6= vi. On
the other hand, Q′

4 has an edge from each Q′
i (with 1 ≤ i ≤ 3) and since

G[Q′
i] and G[Q′

4] are stars, it follows that (vi, w) is an edge of G. Note that
in this case the family {Q′

1, Q
′
2, Q

′
3, Q

′
4} satisfies the statement (i) of the

lemma.

Now, suppose that k > 4, that is, there is a clique Q5 of L(G) such that
Q′

5 has an edge of each Q′
i for every i, 1 ≤ i ≤ 4. Since |Q5 ∩ Q1| = 1, by

Lemma 5, G[Q′
5] is not a triangle and by Lemma 4, G[Q′

5] is a maximal
star with center z ∈ V (G). Clearly, since Q1, . . . , Q5 are all different cliques
then z 6= v1, v2, v3, w.

Since the cliques of Q are pairwise intersecting, then Q5 intersects Q1,
Q2, Q3, Q4. Then, since every G[Q′

i] (1 ≤ i ≤ 5) is a maximal star, it
follows that all the edges between their centers are edges of G. Therefore
w, z, v2, v3, v1 induce a complete in G that contains as a subgraph a cycle
C of length 5. Then, the edges of C induce an odd hole in L(G), which is a
contradiction. We conclude that k = 4.

Case 2: G[Q′] is a maximal star with center v. Then, by Lemma 5, for ev-
ery i, 1 ≤ i ≤ 3, G[Q′

i] is a triangle in G that contains v and two edges of Q′.
Since the sets of edges of these triangles are pairwise intersecting, it follows
that G[(Q′

1 ∪ Q′
2 ∪ Q′

3)] is a complete of four vertices {v, v1, v2, v3}, where
we can assume that (v, vi), (v, vi+1) ∈ Q′

i for each i, 1 ≤ i ≤ 3 (the index
sums must be understood modulo 3). That is, V (G[Q′

i]) = {vi, vi+1, v}.
Since Q is maximal, there must be a clique Q4 ∈ Q such that Q4∩Q = ∅,

otherwise Q could be added to Q. Since |Q4∩Q1| = 1, then by Lemma 4 and
Lemma 5, G[Q′

4] is a triangle. On the other hand, since Q∩Q4 = ∅, then no
edge incident with v belongs to Q′

4. It follows that V (G[Q′
4]) = {v1, v2, v3}.

Note that the family {Q′
1, Q

′
2, Q

′
3, Q

′
4} satisfies the statement (ii) of the

lemma.

Suppose now that k > 4, that is, there is a clique Q5 ∈ Q, with Q5 6= Qi,
for every i, 1 ≤ i ≤ 4. Since Q5 ∩ Q4 6= ∅ and Q5 6= Q4, without loss
of generality we can assume that (v1, v2) ∈ Q′

5 and (v2, v3) /∈ Q′
5. Since

Q5 ∩ Q2 6= ∅ then (v, v2) ∈ Q′
5. The only other edge that can belong to Q′

5

so that Q5 ∩ Q3 6= ∅ is (v, v1). This is a contradiction because Q5 and Q1

are different cliques of L(G). ut

Now we can prove the main result of this section.

Theorem 2 Let H be a line graph, then H is coordinated if and only if H
contains neither an odd hole nor a 0-pyramid as induced subgraph.

Proof ⇒) Coordinated graphs contain no odd hole because they are perfect.
It is easy to see that the 0-pyramid is not coordinated.

⇐) Since the property of being a line graph with neither an odd hole nor
a 0-pyramid is hereditary, then it suffices to prove that H verifies F (H) =
M(H). By Theorem 1, H is K-perfect and so ω(K(H)) = χ(K(H)) . By
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Lemma 2, F (H) = χ(K(H)), therefore it is enough to show that ω(K(H)) =
M(H).

By Lemma 2, ω(K(H)) ≥ M(H). Suppose that ω(K(H)) > M(H). Let
Q = {Q1, . . . , Qω(K(H))} a pairwise intersecting set of cliques of H whose
corresponding vertices induce a maximum clique of K(H). Since ω(K(H)) >
M(H), then Q does not verify the Helly property. By Lemma 6, Q is type 1
or type 2. By Lemma 7 and Lemma 8, ω(K(H)) = 4. Therefore, M(H) < 4.

Let G be a graph such that L(G) = H; Q′
1, . . . , Q

′
4 the sets of edges

of G corresponding to the cliques Q1, . . . , Q4 of H, respectively; and Q′ =
{Q′

1, . . . , Q
′
4}. Suppose that some subgraph (not necessarily induced) J of

G[Q′] is isomorphic to a diamond with vertices v1, v2, v3, v4, where v3 is
not adjacent to v4. Let R′

i be the set of edges of the maximal star of J
with center vi for i ∈ {1, 2}. Let R′

i be the set of edges of the triangle of J
containing vi, for i ∈ {3, 4}. Let R1, . . . , R4 be cliques of L(J) corresponding
to R′

1, . . . , R
′
4, respectively. Let e be the vertex of H corresponding to the

edge e′ = (v1, v2) of G. Since e′ ∈
⋂4

i=1 R′
i, then mH(e) ≥ mL(J)(e) ≥ 4,

which is a contradiction. Therefore, no subgraph of G[Q′] is isomorphic to
a diamond. Then, by Lemma 8, Q is not type 1 and we conclude that Q is
type 2.

By Lemma 7 and since the case (ii) of that lemma cannot hold by the
arguments above, it follows that for some i, 1 ≤ i ≤ 4, G[Q′

i] is a triangle
T = {v1, v2, v3} and for every l, 1 ≤ l ≤ 4 with l 6= i, G[Q′

l] is a maximal
star with center in some vertex of T . We can assume that i = 1.

Since no subgraph of G[Q′] is isomorphic to a diamond, then for every
i, j, 2 ≤ i < j ≤ 4 and for every pair of edges e ∈ Q′

i \ET and e′ ∈ Q′
j \ET

it holds that e and e′ are not adjacent. For every i, 2 ≤ i ≤ 4, since Qi is
maximal, there is an edge ei ∈ Q′

i \ET . If follows that G contains a trinity,
so H contains an induced 0-pyramid, which is a contradiction. Therefore,
ω(K(H)) = M(H). ut

The following result is a corollary of Theorem 2 and the fact that perfect
graphs can be recognized in polynomial time (it is easy to see that odd
antiholes are not line graphs).

Theorem 3 The problem of determining if a line graph is coordinated can
be solved in polynomial time.

In the rest of this section we characterize coordinated line graphs in
terms of graph G instead of H = L(G). This characterization leads to linear
time algorithms for the coordinated line graph recognition problem and the
problem of determining M(H) for a coordinated line graph H = L(G).
Define a graph G as line-coordinated if L(G) is coordinated.

Theorem 4 [11,15] Let G be a graph. Then the following statements are
equivalent:

1. H = L(G) is perfect.
2. No subgraph of G is an odd cycle of length at least 5.
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3. Every subgraph G′ of G satisfies at least one of the following conditions:
(i) G′ is bipartite.
(ii) G′ = K4.
(iii) V (G′) = {a, b} ∪ X where X = N(a) ∪ N(b) is a non-empty stable

set.
(iv) G′ has a cut-vertex.

Given a graph G and S ⊆ V (G), we denote by EG(S) the set of edges
of G between vertices of S, that is, EG(S) = E(G) ∩ (S × S). We say that
S ⊆ V (G) is an edge separator of G if every path in G between two vertices
of S uses only edges in EG(S).

Let T = {v1, v2, v3} be a triangle of a graph G. We say that v1, v2, v3 is a
well ordered permutation of T , or just well ordered, if d(v1) ≤ d(v2) ≤ d(v3)
and d(v1) < d(v2), or N [v3] is either equal to both N [v1] and N [v2] or
to none of N [v1] and N [v2]. We will denote by 〈v1, v2, v3〉 a triangle with
v1, v2, v3 being well ordered.

Lemma 9 Every triangle admits a well ordered permutation.

Proof Let T = {v1, v2, v3} be a triangle of a graph G, d(v1) ≤ d(v2) ≤ d(v3).
Suppose that d(v1) = d(v2). If N [v3] = N [v1] but N [v3] 6= N [v2], then
v1, v3, v2 is a well order for T . Otherwise, if N [v3] = N [v2] but N [v3] 6=
N [v1], then v2, v3, v1 is a well order for T . ut

Now, we can give a characterization of line-coordinated graphs.

Theorem 5 Let G be a graph and T be the set of triangles of G. Then the
following statements are equivalent:

1. G is line-coordinated.
2. G \ET is bipartite and every triangle 〈v1, v2, v3〉 ∈ T satisfies one of the

following statements:
(i) d(v1) = 2 and N [v2] ∩ N [v3] is an edge separator of G.
(ii) d(v1) = 3, v1 and v2 are true twins and N [v1] is an edge separator

of G.

Proof 1. ⇒ 2.) Since coordinated graphs are perfect, if G is line-coordinated
then it is line-perfect. Therefore, by Theorem 2 and Theorem 4, no subgraph
of G is an odd cycle of length at least 5, so G \ ET is bipartite.

Let T = 〈v1, v2, v3〉 be a triangle of G. Suppose that v1 and v2 have
different neighbors w1 and w2 respectively, where w1, w2 6∈ T . If v3 has a
neighbor w3 6∈ T where w3 6= w1 and w3 6= w2, then T ∪ {w1, w2, w3} is a
trinity, which is a contradiction by Theorem 2. Consequently, since v1, v2, v3

is well ordered then v3 is adjacent to both w1, w2; thus v1, w1, v3, w2, v2 is
an odd cycle, which also contradicts Theorem 2. Therefore, v1 and v2 do
not have different neighbors out of T and so we need to consider only two
cases:
Case A: d(v1) = 2.
Case B: d(v1) = 3 and v1 and v2 are true twins.
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Case A: Let S = N [v2] ∩ N [v3]. Suppose S is not an edge separator,
that is, there exists a path P between two vertices of S having one edge in
E(G) \ EG(S). Denote by E(P ) the edges of P . Clearly G′ = G[EG(S) ∪
E(P )] is neither bipartite nor isomorphic to K4, and it does not have any
cut-vertex and does not satisfy the condition (iii) of Theorem 4. Therefore,
by Theorem 4, some subgraph of G is an odd cycle of length at least 5 which
again contradicts Theorem 2. We conclude then that S is an edge separator
and the condition (i) is satisfied.

Case B: Let S = N [v1] and u be the neighbor of v1 which is neither v2

nor v3. Suppose that S is not an edge separator, that is, there is a path
P between two vertices of S having one edge in E(G) \ EG(S). Denote by
E(P ) the edges of P . Clearly G′ = G[EG(S) ∪ E(P )] is neither bipartite
nor isomorphic to K4 and it does not have any cut-vertex. Since v1 and
v2 are true twins, then {v1, v2} is anticomplete to G \ S. So, P contains a
subpath between u and v3. Therefore, G′ does not satisfy the condition (iii)
of Theorem 4 and it follows that some subgraph of G is an odd cycle of
length at least 5, which is a contradiction by Theorem 2. We conclude that
S is an edge separator and the condition (ii) is satisfied.

2. ⇒ 1.) Suppose that L(G) is not coordinated, then, by Theorem 2 and
Theorem 4, some subgraph (not necessarily induced) of G is isomorphic to
an odd cycle of length at least 5 or a trinity.

Case A: Some subgraph C of G is isomorphic to an odd cycle of length
at least 5. Since G \ ET is bipartite then some edge e of C belongs to a
triangle T = 〈v1, v2, v3〉. If d(v1) = 2, let S = N [v2] ∩ N [v3]; if d(v1) = 3,
let S = N [v1]. By hypothesis, in both cases, S is an edge separator and
clearly e ∈ S. Therefore, every path between the endpoints of e contains
only edges of EG(S), which implies that V (C) ⊆ S. Thus, if d(v1) = 3 then
C has at most four vertices (recall that S = N [v1]), a contradiction. Hence
d(v1) = 2; v2 and v3 belong to C; and S = N [v2] ∩ N [v3]. Since V (C) ⊆ S
and |V (C)| ≥ 5, then d(v3) ≥ d(v2) > 3 and there exists a vertex w in C
(different from v1) which is adjacent to v2 and v3, and d(w) ≥ 3. Let T1 be
a new triangle formed by vertices w, v2 and v3. Let us see that T1 does not
verify conditions (i) or (ii), a contradiction. If d(w) ≥ 4, there is no vertex
in T1 with degree ≤ 3, and if d(w) = 3, then w is not adjacent to v1 and
hence w is true twin neither of v2 nor of v3.

Case B: Some subgraph of G is isomorphic to a trinity. So G contains
a triangle 〈v1, v2, v3〉 and three different vertices u1, u2, u3 with vi adjacent
to ui, for i ∈ {1, 2, 3}. Therefore, d(v1) ≥ 4 or v1 and v2 are not true twins,
which is a contradiction. ut

We now briefly discuss the recognition algorithm and its complexity, but
the missing details are left to the reader. First of all, we need to find the
set of well ordered triangles T of G. In a BFS tree with a root of maximum
degree, every triangle with a two degree vertex contains a leaf. Similarly,
every triangle with two true twins of degree three contains two brothers.
So, T can be found in O(|V (G)| + |E(G)|) time.
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Now let T = 〈v1, v2, v3〉 be a well ordered triangle. If d(v1) = 2, define
uT = v2 and vT = v3. If d(v1) = 3 and v1, v2 are true twins, then define
uT , vT as the two vertices of N(v1) ∩ N(v2). Finally, define C(G) as the
graph having both vertices uT , vT for each triangle of T and one vertex cA

for each connected component A of G \ E(T ), where uT , vT are adjacent
and uT (vT ) is adjacent to cA if and only if uT (vT ) belongs to A.

Clearly, the graph C(G) is obtained from G in O(|V (G)|+ |E(G)|) time.
By Theorem 5, testing if G is line-coordinated is equivalent to test if G\E(T )
is bipartite and C(G) is a forest. Therefore, determining whether G is line-
coordinated takes O(|V (G)| + |E(G)|) time. Finally, given a graph H, in
O(V (H)) time we can find a graph G such that L(G) = H or say that H is
not a line graph [10]. Since O(|V (G)| + |E(G)|) = O(|V (H)|), determining
whether H is a coordinated line graph is solvable in O(|V (H)|) time.

Finally, given a coordinated line graph, we can compute the parameters
M and F in linear time.

Theorem 6 Given a line graph H, the problem of determining M(H) can
be solved in O(|V (H)|) time when H is coordinated.

Proof A graph G such that L(G) = H can be found in O(|V (H)|) time [10].
We will prove that given G we can calculate M(H) in O(|E(G)|) time. Let
e′ = (v, w) an edge of G and let t(e′) be the number of triangles to which e′

belongs. By Lemma 4 any clique of H containing the vertex e (corresponding
to the edge e′ of G) is generated by a triangle of G containing the edge e′

or a star of G with center v or w. Therefore, mH(e) can be calculated in
the following way:

– If t(e′) = 0 then mH(e) = 1 when dG(v) = 1 or dG(w) = 1; mH(e) = 2
otherwise.

– If t(e′) = 1 then mH(e) = 1 when dG(v) = 2 and dG(w) = 2; mH(e) = 3
when dG(v) > 2 and dG(w) > 2; mH(e) = 2 otherwise.

– If t(e′) ≥ 2 then mH(e) = t(e′) + 2.

Since a line coordinated graph G has a linear number of triangles which
can be found in linear time, then M(H) can be calculated in O(V (H)) time.
ut

Corollary 1 Given a line graph H, the problem of determining F (H) can
be solved in O(|V (H)|) time when H is coordinated.

2.2 Complements of forests

In this section we give a characterization by forbidden induced subgraphs
for coordinated graphs within the class of complements of forests.

Let 2P4 be the graph obtained from the union of two disjoint induced
paths of four vertices. We define R to be the graph obtained by adding to
2P4 an edge joining the second vertex of each path. Both 2P4 and R are not
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coordinated, since M(2P4) = M(R) = 6 and F (2P4) = F (R) = 7. We will
show that if G is the complement of a forest, then G is coordinated if and
only if G contains neither 2P4 nor R as induced subgraph.

The idea of the proof is to show that if G is the complement of a forest
containing neither 2P4 nor R as induced subgraph then G is K-perfect
and ω(K(G)) = M(G). The K-perfection is consequence of the fact that
K(G) is the complement of a bipartite graph (Lemma 11). To show that
ω(K(G)) = M(G) we prove that K(G) admits a bipartition such that one of
the sets of the partition (V2) is a maximum clique of K(G) and the family
of cliques corresponding to the vertices of V2 verifies the Helly property
(Lemma 16).

Lemma 10 Let G be a non-trivial graph and v ∈ V (G) with d(v) = |V (G)|−
2. Then K(G) is the complement of a bipartite graph with bipartition V1, V2

and each one of V ′
1 and V ′

2 (the families of cliques in G corresponding to
the sets of vertices V1 and V2 in K(G)) verifies the Helly property.

Proof Let w be the only vertex not adjacent to v. Let V ′
1 be the family

of cliques of G containing v and V ′
2 the family of cliques of G containing

w. Clearly V1, V2 (their corresponding sets of vertices in K(G)) define a
bipartition of K(G) and both V ′

1 and V ′
2 verify the Helly property. ut

We denote by S(G) the graph K(G). In other words, S(G) is the inter-
section graph of the maximal stable sets of G.

The following lemma is a direct consequence of Lemma 10.

Lemma 11 Let F be a forest. Then S(F ) is either trivial or the complement
of a bipartite graph.

We say that a bipartition V1, V2 of V (G) is cumulative (on V2) if V2 is
complete and there exist orderings v1, . . . , v|V1| of V1 and w1, . . . , w|V2| of V2

such that, for each i = 1, . . . , |V1|, wi is not adjacent to vi but wi is adjacent
to vj for every j with i < j ≤ |V1|.

Lemma 12 Let G be a graph with a bipartition V1, V2 of V (G) cumulative
on V2. Then V2 is a maximum clique of G.

Proof Let v1, . . . , v|V1| and w1, . . . , w|V2| be the orderings of V1 and V2 in
the cumulative bipartition. Let K be a maximum clique of G, with |V1 ∩K|
minimum.

Suppose that |V1 ∩ K| > 0. Let vi1 , . . . , vin
be the vertices of K ∩ V1,

with i1 < . . . < in. Since i1 < ij , for every j, 1 < j ≤ n, then wi1 is adjacent
to every vertex of K ∩ V1, except vi1 . Besides, since V2 is complete, wi1 is
adjacent to every vertex of K ∩ V2. It follows that wi1 is adjacent to every
vertex of K \ {vi1}. Then, K ′ = (K \ {vi1}) ∪ {wi1} is another maximum
clique, |V1∩K ′| < |V1∩K|, contradicting the fact that |V1∩K| is minimum.
ut
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Given a tree N and a vertex v of N , a subtree is any connected component
of N \ {v}. Note that a subtree is also a tree.

We say that a tree N is a c-tree if there is a distinguished vertex v in N
such that:

– Every vertex of N \ {v} has degree at most 2 in N .
– The diameter of N is at most 7.
– The distance from every vertex of N to v is less than 5.
– N has no false twins.

Lemma 13 Let N be a tree. Then N is a c-tree if and only if N has no
false twins and contains neither 2P4 nor R as induced subgraph.

Proof ⇒) Suppose that N contains an induced 2P4. Let v be the distin-
guished vertex of N from the c-tree definition. If v belongs to one of the
two P4 then, since there is no vertex of degree greater than 2 (except v),
the distance from one of the ends of the other P4 to v is at least 5. If v does
not belong to any of the two P4 then, since the interior vertices of the paths
have degree 2, for each one of the paths the distance from v to one of the
ends is at least 4, hence the diameter of N is at least 8. In any case, N is
not a c-tree.

If N contains R as induced subgraph, N has at least two vertices of
degree at least 3, contradicting that N is a c-tree.

Finally, since N is a c-tree, N has no false twins.
⇐) Case 1: every vertex of N has degree at most 2, so N is isomorphic

to a path p1, . . . , pk for some k. If k > 8 then N contains an induced 2P4.
If not, N is a c-tree with v = pdk/2e.

Case 2: there is a vertex in V (N) of degree at least 3. Let v be that
vertex. Suppose there is a vertex d1 (d1 6= v) which has degree at least 3.
Let t be the neighbor of v in the same subtree of N \ {v} than d1 (perhaps
t = d1), and let d2 and d3 be two different neighbors of d1 (d2 6= v, d3 6= v).
Since d2 and d3 are not false twins, one of them (say d2) has a new neighbor
d4. Since N has no false twins, then at most one neighbor of v is a leaf.
Then, let s1 be a non-leaf neighbor of v (s1 6= t), and call s2 the neighbor
of s1 different to v. Since d(v) ≥ 3, v has a neighbor s3 different from t and
s1. It follows that s3, v, s1, s2 and d4, d2, d1, d3 induce two disjoint P4, with
the only possible edge between them being (v, d1) (which occurs when d1

is equal to t). But then, N contains an induced 2P4 if d1 is different to t,
or N contains an induced R if d1 is equal to t; a contradiction. Therefore,
every vertex of N has degree at most 2 (except v).

It remains to see that there is no vertex at distance 5 from v and that
the diameter of N is at most 7.

If there is a vertex at distance 5 from v, the subtree of N \{v} containing
that vertex contains an induced P4 anticomplete to v. In a similar way as
done above, choose s1, s2 and s3 such that s3, v, s1, s2 induce a P4 anti-
complete to the other P4, contradicting that N contains no induced 2P4. If
follows that N has no vertex at distance 5 from v.
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Now suppose that there are two different vertices at distance 4 from v,
then those two vertices are in different subtrees of N \ {v} (recall that N
has no false twins). Each one of these subtrees contains P4, and there are no
edges between both P4, contradicting that N does not contain an induced
2P4. So, there is at most one vertex at distance 4 from v, which implies that
the diameter of N is at most 7. ut

We say that a forest F is a c-forest if every connected component is a
c-tree and at most one connected component has more than 2 vertices.

Lemma 14 Let F be a forest. Then, F is a c-forest if and only if F contains
neither 2P4 nor R as induced subgraph and none of its connected components
has false twins.

Proof ⇒) Trivial, by Lemma 13 and the fact that at most one connected
component of F has more than 2 vertices.

⇐) The proof is by induction on the number of trees of F . The base
case (only one tree) is given by Lemma 13.

Let F be a forest with k + 1 trees (k ≥ 1) and let N be a tree with
|V (N)| minimum. By inductive hypothesis, F \ N is a c-forest.

If |V (N)| ≤ 2, then F is a c-forest by definition.
If |V (N)| = 3, then N (which is a connected component of F ) has false
twins, a contradiction.
If |N | ≥ 4, since N has no false twins, then N contains a P4. But, since N is
a tree of F with |V (N)| minimum, there is another tree of F which contains
another P4, and there are no edges between both P4, again a contradiction.
ut

Fig. 2 General structure of a c-tree.

Lemma 15 Let N be a non trivial c-tree. Then there is a bipartition V1, V2

of V (S(N)), cumulative on V2, such that V ′
2 (the family of maximal stable
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sets in N corresponding to the set of vertices V2 in S(N)) verifies the Helly
property.

Proof Let v be the distinguished vertex of N . Since N is a c-tree, there
is no vertex (except v) with degree at least 3. Therefore every subtree of
N \ {v} is a path. There is at most one subtree L containing a vertex at
distance 4 from v (V (L) = {l1, l2, l3, l4}). There is at most one subtree
u being a single vertex. The remaining subtrees are induced paths of 2
or 3 vertices. Let H1, . . . ,Hk be the subtrees of N \ {v} isomorphic to
P2, and denote V (Hi) = {via, vib}, where via is adjacent to v and to vib.
Let W1, . . . ,Wm be the subtrees of N \ {v} isomorphic to P3, and denote
V (Wi) = {wia, wib, wic} where wia is adjacent to v and to wib, and wib is
adjacent to wic (see Figure 2).

Divide the maximal stable sets of N into two classes: those that contain
v (type I), and those that do not contain v (type II). Let Ij be the set
{1, . . . , j} for every non-negative integer j (note that I0 is the empty set).
Depending on the existence of L or u in N , we have four cases.

Case 1: L and u do not exist.
In this case, the type I and type II sets are:

– Type I: {v} ∪ {vib}i∈Ik
∪ {wib}i∈C ∪ {wic}i∈(Im\C) with C ⊆ Im.

– Type II: {via}i∈A∪{vib}i∈(Ik\A)∪{wia}i∈(Im\B)∪{wib}i∈B∪{wic}i∈(Im\B)

with A ⊆ Ik, B ⊆ Im, excluding the case in which A and Im \ B are
simultaneously empty.

Clearly, a type I set is determined by the set C and a type II set is
determined by the sets A and B.

Let X be a type I set, and let C ⊆ Im the set that determines X. Let
Y be a type II set, and let A ⊆ Ik and B ⊆ Im the sets that determine Y .
If A 6= Ik, then X and Y intersect in some vib. If C ∩B 6= ∅, then X and Y
intersect in some wib. If (Im \ C) ∩ (Im \ B) 6= ∅, then X and Y intersect
in some wic. Therefore, X and Y do not intersect if and only if A = Ik and
B = Im \ C. It follows that every type I set intersects all but at most one
type II sets and viceversa.

Let Y1, Y2 be two type II sets, and let A1, A2 ⊆ Ik and B1, B2 ⊆ Im the
sets that determine Y1 and Y2, respectively. If A1 ∩ A2 6= ∅, then Y1 and
Y2 intersect in some via. If B1 ∩ B2 6= ∅, then Y1 and Y2 intersect in some
wib. If (Ik \ A1) ∩ (Ik \ A2) 6= ∅, then Y1 and Y2 intersect in some vib. If
(Im \B1)∩ (Im \B2) 6= ∅, then Y1 and Y2 intersect in some wia. Therefore,
Y1 and Y2 do not intersect if and only if A1 = Ik \A2 and B1 = Im \B2. It
follows that every type II set intersects all but at most one type II sets.

We will prove now that there is a bipartition V1, V2 of V (S(N)), cu-
mulative on V2, and such that V ′

2 (the family of maximal stable sets in N
corresponding to the set of vertices V2 in S(N)) verifies the Helly property.
To this end we will consider two cases: k ≥ 1 and k = 0.

Case 1A: If k ≥ 1 (v1a and v1b exist), let V ′
1 = {maximal stable sets

of N containing v1a} and V ′
2 = {maximal stable sets of N containing v1b}.
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Since v1b is a leaf, by Lemma 10, V1, V2 (the corresponding sets of vertices in
S(N)) define a bipartition of V (S(N)), and V ′

2 verifies the Helly property.
Let us see that for each maximal stable set X ∈ V ′

1 , there is a maximal
stable set Y ∈ V ′

2 such that Y do not intersect X but intersects every other
element of V ′

2 .
Note that, since every type I set is in V ′

2 , the elements of V ′
1 are type II

sets.
Let X ∈ V ′

1 , X is type II. Let A ⊆ Ik and B ⊆ Im the sets which
determine X. If A = Ik, let C = Im \ B, and let Y be the type I set
determined by C. Clearly, X and Y do not intersect. Then, since Y intersects
all but at most one type II sets, Y intersects every element of V ′

1 , except
X. If A 6= Ik, let A′ = Ik \ A and B′ = Im \ B. Let Y be the type II set
determined by A′ and B′. Again, X and Y do not intersect. Then, since
every type II set intersects all but at most one type II sets, Y intersects
every element of V ′

1 , except X.
Case 1B: If k = 0, let V ′

1 = {type II sets} and V ′
2 = {type I sets}. As

k = 0, m ≥ 1 (because N is non trivial) and so, V ′
1 is not empty. Since all

type I sets have v as a common vertex, then V ′
2 verifies the Helly property

and V2 (the corresponding set of vertices) induces a complete in S(N).
Let X ∈ V ′

1 be a type II set, and let B be the set that determines X (in
this case, since Ik = ∅, the set A is not needed). Let C = Im \B, and let Y
be the type I set determined by C. Clearly, X and Y do not intersect. Since
Y is a type I set, Y intersects all but at most one type II sets. Therefore,
Y intersects every set of V ′

1 , except X.
It follows that, in both cases, any ordering of the vertices of V1 defines

an ordering of the vertices of V2 which leads to a cumulative partition.
Case 2: L does not exist, but u exists.
The type I sets are the same that in Case 1. The type II sets are obtained

by adding u to every type II set of Case 1, without excluding in this case
the set for which A = ∅ and Im \ B = ∅.

Let V ′
1 = {type I sets} and V ′

2 = {type II sets}. Since u is a leaf, by
Lemma 10, V1, V2 (the corresponding sets of vertices) define a bipartition
of V (S(N)), V ′

2 verifies the Helly property and V2 induces a complete in
S(N).

Let X be a the type I set determined by a set C; and let Y be a type II
set determined by sets A and B. Like in the Case 1, X intersects Y unless
A = Ik and B = Im \ C. Note that, unlike the Case 1, in this case for each
set X of type I there is always a set Y of type II such that X does not
intersect Y . Then we conclude that for every type I set there is only one set
of type II which it does not intersect; and for every type II set there is at
most one type I set which it does not intersect.

It follows that any ordering of the vertices of V1 defines an ordering of
the vertices of V2, which leads to a cumulative partition.

Case 3: L exists, but u does not exist.
For R ⊆ I4, define LR = ∪i∈R{li}. In this case, the type I and type II

sets are:
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– Type I: {v}∪{vib}i∈Ik
∪{wib}i∈C ∪{wic}i∈(Im\C)∪LD with C ⊆ Im,D ∈

{{2, 4}, {3}}
– Type II: {via}i∈A∪{vib}i∈(Ik\A)∪{wia}i∈(Im\B)∪{wib}i∈B∪{wic}i∈(Im\B)∪

LE , with A ⊆ Ik, B ⊆ Im, E ∈ {{1, 3}, {2, 4}, {1, 4}}, excluding the case
where E = {2, 4}, A = ∅ and Im \ B = ∅, which does not determine a
maximal stable set.

The type I sets are determined by sets C and D; and type II sets, by
sets A,B and E.

Let V ′
1 = {maximal stable sets containing l3} and V ′

2 = {maximal stable
sets containing l4}. Since l4 is a leaf, by Lemma 10, V1, V2 (the correspond-
ing sets of vertices) define a bipartition of V (S(N)), V ′

2 verifies the Helly
property and V2 induces a complete in S(N).

Let Z be the type II set determined by A = Ik, B = Im and E = {1, 3}.
Since l3 ∈ Z, then Z ∈ V ′

1 .

We order the vertices of V1 in the following way. First, we list all the
vertices corresponding to the type I sets of V ′

1 , and then we list all the
vertices corresponding to the type II sets of V ′

1 , with the only condition
that z (the vertex corresponding to Z) is the last one.

Let X ∈ V ′
1 be a type I set. Let C and D be the sets that determine

X. Since l3 ∈ X, then D = {3}. Let A = Ik, B = Im \ C and E = {1, 4},
and let Y ∈ V ′

2 the type II set determined by A, B and E. Clearly, Y does
not intersect X. Let X ′ ∈ V ′

1 , X ′ 6= X. If X ′ is of type I, let C ′ and D′

be the sets that determine X ′. Again, D′ = {3}. Then, since X 6= X ′, it
follows that C ′ 6= C, and therefore Y intersects X ′ in some wib. If X ′ is of
type II, let A, B and E be the sets that determine X ′. Since l3 ∈ X ′, then
E = {1, 3}, therefore Y intersects X ′ in l1. We conclude that Y intersects
every element of V ′

1 , except X.

Let X ∈ V ′
1 be a type II set, X 6= Z. Let A, B and E be the sets that

determine X. Since l3 ∈ X, then E = {1, 3}. Let A′ = Ik \ A, B′ = Im \ B
and E′ = {2, 4}, and let Y ∈ V ′

2 be the type II set determined by A′, B′

and E′. Clearly, Y does not intersect X (note that if X = Z, then Y would
not be a maximal stable set). Let X ′ ∈ V ′

1 of type II, X ′ 6= X. Let A′′, B′′

and E′′ be the sets that determine X ′. Again, E′′ = {1, 3}. Since X ′ 6= X,
then A′′ 6= A or B′′ 6= B. Therefore, Y intersects X ′ in some via or in some
wib (note that if X ′ is of type I, then Y does not necessarily intersect X ′;
this explains the ordering given to the vertices of V1).

To complete this case, it remains to show that there is a set Y ∈ V ′
2 such

that Y does not intersect Z. Such Y is the type I set determined by C = ∅
and D = {2, 4}.

It follows that the ordering given to the vertices of V1 defines an ordering
of the vertices of V2, which leads to a cumulative partition.

Case 4: L and u exist.

The type I sets are the same as in Case 3. The type II sets are obtained
by adding u to every type II set of Case 3, without excluding in this case
the type II set for which A = ∅, B = ∅ and E = {2, 4}.
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Let V ′
1 = {type I sets} and V ′

2 = {type II sets}. Since u is a leaf, by
Lemma 10, V1, V2 (the corresponding sets of vertices) define a bipartition
of V (S(N)), V ′

2 verifies the Helly property and V2 induces a complete in
S(N).

Let X ∈ V ′
1 , X is of type I. Let C and D be the sets that determine X.

If D = {2, 4}, let A = Ik, B = Im \ C and E = {1, 3}, and let Y be the
type II set determined by A, B and E. Clearly, X and Y do not intersect.
Let X ′ ∈ V ′

1 , X ′ 6= X. Then X ′ is of type I. Let C ′ and D′ be the sets that
determine X ′. If D′ = {3}, then Y intersects X ′ in l3. If D′ = {2, 4}, since
X 6= X ′, then C 6= C ′ and therefore Y intersects X ′ in some wib. It follows
that Y intersects every set of V ′

1 , except X.

If D = {3}, Y is defined in a similar way, but with E = {2, 4}. Again,
Y intersects every set of V ′

1 , except X.

It follows that any ordering of the vertices of V1 defines an ordering of
the vertices of V2, which leads to a cumulative partition. ut

Lemma 16 Let F be a c-forest with no isolated vertices. Then there is a
bipartition W1, W2 of V (S(F )), cumulative on W2, such that W ′

2 (the family
of maximal stable sets in F corresponding to the set of vertices W2 in S(F ))
verifies the Helly property.

Proof The proof is by induction on the number of trees of F . The base case
is the Lemma 15.

Let F be a c-forest with k + 1 c-trees (k ≥ 1). Let N be a c-tree of F
with |V (N)| minimum. By definition of c-forest, |V (N)| ≤ 2. But, since F
has no isolated vertices, |V (N)| = 2. Denote V (N) = {a, b}.

By inductive hypothesis, there is a bipartition V1, V2 of V (S(F \ N))
cumulative on V2, with V ′

2 (the family of maximal stable sets in F \N corre-
sponding to the set of vertices V2 in S(F \N)) verifying the Helly property.
Let X1, . . . ,Xk be the ordering of the vertices of V1, and Y1, . . . , Yj (j ≥ k)
the ordering of the vertices of V2, given by the definition of cumulative par-
tition. Denote by X ′

1, . . . ,X
′
k and Y ′

1 , . . . , Y ′
j , the corresponding maximal

stable sets in F \ N .

Let Z ′ be a maximal stable set of F \ N . Then Z ′a = Z ′ ∪ {a} and
Z ′b = Z ′∪{b} are maximal stable sets of F (Za and Zb are the corresponding
vertices of S(F )). Note that every maximal stable set of F can be built as
a maximal stable set of F \ N plus the vertex a or the vertex b.

Let W1 = {Xa}X∈V1
∪ {Xb}X∈V1

and W2 = {Y a}Y ∈V2
∪ {Y b}Y ∈V2

a
bipartition of S(F ), and W ′

1 and W ′
2 the corresponding families of maximal

stable sets in F . Consider the following ordering of W1: Xa
1 ,Xb

1, . . . ,X
a
k ,Xb

k,
and the following ordering of W2: Y a

1 , Y b
1 , . . . , Y a

k , Y b
k , . . . , Y a

j , Y b
j .

Since V2 is complete and V ′
2 verifies the Helly property, there is a vertex

h in F \ N such that h ∈
⋂

Y ′∈V ′

2

Y ′. But then, by the definition of W2, it

follows that h ∈
⋂

Y ′∈W ′

2

Y ′. Therefore W2 is complete and W ′
2 verifies the

Helly property.
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Finally, using that V1, V2 is a cumulative bipartition of V (F \ N), it
is easy to check that the orderings of W1 and W2 defined above lead this
bipartition of S(F ) to be cumulative. ut

Lemma 17 Let F be a c-forest. Then ω(S(F )) = M(F ).

Proof If F has an isolated vertex, then every maximal stable set of F con-
tains that vertex. Therefore S(F ) is a complete, meaning that ω(S(F )) =
M(F ).

If F has no isolated vertices, by Lemma 16 there is a partition V1, V2

of V (S(F )) cumulative on V2, with V ′
2 (the corresponding family of max-

imal stable sets of F ) verifying the Helly property. By Lemma 12, V2 is a
maximum clique of S(F ). But, since V ′

2 verifies the Helly property, then
M(F ) = ω(S(F )). ut

Now, we can give a characterization of coordinated complements of
forests.

Theorem 7 Let G be a forest. Then the following statements are equivalent:

(i) G is coordinated.
(ii) G contains neither 2P4 nor R as induced subgraph.
(iii) The forest G′ obtained by identifying the false twins of G is a c-forest.

Proof (i) ⇒ (ii)) As it was mentioned at the beginning of this subsection,
2P4 and R are not coordinated.

(ii) ⇒ (iii)) Let G′ be the result of identifying all the false twins of G.
Since G contains neither 2P4 nor R as induced subgraph, then G′ contains
neither 2P4 nor R. Then, by Lemma 14, G′ is a c-forest.

(iii) ⇒ (i)) Since the class of graphs that are complements of forests is
hereditary, it suffices to prove that F (G) = M(G).

By Lemma 11, S(G) is either trivial or the complement of a bipartite
graph. In both cases, S(G) is perfect. But, since S(G) = K(G), then G is K-
perfect hence ω(K(G)) = χ(K(G)). By definition χ(K(G)) = F (G). Then
it is enough to show that ω(K(G)) = M(G), that is, ω(S(G)) = M(G).

Since G′ is a c-forest, then by Lemma 17, ω(S(G′)) = M(G′). Since G′ is
the result of identifying all the false twins of G, it is easy to see that S(G′) is
isomorphic to S(G) and M(G′) = M(G). If follows that ω(S(G)) = M(G).
ut

Corollary 2 Let G be the complement of a forest. Then G is coordinated if
and only if G contains neither 2P4 nor R as induced subgraph.

Corollary 3 The graphs 2P4 and R are minimally not coordinated.

Theorem 8 The problem of determining if the complement of a forest is
coordinated can be solved in linear time.

Proof Let G be the complement of a forest. By Theorem 7 we only need to
check whether the forest obtained by identifying the false twins of G is a
c-forest or not. This can be easily done in linear time. ut
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3 Summary

These results allow us to formulate partial characterizations of coordi-
nated graphs by minimal forbidden induced subgraphs, as it is shown in
Table 1.

Graph classes Forbidden induced subgraphs Recognition Ref.

Line graphs 0-pyramid, odd holes linear Thms 2,5

Complements of forests R, 2P4 linear Thm 7

Table 1 Minimal forbidden induced subgraphs for coordinated graphs in each
studied class.
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